Seasonal Bias Correction of Daily Precipitation over France Using a Stitch Model Designed for Robust Representation of Extremes
Abstract
:1. Introduction
- 1.
- The CERRA-Land and ERA5-Land datasets were separated into a training and a validation period (1 January 1985–31 December 2009 and 1 January 2010–31 December 2020), as discussed in Section 2.1. This separation makes it possible to include the empirical distribution in the bias correction performance comparison. As already remarked, in this study, CERRA-Land is used in Equation (1) as obs data and ERA5-Land as mod data;
- 2.
- A separation using meteorological seasons DJF (i.e., December–January–February), MAM, JJA, and SON was used in order to take into account daily precipitation’s seasonality and increase the time series’ stationarity (see Section 2.1 for details);
- 3.
- Correction of dry days probability is included in the bias correction using the Singularity Stochastic Removal from [28], as described in Section 2.2.
Structure of the Paper
2. Materials and Methods
2.1. Daily Precipitation Datasets
2.2. On Correction of Number of Dry Days and Rain Probability
- 1.
- Select a threshold such that any value above is considered a wet day and any value below is considered a dry day. This can either be a common threshold or the minimum positive value of all datasets;
- 2.
- Set all days below (null days) to a random uniformly taken between 0 and ;
- 3.
- Perform the bias correction technique;
- 4.
- Set the bias-corrected data lower than to 0.
2.3. Parametric, Semi-Parametric and Non-Parametric Models
3. Results
3.1. Stitch-BJ Fitting Results
3.2. Bias Correction Results on the Period 2010–2020 and Interpretation
- Training period: 1 January 1985 to 31 December 2009;
- Validation period: 1 January 2010 to 31 December 2020;
3.2.1. Mean Absolute Error
3.2.2. Mean Absolute Error over the 95th Percentile
3.2.3. RMSE
3.2.4. Impact of Seasonality on Performance
3.2.5. Local Analysis on a Selected Location
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Full Stitching Maps for DJF and JJA Seasons on ERA5-Land and CERRA-Land for the Training Period
References
- Casanueva, A.; Kotlarski, S.; Herrera, S.; Fernández, J.; Gutiérrez, J.M.; Boberg, F.; Colette, A.; Christensen, O.B.; Goergen, K.; Jacob, D.; et al. Daily precipitation statistics in a EURO-CORDEX RCM ensemble: Added value of raw and bias-corrected high-resolution simulations. Clim. Dyn. 2016, 47, 719–737. [Google Scholar] [CrossRef]
- Shayeghi, A.; Ziveh, A.R.; Bakhtar, A.; Teymoori, J.; Hanel, M.; Vargas Godoy, M.R.; Markonis, Y.; AghaKouchak, A. Assessing drought impacts on groundwater and agriculture in Iran using high-resolution precipitation and evapotranspiration products. J. Hydrol. 2024, 631, 130828. [Google Scholar] [CrossRef]
- Fosser, G.; Gaetani, M.; Kendon, E.J.; Adinolfi, M.; Ban, N.; Belušić, D.; Caillaud, C.; Careto, J.A.M.; Coppola, E.; Demory, M.E.; et al. Convection-permitting climate models offer more certain extreme rainfall projections. npj Clim. Atmos. Sci. 2024, 7, 1–10. [Google Scholar] [CrossRef]
- Alfieri, L.; Thielen, J. A European precipitation index for extreme rain-storm and flash flood early warning. Meteorol. Appl. 2015, 22, 3–13. [Google Scholar] [CrossRef]
- Sangati, M.; Borga, M. Influence of rainfall spatial resolution on flash flood modelling. Nat. Hazards Earth Syst. Sci. 2009, 9, 575–584. [Google Scholar] [CrossRef]
- Henckes, P.; Knaut, A.; Obermüller, F.; Frank, C. The benefit of long-term high resolution wind data for electricity system analysis. Energy 2018, 143, 934–942. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A.; Truhetz, H.; Keuler, K.; Goergen, K.; Teichmann, C.; Fox Maule, C.; van Meijgaard, E.; Déqué, M.; Nikulin, G.; et al. Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Clim. Dyn. 2016, 46, 383–412. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Lee, S.K.; Wu, L.; Mechoso, C.R. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 2014, 4, 201–205. [Google Scholar] [CrossRef]
- Şan, M.; Nacar, S.; Kankal, M.; Bayram, A. Daily precipitation performances of regression-based statistical downscaling models in a basin with mountain and semi-arid climates. Stoch. Environ. Res. Risk Assess. 2023, 37, 1431–1455. [Google Scholar] [CrossRef]
- Xu, H.; Xu, C.Y.; Sælthun, N.R.; Zhou, B.; Xu, Y. Evaluation of reanalysis and satellite-based precipitation datasets in driving hydrological models in a humid region of Southern China. Stoch. Environ. Res. Risk Assess. 2015, 29, 2003–2020. [Google Scholar] [CrossRef]
- Bador, M.; Boé, J.; Terray, L.; Alexander, L.V.; Baker, A.; Bellucci, A.; Haarsma, R.; Koenigk, T.; Moine, M.P.; Lohmann, K.; et al. Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models. J. Geophys. Res. Atmos. 2020, 125, e2019JD032184. [Google Scholar] [CrossRef]
- Déqué, M. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Glob. Planet. Change 2007, 57, 16–26. [Google Scholar] [CrossRef]
- Michelangeli, P.A.; Vrac, M.; Loukos, H. Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Li, B.; Huang, Y.; Du, L.; Wang, D. Bias Correction for Precipitation Simulated by RegCM4 over the Upper Reaches of the Yangtze River Based on the Mixed Distribution Quantile Mapping Method. Atmosphere 2021, 12, 1566. [Google Scholar] [CrossRef]
- Naveau, P.; Huser, R.; Ribereau, P.; Hannart, A. Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resour. Res. 2016, 52, 2753–2769. [Google Scholar] [CrossRef]
- Mamalakis, A.; Langousis, A.; Deidda, R.; Marrocu, M. A parametric approach for simultaneous bias correction and high-resolution downscaling of climate model rainfall. Water Resour. Res. 2017, 53, 2149–2170. [Google Scholar] [CrossRef]
- Velasquez, P.; Messmer, M.; Raible, C.C. A new bias-correction method for precipitation over complex terrain suitable for different climate states: A case study using WRF (version 3.8.1). Geosci. Model Dev. 2020, 13, 5007–5027. [Google Scholar] [CrossRef]
- Byun, K.; Hamlet, A.F. An improved empirical quantile mapping approach for bias correction of extreme values in climate model simulations. Environ. Res. Lett. 2024, 20, 014041. [Google Scholar] [CrossRef]
- Joly, D.; Brossard, T.; Cardot, H.; Cavailhes, J.; Hilal, M.; Wavresky, P. Les types de climats en France, une construction spatiale. Cybergeo Eur. J. Geogr. 2010. [Google Scholar] [CrossRef]
- Strohmenger, L.; Collet, L.; Andréassian, V.; Corre, L.; Rousset, F.; Thirel, G. Köppen-Geiger climate classification across France based on an ensemble of high-resolution climate projections. C. R. Géosci. 2024, 356, 67–82. [Google Scholar] [CrossRef]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Derdour, S.; Ghenim, A.N.; Megnounif, A.; Tangang, F.; Chung, J.X.; Ayoub, A.B. Bias Correction and Evaluation of Precipitation Data from the CORDEX Regional Climate Model for Monitoring Climate Change in the Wadi Chemora Basin (Northeastern Algeria). Atmosphere 2022, 13, 1876. [Google Scholar] [CrossRef]
- Langousis, A.; Mamalakis, A.; Deidda, R.; Marrocu, M. Assessing the relative effectiveness of statistical downscaling and distribution mapping in reproducing rainfall statistics based on climate model results. Water Resour. Res. 2016, 52, 471–494. [Google Scholar] [CrossRef]
- Holthuijzen, M.; Beckage, B.; Clemins, P.J.; Higdon, D.; Winter, J.M. Robust bias-correction of precipitation extremes using a novel hybrid empirical quantile-mapping method: Advantages of a linear correction for extremes. Theor. Appl. Climatol. 2022, 149, 863–882. [Google Scholar] [CrossRef]
- Trentini, L.; Dal Gesso, S.; Venturini, M.; Guerrini, F.; Calmanti, S.; Petitta, M. A Novel Bias Correction Method for Extreme Events. Climate 2023, 11, 3. [Google Scholar] [CrossRef]
- Ear, P.; Di Bernardino, E.; Laloë, T.; Troin, M.; Lambert, A. A semi-parametric distribution stitch based on the Berk-Jones test for French daily precipitation bias correction. Stoch. Environ. Res. Risk Assess. 2025. to appear. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.S.; Rahnamay Naeini, M.; Akbari Asanjan, A.; Chavoshian, A.; Hsu, K.l.; Sorooshian, S. Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sens. 2020, 12, 2102. [Google Scholar] [CrossRef]
- Vrac, M.; Noël, T.; Vautard, R. Bias correction of precipitation through Singularity Stochastic Removal: Because occurrences matter. J. Geophys. Res. Atmos. 2016, 121, 5237–5258. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Verrelle, A.; Glinton, M.; Bazile, E.; Moigne, P.L. CERRA-Land: A new land surface reanalysis at 5.5 km resolution over Europe. In Proceedings of the Copernicus Meetings, Virtual, 3–10 September 2021. [Google Scholar]
- Pelosi, A. Performance of the Copernicus European Regional Reanalysis (CERRA) dataset as proxy of ground-based agrometeorological data. Agric. Water Manag. 2023, 289, 108556. [Google Scholar] [CrossRef]
- Guo, C.; Ning, N.; Guo, H.; Tian, Y.; Bao, A.; De Maeyer, P. Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin? Atmosphere 2024, 15, 1254. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Maraun, D.; Widmann, M.; Huth, R.; Hertig, E.; Benestad, R.; Roessler, O.; Wibig, J.; Wilcke, R.; Kotlarski, S.; et al. An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment. Int. J. Climatol. 2019, 39, 3750–3785. [Google Scholar] [CrossRef]
- Reiter, P.; Gutjahr, O.; Schefczyk, L.; Heinemann, G.; Casper, M. Does applying quantile mapping to subsamples improve the bias correction of daily precipitation? Int. J. Climatol. 2018, 38, 1623–1633. [Google Scholar] [CrossRef]
- Chaouche, K.; Neppel, L.; Dieulin, C.; Pujol, N.; Ladouche, B.; Martin, E.; Salas, D.; Caballero, Y. Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Comptes Rendus Geosci. 2010, 342, 234–243. [Google Scholar] [CrossRef]
- Braunstein, S.L. How large a sample is needed for the maximum likelihood estimator to be approximately Gaussian? J. Phys. A Math. Gen. 1992, 25, 3813. [Google Scholar] [CrossRef]
- Chen, D.; Dai, A.; Hall, A. The Convective-To-Total Precipitation Ratio and the “Drizzling” Bias in Climate Models. J. Geophys. Res. Atmos. 2021, 126, e2020JD034198. [Google Scholar] [CrossRef]
- Gutowski, W.J.; Decker, S.G.; Donavon, R.A.; Pan, Z.; Arritt, R.W.; Takle, E.S. Temporal–Spatial Scales of Observed and Simulated Precipitation in Central U.S. Climate. J. Clim. 2003, 16, 3841–3847. [Google Scholar] [CrossRef]
- Argüeso, D.; Evans, J.P.; Fita, L. Precipitation bias correction of very high resolution regional climate models. Hydrol. Earth Syst. Sci. 2013, 17, 4379–4388. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue. J. Clim. 2013, 26, 2137–2143. [Google Scholar] [CrossRef]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Lavaysse, C.; Vrac, M.; Drobinski, P.; Lengaigne, M.; Vischel, T. Statistical downscaling of the French Mediterranean climate: Assessment for present and projection in an anthropogenic scenario. Nat. Hazards Earth Syst. Sci. 2012, 12, 651–670. [Google Scholar] [CrossRef]
- Mao, G.; Vogl, S.; Laux, P.; Wagner, S.; Kunstmann, H. Stochastic bias correction of dynamically downscaled precipitation fields for Germany through Copula-based integration of gridded observation data. Hydrol. Earth Syst. Sci. 2015, 19, 1787–1806. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Vigaud, N.; Vrac, M.; Caballero, Y. Probabilistic downscaling of GCM scenarios over southern India. International Journal of Climatology 2013, 33, 1248–1263. [Google Scholar] [CrossRef]
- Semenov, M.A.; Brooks, R.J.; Barrow, E.M.; Richardson, C.W. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim. Res. 1998, 10, 95–107. [Google Scholar] [CrossRef]
- Ambrosino, C.; Chandler, R.E.; Todd, M.C. Rainfall-derived growing season characteristics for agricultural impact assessments in South Africa. Theor. Appl. Climatol. 2014, 115, 411–426. [Google Scholar] [CrossRef]
- Vaittinada Ayar, P.; Vrac, M.; Bastin, S.; Carreau, J.; Déqué, M.; Gallardo, C. Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: Present climate evaluations. Clim. Dyn. 2016, 46, 1301–1329. [Google Scholar] [CrossRef]
- Bouvier, C.; Cisneros, L.; Dominguez, R.; Laborde, J.P.; Lebel, T. Generating rainfall fields using principal components (PC) decomposition of the covariance matrix: A case study in Mexico City. J. Hydrol. 2003, 278, 107–120. [Google Scholar] [CrossRef]
- Khan, S.; Kuhn, G.; Ganguly, A.R.; Erickson III, D.J.; Ostrouchov, G. Spatio-temporal variability of daily and weekly precipitation extremes in South America. Water Resour. Res. 2007, 43, W11424. [Google Scholar] [CrossRef]
- Abbott, T.H.; Stechmann, S.N.; Neelin, J.D. Long temporal autocorrelations in tropical precipitation data and spike train prototypes. Geophys. Res. Lett. 2016, 43, 11,472–11,480. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Change 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Ajaaj, A.A.; Mishra, A.K.; Khan, A.A. Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate. Stoch. Environ. Res. Risk Assess. 2016, 30, 1659–1675. [Google Scholar] [CrossRef]
- Lafon, T.; Dadson, S.; Buys, G.; Prudhomme, C. Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol. 2013, 33, 1367–1381. [Google Scholar] [CrossRef]
- Martinez-Villalobos, C.; Neelin, J.D. Why Do Precipitation Intensities Tend to Follow Gamma Distributions? J. Atmos. Sci. 2019, 76, 3611–3631. [Google Scholar] [CrossRef]
- Husak, G.J.; Michaelsen, J.C.; Funk, C.C. Use of the Gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int. J. Climatol. 2007, 27, 935–944. [Google Scholar] [CrossRef]
- Khan, S.A. Exponentiated Weibull regression for time-to-event data. Lifetime Data Anal. 2018, 24, 328–354. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K.; Kollia, G.D. A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data. J. Am. Stat. Assoc. 1996, 91, 1575–1583. [Google Scholar] [CrossRef]
- Sharma, V.K.; Singh, S.V.; Shekhawat, K. Exponentiated Teissier distribution with increasing, decreasing and bathtub hazard functions. J. Appl. Stat. 2022, 49, 371–393. [Google Scholar] [CrossRef]
- Tencaliec, P.; Favre, A.C.; Naveau, P.; Prieur, C.; Nicolet, G. Flexible semiparametric Generalized Pareto modeling of the entire range of rainfall amount. Environmetrics 2019, 31, e2582:1. [Google Scholar] [CrossRef]
- Rivoire, P.; Martius, O.; Naveau, P. A Comparison of Moderate and Extreme ERA-5 Daily Precipitation With Two Observational Data Sets. Earth Space Sci. 2021, 8, e2020EA001633. [Google Scholar] [CrossRef]
- Haruna, A.; Blanchet, J.; Favre, A.C. Modeling Intensity-Duration-Frequency Curves for the Whole Range of Non-Zero Precipitation: A Comparison of Models. Water Resour. Res. 2023, 59, e2022WR033362. [Google Scholar] [CrossRef]
- Enayati, M.; Bozorg-Haddad, O.; Bazrafshan, J.; Hejabi, S.; Chu, X. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J. Water Clim. Change 2021, 12, 401–419. [Google Scholar] [CrossRef]
- Wang, J.; Guan, Y.; Wu, L.; Guan, X.; Cai, W.; Huang, J.; Dong, W.; Zhang, B. Changing Lengths of the Four Seasons by Global Warming. Geophys. Res. Lett. 2021, 48, e2020GL091753. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Berg, P.; Bosshard, T.; Bozhinova, D.; Bärring, L.; Löw, J.; Nilsson, C.; Strandberg, G.; Södling, J.; Thuresson, J.; Wilcke, R.; et al. Robust handling of extremes in quantile mapping – “Murder your darlings”. Geosci. Model Dev. 2024, 17, 8173–8179. [Google Scholar] [CrossRef]
- Gutjahr, O.; Heinemann, G. Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM. Theor. Appl. Climatol. 2013, 114, 511–529. [Google Scholar] [CrossRef]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef]
- Vrac, M. Multivariate bias adjustment of high-dimensional climate simulations: The Rank Resampling for Distributions and Dependences (R2D2) bias correction. Hydrol. Earth Syst. Sci. 2018, 22, 3175–3196. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Montero-Martínez, M.J. Statistical Downscaling of Precipitation in the South and Southeast of Mexico. Climate 2023, 11, 186. [Google Scholar] [CrossRef]
- Enyew, F.B.; Sahlu, D.; Tarekegn, G.B.; Hama, S.; Debele, S.E. Performance Evaluation of CMIP6 Climate Model Projections for Precipitation and Temperature in the Upper Blue Nile Basin, Ethiopia. Climate 2024, 12, 169. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; Oldenborgh, G.J.v.; Lenderink, G.; Thao, S.; Ribes, A.; Planton, S.; Dubuisson, B.; Soubeyroux, J.M. Extreme Fall 2014 Precipitation in the Cévennes Mountains. Bull. Am. Meteorol. Soc. 2015. [Google Scholar] [CrossRef]
- Emmanuel, I.; Payrastre, O.; Andrieu, H.; Zuber, F. A method for assessing the influence of rainfall spatial variability on hydrograph modeling. First case study in the Cevennes Region, southern France. J. Hydrol. 2017, 555, 314–322. [Google Scholar] [CrossRef]
- Cortés-Hernández, V.E.; Caillaud, C.; Bellon, G.; Brisson, E.; Alias, A.; Lucas-Picher, P. Evaluation of the convection permitting regional climate model CNRM-AROME on the orographically complex island of Corsica. Clim. Dyn. 2024, 62, 4673–4696. [Google Scholar] [CrossRef]
- Estermann, R.; Rajczak, J.; Velasquez, P.; Lorenz, R.; Schär, C. Projections of Heavy Precipitation Characteristics Over the Greater Alpine Region Using a Kilometer–Scale Climate Model Ensemble. J. Geophys. Res. Atmos. 2025, 130, e2024JD040901. [Google Scholar] [CrossRef]
DJF | MAM | JJA | SON | |
---|---|---|---|---|
DJF | x | 0.54 | 0.52 | 0.50 |
MAM | 0.50 | x | 0.35 | 0.80 |
JJA | 0.60 | 0.49 | x | 0.55 |
SON | 0.51 | 0.79 | 0.49 | x |
DJF | 1 | 2 | 3 | MAM | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
1 | x | 0.05 | 0.32 | 1 | x | 0.33 | 0.26 |
2 | 0.10 | x | 0.17 | 2 | 0.19 | x | 0.12 |
3 | 0.25 | 0.06 | x | 3 | 0.24 | 0.18 | x |
JJA | 1 | 2 | 3 | SON | 1 | 2 | 3 |
1 | x | 0.11 | 0.11 | 1 | x | 0.14 | 0.30 |
2 | 0.17 | x | 0.03 | 2 | 0.13 | x | 0.15 |
3 | 0.10 | 0.08 | x | 3 | 0.25 | 0.18 | x |
DJF (JJA) | EGP diff | emp diff | ExpW diff | Gamma diff |
---|---|---|---|---|
mean | −0.02 (−0.00) | −0.02 (−0.04) | −0.18 (−0.06) | −1.36 (−1.20) |
min | −17.73 (−5.33) | −2.82 (−2.37) | −6.29 (−9.49) | −82.20 (−24.09) |
25th | 0.00 (−0.01) | −0.10 (−0.14) | −0.12 (−0.12) | −1.14 (−1.63) |
50th | 0.00 (0.00) | −0.01 (−0.03) | −0.02 (−0.02) | −0.12 (−0.26) |
75th | 0.00 (0.00) | 0.07 (0.07) | 0.05 (0.08) | 0.02 (0.00) |
max | 4.19 (1.24) | 4.07 (2.22) | 3.43 (2.66) | 4.00 (3.05) |
DJF (JJA) | EGP diff | emp diff | ExpW diff | Gamma diff |
---|---|---|---|---|
mean | −0.26 (−0.00) | −0.55 (−0.49) | −0.51 (−0.04) | −5.39 (−4.89) |
min | −284.58 (−82.82) | −42.87 (−27.88) | −64.11 (−103.34) | −169.05 (−63.91) |
25th | 0.00 (−0.01) | −1.35 (−1.63) | −0.67 (−0.74) | −4.50 (−6.60) |
50th | 0.00 (0.00) | −0.32 (−0.35) | −0.06 (−0.02) | −0.51 (−1.13) |
75th | 0.00 (0.01) | 0.55 (0.86) | 0.41 (0.73) | 0.15 (0.27) |
max | 69.58 (20.26) | 69.00 (39.99) | 63.60 (46.20) | 68.96 (51.49) |
DJF (JJA) | EGP diff | emp diff | ExpW diff | Gamma diff |
---|---|---|---|---|
mean | −0.11 (0.00) | −0.17 (−0.15) | −0.23 (−0.04) | −1.99 (−1.76) |
min | −110.71 (−30.28) | −17.49 (−11.40) | −23.73 (−36.74) | −97.48 (−33.29) |
25th | 0.00 (0.00) | −0.39 (−0.49) | −0.23 (−0.25) | −1.62 (−2.40) |
50th | 0.00 (0.00) | −0.07 (−0.09) | −0.02 (−0.01) | −0.19 (−0.41) |
75th | 0.00 (0.00) | 0.18 (0.27) | 0.13 (0.23) | 0.05 (0.06) |
max | 29.22 (7.98) | 29.20 (13.49) | 27.06 (14.89) | 29.65 (16.69) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ear, P.; Di Bernardino, E.; Laloë, T.; Lambert, A.; Troin, M. Seasonal Bias Correction of Daily Precipitation over France Using a Stitch Model Designed for Robust Representation of Extremes. Atmosphere 2025, 16, 480. https://doi.org/10.3390/atmos16040480
Ear P, Di Bernardino E, Laloë T, Lambert A, Troin M. Seasonal Bias Correction of Daily Precipitation over France Using a Stitch Model Designed for Robust Representation of Extremes. Atmosphere. 2025; 16(4):480. https://doi.org/10.3390/atmos16040480
Chicago/Turabian StyleEar, Philippe, Elena Di Bernardino, Thomas Laloë, Adrien Lambert, and Magali Troin. 2025. "Seasonal Bias Correction of Daily Precipitation over France Using a Stitch Model Designed for Robust Representation of Extremes" Atmosphere 16, no. 4: 480. https://doi.org/10.3390/atmos16040480
APA StyleEar, P., Di Bernardino, E., Laloë, T., Lambert, A., & Troin, M. (2025). Seasonal Bias Correction of Daily Precipitation over France Using a Stitch Model Designed for Robust Representation of Extremes. Atmosphere, 16(4), 480. https://doi.org/10.3390/atmos16040480