Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = bicuculline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3140 KiB  
Article
Human Stem Cell-Derived Neural Organoids for the Discovery of Antiseizure Agents
by Hamed Salmanzadeh and Robert F. Halliwell
Receptors 2025, 4(3), 12; https://doi.org/10.3390/receptors4030012 - 20 Jun 2025
Viewed by 648
Abstract
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, [...] Read more.
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, recorded the development of neurophysiological activity using multielectrode arrays (MEAs) and characterized the neuropharmacology of synaptic signaling over 8 months in vitro. In addition, we investigated the ability of these organoids to display epileptiform activity in response to a convulsant agent and the effects of antiseizure medicines to inhibit this abnormal activity. Results: Single and bursts of action potentials from individual neurons and network bursts were recorded on the MEA plates and significantly increased and became more complex from week 7 to week 30, consistent with neural network formation. Neural spiking was reduced by the Na channel blocker tetrodotoxin but increased by the inhibitor of KV7 potassium channels XE991, confirming the involvement of voltage-gated sodium and potassium channels in action potential activity. The GABA antagonists bicuculline and picrotoxin each increased the spike rate, consistent with inhibitory synaptic signaling. In contrast, the glutamate receptor antagonist kynurenic acid inhibited the spike rate, consistent with excitatory synaptic transmission in the organoids. The convulsant 4-aminopyridine increased spiking, bursts and synchronized firing, consistent with epileptiform activity in vitro. The anticonvulsants carbamazepine, ethosuximide and diazepam each inhibited this epileptiform neural activity. Conclusions: Together, our data demonstrate that neural organoids form inhibitory and excitatory synaptic circuits, generate epileptiform activity in response to a convulsant agent and detect the antiseizure properties of diverse antiepileptic drugs, supporting their value in drug discovery. Full article
Show Figures

Figure 1

24 pages, 4075 KiB  
Article
Structure-Based Virtual Screening of Potential Inhibitors Targeting the Prolyl-tRNA Synthetase (PRS) in Eimeria tenella: Insights from Molecular Docking, ADMET Studies, and Molecular Dynamics Simulations
by Haiming Cai, Shenquan Liao, Juan Li, Minna Lv, Xuhui Lin, Yongle Song, Xiangjie Chen, Yibin Zhu, Jianfei Zhang, Nanshan Qi and Mingfei Sun
Molecules 2025, 30(4), 790; https://doi.org/10.3390/molecules30040790 - 8 Feb 2025
Viewed by 930
Abstract
Avian coccidiosis, caused by protozoan parasites of the genus Eimeria, poses a major threat to the poultry industry worldwide, leading to severe economic losses through reduced growth rates, poor feed efficiency, and increased mortality. Although the conventional management of this disease has [...] Read more.
Avian coccidiosis, caused by protozoan parasites of the genus Eimeria, poses a major threat to the poultry industry worldwide, leading to severe economic losses through reduced growth rates, poor feed efficiency, and increased mortality. Although the conventional management of this disease has relied on anticoccidial drugs, the overwhelming use of these agents has led to the rapid emergence and spread of drug-resistant Eimeria isolates, highlighting the urgent need for novel therapeutic approaches. This study employed computational approaches to identify novel inhibitors targeting Eimeria tenella prolyl-tRNA synthetase (EtPRS). Based on the virtual screening of a library of 3045 natural compounds, 42 high-confidence inhibitors were identified. Three compounds, including Chelidonine, Bicuculline, and Guggulsterone, demonstrated strong and selective binding to EtPRS through stable interactions within the active site. ADMET predictions revealed favorable safety profiles, while molecular dynamic simulations confirmed binding stability. Overall, this research established a solid framework for the development of effective anticoccidial agents targeting PRS, contributing to the advancement of therapeutic strategies for combating parasitic infections in the poultry industry. Full article
Show Figures

Figure 1

14 pages, 298 KiB  
Review
Cenobamate, a New Promising Antiseizure Medication: Experimental and Clinical Aspects
by Barbara Błaszczyk, Stanisław J. Czuczwar and Barbara Miziak
Int. J. Mol. Sci. 2024, 25(23), 13014; https://doi.org/10.3390/ijms252313014 - 3 Dec 2024
Cited by 2 | Viewed by 2713
Abstract
About 40–50% of patients with drug-resistant epilepsy do not properly respond to pharmacological therapy with antiseizure medications (ASMs). Recently approved by the US Food and Drug Administration and European Medicines Agency as an add-on drug for focal seizures, cenobamate is an ASM sharing [...] Read more.
About 40–50% of patients with drug-resistant epilepsy do not properly respond to pharmacological therapy with antiseizure medications (ASMs). Recently approved by the US Food and Drug Administration and European Medicines Agency as an add-on drug for focal seizures, cenobamate is an ASM sharing two basic mechanisms of action and exhibiting a promising profile of clinical efficacy. The drug preferably inhibits persistent sodium current and activates GABA-mediated events via extrasynaptic, non-benzodiazepine receptors. Thus, its antiseizure potential is dependent on both reducing excitation and enhancing inhibition in the central nervous system. In experimental seizure models, cenobamate exhibited a clear-cut activity in many of them with promising protective indexes, with only bicuculline-induced seizures being unaffected. Randomized clinical trials indicate that combinations of cenobamate, with already prescribed ASMs, resulted in significant percentages of seizure-free patients and patients with a significant reduction in seizure frequency, compared to other ASMs in the form of an add-on therapy. Its greater antiseizure efficacy was accompanied by adverse events comparable to other ASMs. Cenobamate has also been shown to possess neuroprotective activity, which may be of importance in affecting the process of epileptogenesis and, thus, modifying the course of epilepsy. Full article
14 pages, 2492 KiB  
Article
The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation
by Sergei A. Maiorov, Denis P. Laryushkin, Kristina A. Kritskaya, Valery P. Zinchenko, Sergei G. Gaidin and Artem M. Kosenkov
Brain Sci. 2024, 14(7), 668; https://doi.org/10.3390/brainsci14070668 - 29 Jun 2024
Cited by 2 | Viewed by 1377
Abstract
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations [...] Read more.
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways. Full article
(This article belongs to the Special Issue New Insights into Neuropharmacology)
Show Figures

Figure 1

20 pages, 2752 KiB  
Article
Interactions between Lateral Hypothalamic Orexin and Dorsal Raphe Circuitry in Energy Balance
by Vijayakumar Mavanji, Brianna L. Pomonis, Laurie Shekels and Catherine M. Kotz
Brain Sci. 2024, 14(5), 464; https://doi.org/10.3390/brainsci14050464 - 7 May 2024
Cited by 4 | Viewed by 2284
Abstract
Orexin/hypocretin terminals innervate the dorsal raphe nucleus (DRN), which projects to motor control areas important for spontaneous physical activity (SPA) and energy expenditure (EE). Orexin receptors are expressed in the DRN, and obesity-resistant (OR) rats show higher expression of these receptors in the [...] Read more.
Orexin/hypocretin terminals innervate the dorsal raphe nucleus (DRN), which projects to motor control areas important for spontaneous physical activity (SPA) and energy expenditure (EE). Orexin receptors are expressed in the DRN, and obesity-resistant (OR) rats show higher expression of these receptors in the DRN and elevated SPA/EE. We hypothesized that orexin-A in the DRN enhances SPA/EE and that DRN-GABA modulates the effect of orexin-A on SPA/EE. We manipulated orexin tone in the DRN either through direct injection of orexin-A or through the chemogenetic activation of lateral-hypothalamic (LH) orexin neurons. In the orexin neuron activation experiment, fifteen minutes prior to the chemogenetic activation of orexin neurons, the mice received either the GABA-agonist muscimol or antagonist bicuculline injected into the DRN, and SPA/EE was monitored for 24 h. In a separate experiment, orexin-A was injected into the DRN to study the direct effect of DRN orexin on SPA/EE. We found that the activation of orexin neurons elevates SPA/EE, and manipulation of GABA in the DRN does not alter the SPA response to orexin neuron activation. Similarly, intra-DRN orexin-A enhanced SPA and EE in the mice. These results suggest that orexin-A in the DRN facilitates negative energy balance by increasing physical activity-induced EE, and that modulation of DRN orexin-A is a potential strategy to promote SPA and EE. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

12 pages, 2149 KiB  
Article
Aralia continentalis Root Enhances Non-Rapid Eye Movement Sleep by Activating GABAA Receptors
by Minseok Yoon, Dong Wook Lim, Jonghoon Jung, Young Sung Jung, Changho Lee and Min Young Um
Nutrients 2023, 15(24), 5020; https://doi.org/10.3390/nu15245020 - 6 Dec 2023
Cited by 2 | Viewed by 1615
Abstract
Aralia continentalis exhibits various biological activities; however, their sleep-promoting effects have not been previously reported. In this study, we evaluated the hypnotic effects and sleep–wake profiles of A. continentalis root (KS-126) using a pentobarbital-induced sleep-acceleration test and polysomnographic recordings. Additionally, we investigated the [...] Read more.
Aralia continentalis exhibits various biological activities; however, their sleep-promoting effects have not been previously reported. In this study, we evaluated the hypnotic effects and sleep–wake profiles of A. continentalis root (KS-126) using a pentobarbital-induced sleep-acceleration test and polysomnographic recordings. Additionally, we investigated the molecular mechanism of KS-126 through patch-clamp electrophysiology. Our polysomnographic recordings revealed that KS-126 not only accelerated the onset of non-rapid eye movement sleep (NREMS) but also extends its duration. Considering the temporal dynamics of the sleep–wake stages, during the initial and subsequent periods KS-126 extended NREMS duration and decreased wakefulness, thereby enhancing sleep-promoting effects. Furthermore, the assessment of sleep quality via analysis of electroencephalogram power density indicated that KS-126 did not significantly alter sleep intensity. Finally, we found that KS-126 enhanced GABAA receptor-mediated synaptic responses in primary hippocampal neurons, leading to an increase in the percentage of the GABA current. This effect was not affected by the selective benzodiazepine receptor antagonist flumazenil, but was entirely inhibited by the GABAA receptor antagonist bicuculline. In conclusion, KS-126 extends the duration of NREMS without altering its intensity by prolonging GABAergic synaptic transmission, which modulates GABAA receptor function. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

16 pages, 3778 KiB  
Article
Cleomin Exerts Acute Antinociceptive Effects in Mice via GABAB and Muscarinic Receptors
by Luíza Carolina França Opretzka, Max Denisson Maurício Viana, Alyne Almeida de Lima, Thalisson Amorim de Souza, Marcus Tullius Scotti, Josean Fechine Tavares, Marcelo Sobral da Silva, Milena Botelho Pereira Soares and Cristiane Flora Villarreal
Pharmaceuticals 2023, 16(11), 1547; https://doi.org/10.3390/ph16111547 - 2 Nov 2023
Cited by 3 | Viewed by 1346
Abstract
Cleomin, a 1,3-oxazolidine-2-thione, was recently isolated from Neocalyptrocalyx longifolium, a species traditionally used for treating painful conditions. Reports about the pharmacological activities of cleomin are lacking. Here, the antinociceptive effects of cleomin were investigated using mice models of pain, namely the formalin, [...] Read more.
Cleomin, a 1,3-oxazolidine-2-thione, was recently isolated from Neocalyptrocalyx longifolium, a species traditionally used for treating painful conditions. Reports about the pharmacological activities of cleomin are lacking. Here, the antinociceptive effects of cleomin were investigated using mice models of pain, namely the formalin, the cold plate, and the tail flick tests. Motor integrity was assessed in the rota-rod test. Antagonism assays and in silico docking analyses were performed to investigate the putative mechanisms of action. Cleomin (12.5–25 mg/kg), at doses that did not induce motor impairment, induced dose-dependent antinociception in both early and late phases of the formalin test and reduced nociceptive behaviors in both the cold plate and tail flick tests. Pretreatments with phaclofen and atropine attenuated the antinociceptive effects of cleomin, implicating the involvement of GABAB and muscarinic receptors. In silico docking studies suggested satisfactory coupling between cleomin and GABAB and M2 receptors, hence corroborating their role in cleomin’s activity. Pretreatments with naloxone, yohimbine, bicuculline, and methysergide did not affect the antinociception of cleomin. In silico pharmacokinetics prediction showed a good drug ability profile of cleomin. In conclusion, cleomin promoted antinociception mediated by GABAB and muscarinic receptors. These findings support further investigation of the analgesic potential of cleomin. Full article
(This article belongs to the Special Issue Analgesic Phytochemicals and Their Medicinal Potential)
Show Figures

Figure 1

14 pages, 2183 KiB  
Review
GABAA-ρ Receptors in the CNS: Their Functional, Pharmacological, and Structural Properties in Neurons and Astroglia
by Abraham Rosas-Arellano, Argel Estrada-Mondragón, Ataúlfo Martínez-Torres and Daniel Reyes-Haro
Neuroglia 2023, 4(4), 239-252; https://doi.org/10.3390/neuroglia4040017 - 8 Oct 2023
Cited by 2 | Viewed by 3928
Abstract
Gamma-aminobutyric acid (GABA) is known as the main inhibitory transmitter in the central nervous system (CNS), where it hyperpolarizes mature neurons through activation of GABAA receptors, pentameric complexes assembled by combination of subunits (α1–6, β1–3, γ1–3, δ, ε, θ, π and ρ1–3). [...] Read more.
Gamma-aminobutyric acid (GABA) is known as the main inhibitory transmitter in the central nervous system (CNS), where it hyperpolarizes mature neurons through activation of GABAA receptors, pentameric complexes assembled by combination of subunits (α1–6, β1–3, γ1–3, δ, ε, θ, π and ρ1–3). GABAA-ρ subunits were originally described in the retina where they generate non-desensitizing Cl- currents that are insensitive to bicuculline and baclofen. However, now is known that they are widely expressed throughout the brain including glial cells. For example, whole-cell patch-clamp recordings demonstrated the functional expression of GABAA-ρ receptors in primary cultures of cerebellar astrocytes, as well as in cerebellar ependymal cells and striatal astrocytes. In these cells GABA-currents were partially blocked by TPMPA and insensitive to barbiturates. These receptors are proposed to be involved in extrasynaptic communication and dysfunction of the signaling is accompanied by reduced expression of GABAA-ρ receptors in Huntington’s disease and autism spectrum disorders (ASD). Thus, the aim of this review is to present an overview about GABAA-ρ receptors including their structure and function, as well as their importance in the excitatory/inhibitory (E/I) balance in neurodevelopment and in disease. Full article
Show Figures

Figure 1

14 pages, 1923 KiB  
Article
Sleep-Enhancing Effect of Water Extract from Jujube (Zizyphus jujuba Mill.) Seeds Fermented by Lactobacillus brevis L32
by Gi Yeon Bae, Yejin Ahn, Ki-Bae Hong, Eun-Jin Jung, Hyung Joo Suh and Kyungae Jo
Foods 2023, 12(15), 2864; https://doi.org/10.3390/foods12152864 - 27 Jul 2023
Cited by 14 | Viewed by 3983
Abstract
Although Ziziphus jujuba Mill (jujube) is used in folk medicine for hypnotic sedative, anxiolytic, and many other purposes, to date, only a few studies have revealed its sleep-promoting effects and related mechanisms. Currently, drugs used for the treatment of sleep disorders have various [...] Read more.
Although Ziziphus jujuba Mill (jujube) is used in folk medicine for hypnotic sedative, anxiolytic, and many other purposes, to date, only a few studies have revealed its sleep-promoting effects and related mechanisms. Currently, drugs used for the treatment of sleep disorders have various side effects, so it is essential to develop safe natural materials. Therefore, we evaluated the sleep-enhancing activity and mechanism of action of an aqueous extract of jujube seeds (ZW) fermented with Lactobacillus brevis L-32 in rodent models. The starch contained in ZW was removed by enzymatic degradation and fermented with L. brevis to obtain a fermented product (ZW-FM) with a high γ-aminobutyric acid (GABA) content. To evaluate the sleep-promoting effect of ZW-FM, pentobarbital-induced sleep tests were performed on ICR mice, and electroencephalography analysis was undertaken in Sprague Dawley rats. Additionally, the awakening relief effects of ZW-FM were confirmed in a caffeine-induced insomnia model. Finally, the mechanism of sleep enhancement by ZW-FM was analyzed using GABA receptor type A (GABAA) antagonists. The ZW-FM-treated groups (100 and 150 mg/kg) showed increased sleep time, especially the δ-wave time during non-rapid eye movement (NREM) sleep. In addition, the 150 mg/kg ZW-FM treatment group showed decreased sleep latency and increased sleep time in the insomnia model. In particular, NREM sleep time was increased and REM sleep time, which was increased by caffeine treatment, was decreased by ZW-FM treatment. ZW-FM-induced sleep increase was inhibited by the GABAA receptor antagonists picrotoxin, bicuculline, and flumazenil, confirming that the increase was the result of a GABAergic mechanism. These results strongly suggest that the increased GABA in water extract from jujube seeds fermented by L. brevis acts as a sleep-promoting compound and that the sleep-promoting activity is related to GABAA receptor binding. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

17 pages, 4334 KiB  
Article
Of the Mechanisms of Paroxysmal Depolarization Shifts: Generation and Maintenance of Bicuculline-Induced Paroxysmal Activity in Rat Hippocampal Cell Cultures
by Denis P. Laryushkin, Sergei A. Maiorov, Valery P. Zinchenko, Valentina N. Mal’tseva, Sergei G. Gaidin and Artem M. Kosenkov
Int. J. Mol. Sci. 2023, 24(13), 10991; https://doi.org/10.3390/ijms241310991 - 1 Jul 2023
Cited by 8 | Viewed by 2607
Abstract
Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the [...] Read more.
Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the generation of PDS and dependence of the PDS pattern on neuronal membrane potential. We have shown that significant depolarization or hyperpolarization (by more than ±50 mV) of a single neuron does not change the number of individual PDSs in the cluster, indicating the involvement of an external stimulus in PDS induction. Based on this data, we have suggested reliable protocols for stimulating single PDS or PDS clusters. Furthermore, we have found that AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are necessary for PDS generation since AMPAR antagonist NBQX completely suppresses bicuculline-induced paroxysmal activity. In turn, antagonists of NMDA (N-methyl-D-aspartate) and kainate receptors (D-AP5 and UBP310, respectively) caused a decrease in the amplitude of the first action potential in PDSs and in the amplitude of the oscillations of intracellular Ca2+ concentration occurring alongside the PDS cluster generation. The effects of the NMDAR (NMDA receptor) and KAR (kainate receptor) antagonists indicate that these receptors are involved only in the modulation of paroxysmal activity. We have also shown that agonists of some Gi-coupled receptors, such as A1 adenosine (A1Rs) or cannabinoid receptors (CBRs) (N6-cyclohexyladenosine and WIN 55,212-2, respectively), completely suppressed PDS generation, while the A1R agonist even prevented it. We hypothesized that the dynamics of extracellular glutamate concentration govern paroxysmal activity. Fine-tuning of neuronal activity via action on Gi-coupled receptors or iGluRs paves the way for the development of new approaches for epilepsy pharmacotherapy. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy 2.0)
Show Figures

Figure 1

16 pages, 4441 KiB  
Article
A Human Microglial Cell Line Expresses γ-Aminobutyric Acid (GABA) Receptors and Responds to GABA and Muscimol by Increasing Production of IL-8
by Ashley Wagner, Zhimin Yan and Marianna Kulka
Neuroglia 2023, 4(3), 172-187; https://doi.org/10.3390/neuroglia4030012 - 28 Jun 2023
Cited by 3 | Viewed by 3496
Abstract
Gamma-aminobutyric acid (GABA) is an essential neurotransmitter and an important regulator of neuroinflammation and disease. Microglia are important immune cells in the brain that express GABA receptors (GABAR) and respond to both GABA and GABAR agonists, yet the effect of GABA on microglial [...] Read more.
Gamma-aminobutyric acid (GABA) is an essential neurotransmitter and an important regulator of neuroinflammation and disease. Microglia are important immune cells in the brain that express GABA receptors (GABAR) and respond to both GABA and GABAR agonists, yet the effect of GABA on microglial inflammatory responses is unclear. We hypothesized that GABA and GABAR agonists might modify the activation of a human microglial cell line (HMC3). We further hypothesized that Amanita muscaria extract (AME-1), which contained GABAR agonists (GABA and muscimol), would similarly stimulate HMC3. Ligand-gated GABAR (GABAAR) and G protein-coupled GABAR (GABABR) subunit expression was analyzed by qRT-PCR, metabolic activity was determined by nicotinamide adenine dinucleotide (NADH)-dependent oxidoreductase assay (XTT), reactive oxygen species (ROS) generation was analyzed by 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA), and interleukin-8 (IL-8) production was analyzed by an enzyme-linked immunosorbent assay (ELISA). HMC3 expressed several neuroreceptors such as subunits of the GABAA receptor (GABAAR). HMC3 constitutively produce IL-8 and ROS. Both muscimol and GABA stimulated HMC3 to produce more IL-8 but had no effect on constitutive ROS production. GABA and muscimol altered the morphology and Iba1 localization of HMC3. GABA, but not muscimol, increased HMC3 metabolic activity. Similarly, AME-1 induced HMC3 to produce more IL-8 but not ROS and altered cell morphology and Iba1 localization. GABA induction of IL-8 was blocked by bicuculline, an antagonist of GABAAR. AME-1-induced production of IL-8 was not blocked by bicuculline, suggesting that AME-1’s effect on HMC3 was independent of GABAAR. In conclusion, these data show that GABA and GABA agonists stimulate HMC3 to increase their production of IL-8. Mixtures that contain GABA and muscimol, such as AME-1, have similar effects on HMC3 that are independent of GABAAR. Full article
(This article belongs to the Special Issue New Insights into the Anti-inflammatory Role of Microglia)
Show Figures

Figure 1

12 pages, 1509 KiB  
Article
5-HT6 Receptors Sex-Dependently Modulate Hippocampal Synaptic Activity through GABA Inhibition
by Caroline Lahogue, Jean-Marie Billard, Thomas Freret and Valentine Bouet
Biomolecules 2023, 13(5), 751; https://doi.org/10.3390/biom13050751 - 26 Apr 2023
Cited by 6 | Viewed by 1927
Abstract
The subtype 6 of the serotoninergic receptors (5-HT6Rs) is highly expressed in the hippocampus, and evidence indicates the beneficial effects of 5-HT6Rs blockade on short- and long-term memory in rodents. Nevertheless, the underlying functional mechanisms still need to be established. To this end, [...] Read more.
The subtype 6 of the serotoninergic receptors (5-HT6Rs) is highly expressed in the hippocampus, and evidence indicates the beneficial effects of 5-HT6Rs blockade on short- and long-term memory in rodents. Nevertheless, the underlying functional mechanisms still need to be established. To this end, we performed electrophysiological extracellular recordings to assess the effects of the 5-HT6Rs antagonist SB-271046 on the synaptic activity and functional plasticity at the CA3/CA1 hippocampal connections of male and female mice slices. We found that basal excitatory synaptic transmission and isolated N-methyl-D-aspartate receptors (NMDARs) activation were significantly increased by SB-271046. The NMDARs-related improvement was prevented by the GABAAR antagonist bicuculline in male but not in female mice. Regarding synaptic plasticity, neither paired-pulse facilitation (PPF) nor NMDARs-dependent long-term potentiation (LTP) (induced either by high-frequency or theta-burst stimulation) was affected by the 5-HT6Rs blockade. Taken together, our results indicate a sex-dependent 5-HT6Rs effect on synaptic activity at the CA3/CA1 hippocampal connections through changes in the excitation/inhibition balance. Full article
(This article belongs to the Special Issue Recent Advances on 5-HT6 Receptors)
Show Figures

Figure 1

13 pages, 2821 KiB  
Article
Chrysanthemum morifolium and Its Bioactive Substance Enhanced the Sleep Quality in Rodent Models via Cl Channel Activation
by Mijin Kim, YuJaung Kim, Hyang Woon Lee, Jae-Chul Jung and Seikwan Oh
Nutrients 2023, 15(6), 1309; https://doi.org/10.3390/nu15061309 - 7 Mar 2023
Cited by 11 | Viewed by 3868
Abstract
Dried Chrysanthemum morifolium (Chry) flowers have been used in Korea as a traditional insomnia treatment. In this study, the sleep-promoting activity and improving sleep quality of Chry extract (ext) and its active substance linarin were analyzed by pentobarbital-induced sleep experiment in mice and [...] Read more.
Dried Chrysanthemum morifolium (Chry) flowers have been used in Korea as a traditional insomnia treatment. In this study, the sleep-promoting activity and improving sleep quality of Chry extract (ext) and its active substance linarin were analyzed by pentobarbital-induced sleep experiment in mice and electroencephalography (EEG), electromyogram (EMG) analysis in rats. In a dose-dependent manner, Chry ext and linarin promoted longer sleep duration in the pentobarbital-induced sleep test compared to pentobarbital-only groups at both hypnotic and subhypnotic doses. Chry ext administration also significantly improved sleep quality, as seen in the relative power of low-frequency (delta) waves when compared with the control group. Linarin increased Cl uptake in the SH-SY5Y human cell line and chloride influx was reduced by bicuculline. After administration of Chry ext, the hippocampus, frontal cortex, and hypothalamus from rodents were collected and blotted for glutamic acid decarboxylase (GAD)65/67 and gamma-aminobutyric acid (GABA)A receptors subunit expression levels. The expression of α1-subunits, β2-subunits, and GAD65/67 of the GABAA receptor was modulated in the rodent brain. In conclusion, Chry ext augments pentobarbital-induced sleep duration and enhances sleep quality in EEG waves. These effects might be due to the activation of the Cl channel. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

12 pages, 1423 KiB  
Article
Origin of Retinal Oscillatory Potentials in the Mouse, a Tool to Specifically Locate Retinal Damage
by Fei Liao, Haitao Liu, Santiago Milla-Navarro, Pedro de la Villa and Francisco Germain
Int. J. Mol. Sci. 2023, 24(4), 3126; https://doi.org/10.3390/ijms24043126 - 4 Feb 2023
Cited by 17 | Viewed by 3190
Abstract
To determine the origin of oscillatory potentials (OPs), binocular electroretinogram (ERG) recordings were performed under light and dark adaptation on adult healthy C57BL/6J mice. In the experimental group, 1 μL of PBS was injected into the left eye, while the right eye was [...] Read more.
To determine the origin of oscillatory potentials (OPs), binocular electroretinogram (ERG) recordings were performed under light and dark adaptation on adult healthy C57BL/6J mice. In the experimental group, 1 μL of PBS was injected into the left eye, while the right eye was injected with 1 μL of PBS containing different agents: APB, GABA, Bicuculline, TPMPA, Glutamate, DNQX, Glycine, Strychnine, or HEPES. The OP response depends on the type of photoreceptors involved, showing their maximum response amplitude in the ERG induced by mixed rod/cone stimulation. The oscillatory components of the OPs were affected by the injected agents, with some drugs inducing the complete abolition of oscillations (APB, GABA, Glutamate, or DNQX), whereas other drugs merely reduced the oscillatory amplitudes (Bicuculline, Glycine, Strychnine, or HEPES) or did not even affect the oscillations (TPMPA). Assuming that rod bipolar cells (RBC) express metabotropic Glutamate receptors, GABAA, GABAC, and Glycine receptors and that they release glutamate mainly on Glycinergic AII amacrine cells and GABAergic A17 amacrine cells, which are differently affected by the mentioned drugs, we propose that RBC-AII/A17 reciprocal synapses are responsible for the OP generation in the ERG recordings in the mice. We conclude that the reciprocal synapses between RBC and AII/A17 are the basis of the ERG OP oscillations of the light response, and this fact must be taken into consideration in any ERG test that shows a decrease in the OPs’ amplitude. Full article
(This article belongs to the Special Issue Precision Medicine in Ocular Diseases)
Show Figures

Figure 1

13 pages, 1954 KiB  
Article
Relative Contribution of Blood Pressure and Renal Sympathetic Nerve Activity to Proximal Tubular Sodium Reabsorption via NHE3 Activity
by Roberto B. Pontes, Erika E. Nishi, Renato O. Crajoinas, Maycon I. O. Milanez, Adriana C. C. Girardi, Ruy R Campos and Cassia T Bergamaschi
Int. J. Mol. Sci. 2023, 24(1), 349; https://doi.org/10.3390/ijms24010349 - 26 Dec 2022
Cited by 2 | Viewed by 4546
Abstract
We examined the effects of an acute increase in blood pressure (BP) and renal sympathetic nerve activity (rSNA) induced by bicuculline (Bic) injection in the paraventricular nucleus of hypothalamus (PVN) or the effects of a selective increase in rSNA induced by renal nerve [...] Read more.
We examined the effects of an acute increase in blood pressure (BP) and renal sympathetic nerve activity (rSNA) induced by bicuculline (Bic) injection in the paraventricular nucleus of hypothalamus (PVN) or the effects of a selective increase in rSNA induced by renal nerve stimulation (RNS) on the renal excretion of sodium and water and its effect on sodium-hydrogen exchanger 3 (NHE3) activity. Uninephrectomized anesthetized male Wistar rats were divided into three groups: (1) Sham; (2) Bic PVN: (3) RNS + Bic injection into the PVN. BP and rSNA were recorded, and urine was collected prior and after the interventions in all groups. RNS decreased sodium (58%) and water excretion (53%) independently of BP changes (p < 0.05). However, after Bic injection in the PVN during RNS stimulation, the BP and rSNA increased by 30% and 60% (p < 0.05), respectively, diuresis (5-fold) and natriuresis (2.3-fold) were increased (p < 0.05), and NHE3 activity was significantly reduced, independently of glomerular filtration rate changes. Thus, an acute increase in the BP overcomes RNS, leading to diuresis, natriuresis, and NHE3 activity inhibition. Full article
(This article belongs to the Special Issue Sympathetic Nerves and Cardiovascular Diseases)
Show Figures

Figure 1

Back to TopTop