Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (117)

Search Parameters:
Keywords = bias correction of precipitation measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7975 KB  
Article
Impact of Wind on Rainfall Measurements Obtained from the OTT Parsivel2 Disdrometer
by Enrico Chinchella, Arianna Cauteruccio and Luca G. Lanza
Sensors 2025, 25(20), 6440; https://doi.org/10.3390/s25206440 - 18 Oct 2025
Viewed by 583
Abstract
The impact of wind on precipitation measurements from the OTT Parsivel2 optical transmission disdrometer is quantified using computational fluid dynamics simulations. The numerical velocity field around the instrument body and above the instrument sensing area (the laser beam) shows significant disturbance that [...] Read more.
The impact of wind on precipitation measurements from the OTT Parsivel2 optical transmission disdrometer is quantified using computational fluid dynamics simulations. The numerical velocity field around the instrument body and above the instrument sensing area (the laser beam) shows significant disturbance that depends heavily on the wind direction. By computing the trajectories of raindrops approaching the instrument, the wind-induced bias is quantified for a wide range of environmental conditions. Adjustments are derived in terms of site-independent catch ratios, which can be used to correct measurements in post-processing. The impact on two integral rainfall variables, the rainfall intensity and radar reflectivity, is calculated in terms of collection and radar retrieval efficiency assuming a sample drop size distribution. For rainfall intensity measurements, the OTT Parsivel2 shows significant bias, even much higher than the wind-induced bias typical of catching-type rain gauges. Large underestimation is shown for wind parallel to the laser beam, while limited bias occurs for wind perpendicular to it. The intermediate case, with wind at 45°, presents non negligible overestimation. Proper alignment of the instrument with the laser beam perpendicular to the prevailing wind direction at the installation site and the use of windshields may significantly reduce the overall wind-induced bias. Full article
(This article belongs to the Special Issue Atmospheric Precipitation Sensors)
Show Figures

Figure 1

18 pages, 6056 KB  
Article
Comparative Study on the Different Downscaling Methods for GPM Products in Complex Terrain Areas
by Jiao Liu, Xuyang Shi, Yahui Fang, Caiyan Wu and Zhenyan Yi
Earth 2025, 6(4), 129; https://doi.org/10.3390/earth6040129 - 17 Oct 2025
Viewed by 549
Abstract
Fine spatial information of precipitation plays a significant role in regional eco-hydrological studies but remain challenging to derive from satellite observations, especially in complex terrain areas. Sichuan Province, located in the southwest of China, has a highly variable terrain, and the spatial distribution [...] Read more.
Fine spatial information of precipitation plays a significant role in regional eco-hydrological studies but remain challenging to derive from satellite observations, especially in complex terrain areas. Sichuan Province, located in the southwest of China, has a highly variable terrain, and the spatial distribution of precipitation exhibits extreme heterogeneity and strong autocorrelation. Multi-scale Geographically Weighted Regression (MGWR) and Random Forest (RF) were employed for downscaling the Global Precipitation Measurement Mission (GPM) products based on high spatial resolution terrain, vegetation, and meteorological data in Sichuan province, and their specific effects on gauged precipitation accuracy and spatial precipitation distributions have been analyzed based on the influences of environmental variables. Results show that the influence of each environmental factor on the distribution of precipitation at different scales was well represented in the MGWR model. The downscaled data showed good spatial sharpening effects; additionally, the biases in the overestimated region were well corrected after downscaling. However, when based on spatial autocorrelation and considering adjacent influences, the MGWR performed poorly in correcting outlier sites adjacent to the high–high clusters. Compared with MGWR, relying on independently constructed decision trees and powerful regression capabilities, superior correction for outlier sites has been achieved in RF. Nevertheless, the influence of environmental variables reflected in RF differs from actual conditions, and detailed characteristics of precipitation spatial distribution have been lost in the downscaled results. MGWR and RF demonstrate varying applicability when downscaling GPM products in complex terrain areas, as they both improve the ability to finely depict spatial information but differ in terms of texture property expression and precipitation bias correction. Full article
Show Figures

Figure 1

25 pages, 2339 KB  
Article
Projected Hydrological Regime Shifts in Kazakh Rivers Under CMIP6 Climate Scenarios: Integrated Modeling and Seasonal Flow Analysis
by Aliya Nurbatsina, Aisulu Tursunova, Lyazzat Makhmudova, Zhanat Salavatova and Fredrik Huthoff
Atmosphere 2025, 16(9), 1020; https://doi.org/10.3390/atmos16091020 - 29 Aug 2025
Cited by 1 | Viewed by 1830
Abstract
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based [...] Read more.
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based on the integration of data from General Circulation Models (GCMs) of the sixth phase of the CMIP6 project, socio-economic development scenarios SSP2-4.5 and SSP5-8.5, as well as the results of hydrological modelling using the SWIM model. The studies were carried out with an integrated approach to hydrological change assessment, taking into account scenario modelling, uncertainty analysis and the use of bias correction methods for climate data. A calculation method was used to analyse the intra-annual distribution of runoff, taking into account climate change. Detailed forecasts of changes in runoff and intra-annual water distribution up to the end of the 21st century for key water bodies in Kazakhstan were obtained. While the projections of river flow and hydrological parameters under CMIP6 scenarios are actively pursued worldwide, few studies have explicitly focused on forecasting intra-annual flow distribution in Central Asia, calculated using a methodology appropriate for this region and using CMIP6 ensemble scenarios. There have been studies on changes in the intra-annual distribution of runoff for individual river basins or local areas, but for the historical period, there have also been studies on modelling runoff forecasts using CMIP6 climate models, but have been very few systematic publications on the distribution of predicted intra-annual runoff in Central Asia, and this issue has not been fully studied. The projections suggest an intensification of flow seasonality (1), earlier flood peaks (2), reduced summer discharges (3) and an increased likelihood of extreme hydrological events under future climatic conditions. Changes in the seasonal structure of river flow in Central Asia are caused by both climatic factors—temperature, precipitation and glacier degradation—and significant anthropogenic influences, including irrigation and water management structures. These changes directly affect the risks of flooding and water shortages, as well as the adaptive capacity of water management systems. Given the high level of water management challenges and interregional conflicts over water use, the intra-annual distribution of runoff is important for long-term planning, the development of adaptation measures, and the formulation of public policy on sustainable water management in the face of growing climate challenges. This is critically important for water, agricultural, energy, and environmental planning in a region that already faces annual water management challenges and conflicts due to the uneven seasonal distribution of resources. Full article
(This article belongs to the Special Issue The Water Cycle and Climate Change (3rd Edition))
Show Figures

Figure 1

23 pages, 7915 KB  
Article
Beyond Algorithm Updates: A Systematic Validation of GPM DPR-V07 over China’s Multiscale Topography
by Jia Song, Haiwei Zhang, Yi Lyu, Hao Wu, Fei Zhang, Xu Ma and Bin Yong
Remote Sens. 2025, 17(14), 2410; https://doi.org/10.3390/rs17142410 - 12 Jul 2025
Viewed by 1036
Abstract
The Global Precipitation Measurement (GPM) mission’s Dual-Frequency Precipitation Radar (DPR) serves as a critical benchmark for calibrating satellite-based precipitation products, with its retrieval quality directly governing the accuracy of global precipitation estimates. While the updated version 07 (DPR-V07) algorithm introduces substantial refinements over [...] Read more.
The Global Precipitation Measurement (GPM) mission’s Dual-Frequency Precipitation Radar (DPR) serves as a critical benchmark for calibrating satellite-based precipitation products, with its retrieval quality directly governing the accuracy of global precipitation estimates. While the updated version 07 (DPR-V07) algorithm introduces substantial refinements over its predecessor (DPR-V06), systematic evaluations of its operational advancements in precipitation monitoring remain limited. This study utilizes ground-based rain gauge data from Mainland China (2015–2018) to assess improvements of DPR-V07 over its predecessor’s (DPR-V06) effects. The results indicate that DPR-V07 reduces the high-altitude precipitation underestimation by 5% (vs. V06) in the west (W) and corrects the elevation-linked overestimation via an improved terrain sensitivity. The seasonal analysis demonstrates winter-specific advancements of DPR-V07, with a 3–8% reduction in the miss bias contributing to a lower total bias. However, the algorithm updates yield unintended trade-offs: the High-Sensitivity Scan (HS) mode exhibits significant detection performance degradation, particularly in east (E) and midwest (M) regions, with Critical Success Index (CSI) values decreasing by approximately 0.12 compared to DPR-V06. Furthermore, summer error components show a minimal improvement, suggesting unresolved challenges in warm-season retrieval physics. This study establishes a systematic framework for evaluating precipitation retrieval advancements, providing critical insights for future satellite algorithm development and operational applications in hydrometeorological monitoring. Full article
Show Figures

Graphical abstract

12 pages, 4866 KB  
Technical Note
An Elevation-Coupled Multivariate Regression Model for GNSS-Based FY-4A Precipitable Water Vapor
by Yaping Gao, Jing Lin, Junqiang Han, Tong Luo, Min Zhou and Zhen Jiang
Remote Sens. 2025, 17(14), 2371; https://doi.org/10.3390/rs17142371 - 10 Jul 2025
Cited by 1 | Viewed by 754
Abstract
The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) to refine [...] Read more.
The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) to refine the water vapor content based on FY-4A satellite remote sensing data, thereby improving its accuracy. Taking Hong Kong as an experimental area, we investigated the correlation between GNSS PWV and FY-4A PWV, confirming the feasibility of utilizing GNSS PWV to calibrate FY-4A PWV. Subsequently, by examining the differences between the two PWV values, we found that the elevation of the stations affects the consistency of PWV measurement. Based on this finding, the elevation data are introduced to construct a multivariate linear regression correction model with a first-order polynomial. To evaluate the performance of the proposed model, a comparison with other correction models is made, including second-order polynomials and power functions. The results indicate that the elevation-integrated water vapor correction model improves the root mean square error (RMSE) by 27.4% and the MAE by 26.7%, and reduces the bias from 0.592 to nearly 0. Its accuracy surpasses that of second-order polynomial and power function models, demonstrating a considerable improvement in the precision of FY-4A. Full article
Show Figures

Graphical abstract

39 pages, 31656 KB  
Article
Assessment of Satellite and Reanalysis Precipitation Data Using Statistical and Wavelet Analysis in Semi-Arid, Morocco
by Achraf Chakri, Nour-Eddine Laftouhi, Lahcen Zouhri, Hassan Ibouh and Mounsif Ibnoussina
Water 2025, 17(11), 1714; https://doi.org/10.3390/w17111714 - 5 Jun 2025
Cited by 2 | Viewed by 2749
Abstract
Climate change, marked by decreasing rainfall and increasing extreme events, represents a major challenge for water resources, particularly in semi-arid regions. To estimate aquifer recharge, it is essential to assess the fraction of precipitation contributing to groundwater recharge and to implement a water [...] Read more.
Climate change, marked by decreasing rainfall and increasing extreme events, represents a major challenge for water resources, particularly in semi-arid regions. To estimate aquifer recharge, it is essential to assess the fraction of precipitation contributing to groundwater recharge and to implement a water balance model. However, the limited number of rainfall stations has led researchers to rely on satellite and reanalysis rainfall products. The accuracy of these datasets is essential for reliable hydrological modeling. In this study, we evaluated five rainfall products—CHIRPS, ERA5_Ag, CFSR, GPM, and PERSIANN-CDR—by comparing them to ground measurements from gauging stations in the central Haouz region of Marrakech. The evaluation was conducted at three temporal scales: daily, monthly, and annual. Statistical metrics, including RMSE, MAE, NSE, Bias, and Pearson correlation, as well as classification metrics (accuracy, F1 score, recall, precision, and Cohen’s Kappa), and wavelet analysis, were applied to assess the accuracy of the products. The results identified ERA5_Ag and GPM as the most accurate products in capturing rainfall events. Nevertheless, ERA5_Ag showed a high bias. After applying the quantile mapping method to correct the bias, the product exhibited greater accuracy. The corrected datasets from these two products will be used to estimate recharge over the last 30 years, contributing to the development of a hydrogeological model for groundwater dynamics. Full article
(This article belongs to the Special Issue Hydrogeological and Hydrochemical Investigations of Aquifer Systems)
Show Figures

Graphical abstract

22 pages, 11091 KB  
Article
Assessing Climate Change Impacts on Combined Sewer Overflows: A Modelling Perspective
by Panagiota Galiatsatou, Iraklis Nikoletos, Dimitrios Malamataris, Antigoni Zafirakou, Philippos Jacob Ganoulis, Argyro Gkatzioura, Maria Kapouniari and Anastasia Katsoulea
Climate 2025, 13(5), 82; https://doi.org/10.3390/cli13050082 - 22 Apr 2025
Cited by 2 | Viewed by 1622
Abstract
The study examines the impacts of climate change on the operation and capacity of the combined sewer network in the historic center of Thessaloniki, Greece. Rainfall data from three high-resolution Regional Climate Models (RCMs), namely (a) the Cosmo climate model (CCLM), (b) the [...] Read more.
The study examines the impacts of climate change on the operation and capacity of the combined sewer network in the historic center of Thessaloniki, Greece. Rainfall data from three high-resolution Regional Climate Models (RCMs), namely (a) the Cosmo climate model (CCLM), (b) the regional atmospheric climate model (RACMO) and (c) the regional model (REMO), from the MED-CORDEX initiative with future estimations based on Representative Concentration Pathway (RCP) 4.5, are first corrected for bias based on existing measurements in the study area. Intensity–duration–frequency (IDF) curves are then constructed for future data using a temporal downscaling approach based on the scaling of the Generalized Extreme Value (GEV) distribution to derive the relationships between daily and sub-daily precipitation. Projected rainfall events associated with various return periods are subsequently developed and utilized as input parameters for the hydrologic–hydraulic model. The simulation results for each return period are compared with those of the current climate, and the projections from various RCMs are ranked according to their impact on the combined sewer network and overflow volumes. In the short term (2020–2060), the CCLM and REMO project a decrease in CSO volumes compared to current conditions, while the RACMO predicts an increase, highlighting uncertainties in short-term climate projections. In the long term (2060–2100), all models indicate a rise in combined sewer overflow volumes, with CCLM showing the most significant increase, suggesting escalating pressure on urban drainage systems due to more intense rainfall events. Based on these findings, it is essential to adopt mitigation strategies, such as nature-based solutions, to reduce peak flows within the network and alleviate the risk of flooding. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

33 pages, 15492 KB  
Article
Seasonal Bias Correction of Daily Precipitation over France Using a Stitch Model Designed for Robust Representation of Extremes
by Philippe Ear, Elena Di Bernardino, Thomas Laloë, Adrien Lambert and Magali Troin
Atmosphere 2025, 16(4), 480; https://doi.org/10.3390/atmos16040480 - 19 Apr 2025
Viewed by 1852
Abstract
Highly resolved and accurate daily precipitation data are required for impact models to perform adequately and correctly measure the impacts of high-risk events. In order to produce such data, bias correction is often needed. Most of those statistical methods correct the probability distributions [...] Read more.
Highly resolved and accurate daily precipitation data are required for impact models to perform adequately and correctly measure the impacts of high-risk events. In order to produce such data, bias correction is often needed. Most of those statistical methods correct the probability distributions of daily precipitation by modeling them with either empirical or parametric distributions. A recent semi-parametric model based on a penalized Berk–Jones (BJ) statistical test, which allows for automatic and personalized splicing of parametric and non-parametric distributions, has been developed. This method, called the Stitch-BJ model, was found to be able to model daily precipitation correctly and showed interesting potential in a bias correction setting. In the present study, we will consolidate these results by taking into account the seasonal properties of daily precipitation in an out-of-sample context and by considering dry days probabilities in our methodology. We evaluate the performance of the Stitch-BJ method in this seasonal bias correction setting against more classical models such as the Gamma, Exponentiated Weibull (ExpW), Extended Generalized Pareto (EGP) or empirical distributions. Results show that a seasonal separation of data is necessary in order to account for intra-annual non-stationarity. Moreover, the Stitch-BJ distribution was able to consistently perform as well as or better than all the other considered models over the validation set, including the empirical distribution, which is often used due to its robustness. Finally, while methods for correcting dry day probabilities can be easily applied, their relevance can be discussed as temporal and spatial correlations are often neglected. Full article
Show Figures

Figure 1

18 pages, 9125 KB  
Article
Spatial-Temporal Evaluation of Satellite-Derived Rainfall Estimations for Water Resource Applications in the Upper Congo River Basin
by Alaba Boluwade
Remote Sens. 2024, 16(20), 3868; https://doi.org/10.3390/rs16203868 - 18 Oct 2024
Cited by 3 | Viewed by 2305
Abstract
Satellite rainfall estimates are robust alternatives to gauge precipitation, especially in Africa, where several watersheds and regional water basins are poorly gauged or ungauged. In this study, six satellite precipitation products, the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS); Tropical Applications of [...] Read more.
Satellite rainfall estimates are robust alternatives to gauge precipitation, especially in Africa, where several watersheds and regional water basins are poorly gauged or ungauged. In this study, six satellite precipitation products, the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS); Tropical Applications of Meteorology Using Satellite and Ground-based Observations (TAMSAT); TRMM Multi-satellite Precipitation Analysis (TMPA); and the National Aeronautics and Space Administration’s new Integrated Multi-SatellitE Retrievals for Global Precipitation Measurement (GPM) early run (IMERG-ER), late run (IMERG-LR), and final run (IMERG-FR), were used to force a gauge-calibrated Soil & Water Assessment Tool (SWAT) model for the Congo River Basin, Central Africa. In this study, the National Centers for Environmental Prediction’s Climate Forecast System Reanalysis (CFSR) calibrated version of the SWAT was used as the benchmark/reference, while scenario versions were created as configurations using each satellite product identified above. CFSR was used as an independent sample to prevent bias toward any of the satellite products. The calibrated CFSR model captured and reproduced the hydrology (timing, peak flow, and seasonality) of this basin using the average monthly discharge from January 1984–December 1991. Furthermore, the results show that TMPA, IMERG-FR, and CHIRPS captured the peak flows and correctly reproduced the seasonality and timing of the monthly discharges (January 2007–December 2010). In contrast, TAMSAT, IMERG-ER, and IMERG-LR overestimated the peak flows. These results show that some of these precipitation products must be bias-corrected before being used for practical applications. The results of this study will be significant in integrated water resource management in the Congo River Basin and other regional river basins in Africa. Most importantly, the results obtained from this study have been hosted in a repository for free access to all interested in hydrology and water resource management in Africa. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Graphical abstract

24 pages, 3953 KB  
Article
Quantifying Climate Change Variability for the Better Management of Water Resources: The Case of Kobo Valley, Danakil Basin, Ethiopia
by Mengesha Tesfaw, Mekete Dessie, Kristine Walraevens, Thomas Hermans, Fenta Nigate, Tewodros Assefa and Kasye Shitu
Climate 2024, 12(10), 159; https://doi.org/10.3390/cli12100159 - 6 Oct 2024
Viewed by 2547
Abstract
Alterations in the hydrological cycle due to climate change are one of the key threats to the future accessibility of natural resources. This study used 12 GCM climate models from CMIP6 to evaluate future climate change scenarios by applying model performance measures and [...] Read more.
Alterations in the hydrological cycle due to climate change are one of the key threats to the future accessibility of natural resources. This study used 12 GCM climate models from CMIP6 to evaluate future climate change scenarios by applying model performance measures and trend analysis in Kobo Valley, Ethiopia. The models were ranked based on their ability to analyze the historical datasets. The result of this study showed that the outputs of the FIO-ESM-2-0 CIMP6 model had a good overall ranking for both precipitation and temperature. After bias correction of the model-based projections with the observed data, the average annual precipitation in the average scenario (SSP2-4.5) decreased by 4.4% and 13% in 2054 and 2084, respectively. Similarly, in the worst-case scenario (SSP5-8.5), by the end of 2054 and 2084, decreases of 4% and 12.8%, respectively, were predicted. The average annual maximum temperature under the SSP2-4.5 scenario increased by 1.5 °C in 2054 and by 2.1 °C in 2084. The average annual maximum temperature under the worst-case (SSP5-8.5) scenario increased by 1.7 °C in 2054 and by 3.2 °C in 2084. In the middle scenario (SSP4.5), the average annual minimum temperature increased by 2.2 °C in 2054 and by 3 °C in 2084. The average annual minimum temperature under the worst-case (SSP5-8.5) scenario increased by 2.6 °C in 2054 and by 4.3 °C in 2084. The seasonal variability in precipitation in the studied valley will decrease in the winter and increase in the summer. A decrease in precipitation combined with an increase in temperature will strengthen the risk of drought events in the future. Full article
Show Figures

Figure 1

17 pages, 16284 KB  
Article
NRCS Recalibration and Wind Speed Retrieval for SWOT KaRIn Radar Data
by Lin Ren, Xiao Dong, Limin Cui, Jingsong Yang, Yi Zhang, Peng Chen, Gang Zheng and Lizhang Zhou
Remote Sens. 2024, 16(16), 3103; https://doi.org/10.3390/rs16163103 - 22 Aug 2024
Cited by 2 | Viewed by 1712
Abstract
In this study, wind speed sensitivity and calibration bias were first determined for Surface Water and Ocean Topography (SWOT) satellite Ka-band Radar Interferometer (KaRIn) Normalized Radar Backscatter Cross Section (NRCS) data at VV and HH polarizations. Here, the calibration bias was estimated by [...] Read more.
In this study, wind speed sensitivity and calibration bias were first determined for Surface Water and Ocean Topography (SWOT) satellite Ka-band Radar Interferometer (KaRIn) Normalized Radar Backscatter Cross Section (NRCS) data at VV and HH polarizations. Here, the calibration bias was estimated by comparing the KaRIn NRCS with collocated simulations from a model developed using Global Precipitation Measurement (GPM) satellite Dual-frequency Precipitation Radar (DPR) data. To recalibrate the bias, the correlation coefficient between the KaRIn data and the simulations was estimated, and the data with the corresponding top 10% correlation coefficients were used to estimate the recalibration coefficients. After recalibration, a Ka-band NRCS model was developed from the KaRIn data to retrieve ocean surface wind speeds. Finally, wind speed retrievals were evaluated using the collocated European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis winds, Haiyang-2C scatterometer (HY2C-SCAT) winds and National Data Buoy Center (NDBC) and Tropical Atmosphere Ocean (TAO) buoy winds. Evaluation results show that the Root Mean Square Error (RMSE) at both polarizations is less than 1.52 m/s, 1.34 m/s and 1.57 m/s, respectively, when compared to ECMWF, HY2C-SCAT and buoy collocated winds. Moreover, both the bias and RMSE were constant with the incidence angles and polarizations. This indicates that the winds from the SWOT KaRIn data are capable of correcting the sea state bias for sea surface height products. Full article
Show Figures

Figure 1

23 pages, 10000 KB  
Article
Assessment of PERSIANN Satellite Products over the Tulijá River Basin, Mexico
by Lorenza Ceferino-Hernández, Francisco Magaña-Hernández, Enrique Campos-Campos, Gabriela Adina Morosanu, Carlos E. Torres-Aguilar, René Sebastián Mora-Ortiz and Sergio A. Díaz
Remote Sens. 2024, 16(14), 2596; https://doi.org/10.3390/rs16142596 - 16 Jul 2024
Cited by 5 | Viewed by 2323
Abstract
Precipitation is a fundamental component of the Earth’s hydrological cycle. Therefore, monitoring precipitation is paramount, as accurate information is needed to prevent natural hydrological disasters, such as floods and droughts. However, measuring precipitation using rain gauges is complicated due to their sparse spatial [...] Read more.
Precipitation is a fundamental component of the Earth’s hydrological cycle. Therefore, monitoring precipitation is paramount, as accurate information is needed to prevent natural hydrological disasters, such as floods and droughts. However, measuring precipitation using rain gauges is complicated due to their sparse spatial distribution. Satellite precipitation products (SPPs) are an alternative source of rainfall data. This study aimed to evaluate the performance of PERSIANN-CCS and PDIR-Now SPPs over the Tulijá River Basin (Chiapas, Mexico) using scatter plots, categorical statistics, descriptive statistics, and decomposing total bias. Additionally, bias correction was performed using the quantile mapping (QM) method. QM is a technique used to improve the fit of SPPs with respect to rainfall observations through a transfer function, aiming to reduce systematic errors in SPPs. The results indicate that the PDIR-Now product tends to overestimate rainfall to a large extent, thus showing better performance in detecting rain events. Meanwhile, PERSIANN-CCS underestimates precipitation to a lesser extent. The findings of this study demonstrate that correcting the bias of SPPs improves estimations of rainfall records, thereby reducing the percentage bias and root mean square error. Full article
Show Figures

Figure 1

22 pages, 5448 KB  
Article
IMERG in the Canadian Precipitation Analysis (CaPA) System for Winter Applications
by Stéphane Bélair, Pei-Ning Feng, Franck Lespinas, Dikra Khedhaouiria, David Hudak, Daniel Michelson, Catherine Aubry, Florence Beaudry, Marco L. Carrera and Julie M. Thériault
Atmosphere 2024, 15(7), 763; https://doi.org/10.3390/atmos15070763 - 27 Jun 2024
Cited by 1 | Viewed by 1839
Abstract
Several configurations of the Canadian Precipitation Analysis system (CaPA) currently produce precipitation analyses at Environment and Climate Change Canada (ECCC). To improve CaPA’s performance during the winter season, the impact of assimilating the IMERG V06 product (IMERG: Integrated Multi-satellitE Retrievals for GPM—Global Precipitation [...] Read more.
Several configurations of the Canadian Precipitation Analysis system (CaPA) currently produce precipitation analyses at Environment and Climate Change Canada (ECCC). To improve CaPA’s performance during the winter season, the impact of assimilating the IMERG V06 product (IMERG: Integrated Multi-satellitE Retrievals for GPM—Global Precipitation Measurement mission) into CaPA is examined in this study. Tests are conducted with CaPA’s 10 km deterministic version, evaluated over Canada and the northern part of the United States (USA). Maps from a case study show that IMERG plays a contradictory role in the production of CaPA’s precipitation analyses for a synoptic-scale winter storm over North America’s eastern coast. While its contribution appears to be physically correct over southern portions of the meteorological system, and early in its intensification phase, IMERG displays unrealistic spatial structures over land later in the system’s life cycle when it is located over northern (colder) areas. Objective evaluation of CaPA’s analyses when IMERG is assimilated without any restrictions shows an overall decrease in precipitation, which has a mixed effect (positive and negative) on the bias indicators. But IMERG’s influence on the Equitable Threat Score (ETS), a measure of CaPA’s analyses accuracy, is clearly negative. Using IMERG’s quality index (QI) to filter out areas where it is less accurate improves CaPA’s objective evaluation, leading to better ETS versus the control experiment in which no IMERG data are assimilated. Several diagnostics provide insight into the nature of IMERG’s contribution to CaPA. For the most successful configuration, with a QI threshold of 0.3, IMERG’s impact is mostly found in the warmer parts of the domain, i.e., in northern US states and in British Columbia. Spatial means of the temporal sums of absolute differences between CaPA’s analyses with and without IMERG indicate that this product also contributes meaningfully over land areas covered by snow, and areas where air temperature is below −2 °C (where precipitation is assumed to be in solid phase). Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 7654 KB  
Article
An Innovative Correction–Fusion Approach for Multi-Satellite Precipitation Products Conditioned by Gauge Background Fields over the Lancang River Basin
by Linjiang Nan, Mingxiang Yang, Hao Wang, Hejia Wang and Ningpeng Dong
Remote Sens. 2024, 16(11), 1824; https://doi.org/10.3390/rs16111824 - 21 May 2024
Cited by 6 | Viewed by 1898
Abstract
Satellite precipitation products can help improve precipitation estimates where ground-based observations are lacking; however, their relative accuracy and applicability in data-scarce areas remain unclear. Here, we evaluated the accuracy of different satellite precipitation datasets for the Lancang River Basin, Western China, including the [...] Read more.
Satellite precipitation products can help improve precipitation estimates where ground-based observations are lacking; however, their relative accuracy and applicability in data-scarce areas remain unclear. Here, we evaluated the accuracy of different satellite precipitation datasets for the Lancang River Basin, Western China, including the Tropical Rainfall Measuring Mission (TRMM) 3B42RT, the Global Precipitation Measurement Integrated Multi-satellitE Retrievals (GPM IMERG), and Fengyun 2G (FY-2G) datasets. The results showed that GPM IMERG and FY-2G are superior to TRMM 3B42RT for meeting local research needs. A subsequent bias correction on these two datasets significantly increased the correlation coefficient and probability of detection of the products and reduced error indices such as the root mean square error and mean absolute error. To further improve data quality, we proposed a novel correction–fusion method based on window sliding data correction and Bayesian data fusion. Specifically, the corrected FY-2G dataset was merged with GPM IMERG Early, Late, and Final Runs. The resulting FY-Early, FY-Late, and FY-Final fusion datasets showed high correlation coefficients, strong detection performances, and few observation errors, thereby effectively extending local precipitation data sources. The results of this study provide a scientific basis for the rational use of satellite precipitation products in data-scarce areas, as well as reliable data support for precipitation forecasting and water resource management in the Lancang River Basin. Full article
Show Figures

Graphical abstract

24 pages, 6864 KB  
Article
Evaluation of the Impact of Climate Change on the Water Balance of the Mixteco River Basin with the SWAT Model
by Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, Martín Alejandro Bolaños-González, Héctor Flores-Magdaleno, Roberto Ascencio-Hernández and Enrique Inoscencio Canales-Islas
Hydrology 2024, 11(4), 45; https://doi.org/10.3390/hydrology11040045 - 28 Mar 2024
Cited by 8 | Viewed by 5666
Abstract
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological balance using the SWAT (Soil and Water Assessment [...] Read more.
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological balance using the SWAT (Soil and Water Assessment Tool) hydrological model in the Mixteco River Basin (MRB), Oaxaca, Mexico. Temperature and precipitation were predicted with the projections of global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6); the bias was corrected using CMhyd software, and then the best performing GCM was selected for use in the SWAT model. According to the GCM MPI-ESM1-2-LR, precipitation might decrease by between 83.71 mm and 225.83 mm, while temperature might increase by between 2.57 °C and 4.77 °C, causing a greater atmospheric evaporation demand that might modify the hydrological balance of the MRB. Water yield might decrease by 47.40% and 61.01% under the climate scenarios SP245 and SSP585, respectively. Therefore, adaptation and mitigation measures are needed to offset the adverse impact of climate change in the MRB. Full article
Show Figures

Figure 1

Back to TopTop