Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = beyond graphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 6695 KiB  
Review
Design Innovation and Thermal Management Applications of Low-Dimensional Carbon-Based Smart Textiles
by Yating Pan, Shuyuan Lin, Yang Xue, Bingxian Ou, Zhen Li, Junhua Zhao and Ning Wei
Textiles 2025, 5(3), 27; https://doi.org/10.3390/textiles5030027 - 9 Jul 2025
Viewed by 379
Abstract
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for [...] Read more.
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for flexible thermal regulation. This review summarizes recent advances in integrating these materials into textile architectures, mapping the evolution of this emerging field. Key topics include phonon-dominated heat transfer mechanisms, strategies for modulating interfacial thermal resistance, and dimensional effects across scales; beyond these intrinsic factors, hierarchical textile configurations further tailor macroscopic performance. We highlight how one-dimensional fiber bundles, two-dimensional woven fabrics, and three-dimensional porous networks construct multi-directional thermal pathways while enhancing porosity and stress tolerance. As for practical applications, the performance of carbon-based textiles in wearable systems, flexible electronic packaging, and thermal coatings is also critically assessed. Current obstacles—namely limited manufacturing scalability, interfacial mismatches, and thermal performance degradation under repeated deformation—are analyzed. To overcome these challenges, future studies should prioritize the co-design of structural and thermo-mechanical properties, the integration of multiple functionalities, and optimization guided by data-driven approaches. This review thus lays a solid foundation for advancing carbon-based smart textiles toward next-generation flexible thermal management technologies. Full article
Show Figures

Figure 1

26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 833
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

13 pages, 452 KiB  
Article
Enhanced mm-Wave Frequency Up-Conversion via a Time-Varying Graphene Aperture on a Cavity Resonator
by Stamatios Amanatiadis, Theodosios Karamanos, Fabrice Lemoult and Nikolaos V. Kantartzis
Micromachines 2025, 16(6), 679; https://doi.org/10.3390/mi16060679 - 4 Jun 2025
Viewed by 457
Abstract
The transition to 5G and beyond has highlighted the need for efficient devices that operate at mm-wave frequencies, which require new structures and pose fabrication challenges. This paper proposes a novel non-linear antenna that combines the well-established substrate-integrated cavity (SIC) radiators and time-varying [...] Read more.
The transition to 5G and beyond has highlighted the need for efficient devices that operate at mm-wave frequencies, which require new structures and pose fabrication challenges. This paper proposes a novel non-linear antenna that combines the well-established substrate-integrated cavity (SIC) radiators and time-varying graphene for generating harmonic frequencies in the mm-wave spectrum. Graphene is represented as having a dispersive surface conductivity, while time modulation of the conductivity is introduced by varying the applied bias electric field. A modified FDTD algorithm is, additionally, used to simulate the time-varying graphene behaviour under different modulation schemes. The final antenna design involves an SIC resonator with a graphene-covered slot aperture for radiation. The numerical study highlights the effective generation of harmonics using the modulated graphene at the mm-wave regime. Finally, different modulation schemes are applied to enhance certain higher-order harmonics, demonstrating the potential of this non-linear antenna design for future mm-wave and THz frequency applications. Full article
Show Figures

Figure 1

14 pages, 5725 KiB  
Article
Synergistic Regulation of Combustion Behavior and Safety Characteristics of Graphene Modified Core–Shell Al@AP Composites
by Jiahui Shi, Jiahao Liang, Xiaole Sun, Yingjun Li, Haijun Zhang, Xueyong Guo, Shi Yan, Junwei Li and Jianxin Nie
Nanomaterials 2025, 15(11), 853; https://doi.org/10.3390/nano15110853 - 2 Jun 2025
Viewed by 436
Abstract
Improving the energy release and safety of composite solid propellants is a key focus in energetic materials research. Graphene, with its excellent thermal conductivity and lubrication properties, is a promising additive. In this study, Al@AP core–shell particles doped with graphene were prepared via [...] Read more.
Improving the energy release and safety of composite solid propellants is a key focus in energetic materials research. Graphene, with its excellent thermal conductivity and lubrication properties, is a promising additive. In this study, Al@AP core–shell particles doped with graphene were prepared via an in-situ deposition method. The structure, thermal decomposition, combustion, and safety performance of the graphene-doped Al@AP samples were investigated. Results showed that AP effectively coated aluminium to form a typical core-shell structure, with graphene uniformly loaded into the framework. Graphene contents of 1.0 and 4.0 wt.% reduced AP’s thermal decomposition temperature by 0.97 and 16.68 °C, respectively. Closed-bomb and laser ignition tests revealed that pressure rise rates and combustion intensity increased with graphene content up to 1.0 wt.% but declined beyond that. Peak pressure reached 114.65 kPa at 1.0 wt.% graphene, and the maximum pressure increase rate was 13.29 kPa ms−1 at 2.0 wt.%. Additionally, graphene significantly improved safety by reducing sensitivity to impact and friction. The enhanced performance is attributed to graphene’s large surface area and excellent thermal and electrical conductivity that promote AP decomposition and combustion, combined with its lubricating effect that enhances safety, though excessive graphene may hinder these benefits. This study provides balanced design criteria for graphene-doped Al@AP as solid propellants. Full article
Show Figures

Graphical abstract

134 pages, 18424 KiB  
Review
Metal-Free Graphene-Based Derivatives as Oxygen Reduction Reaction Electrocatalysts in Energy Conversion and Storage Systems: An Overview
by Laura Crociani
Molecules 2025, 30(10), 2248; https://doi.org/10.3390/molecules30102248 - 21 May 2025
Viewed by 1162
Abstract
Oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy storage and conversion devices. To overcome the slow kinetics, minimize the overpotential, and make this reaction feasible, efficient, and stable, electrocatalysts are needed. Metal-free graphene-based systems are considered promising [...] Read more.
Oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy storage and conversion devices. To overcome the slow kinetics, minimize the overpotential, and make this reaction feasible, efficient, and stable, electrocatalysts are needed. Metal-free graphene-based systems are considered promising and cost-effective ORR catalysts with adjustable structures. This review is meant to give a rational overview of the graphene-based metal-free ORR electrocatalysts, illustrating the huge amount of related research developed particularly in the field of fuel cells and metal–air batteries, with particular attention to the synthesis procedures. The novelty of this review is that, beyond general aspects regarding the synthesis and characterization of graphene, above 90% of the various graphene (doped and undoped species, composites)-based ORR electrocatalysts have been reported, which represents an unprecedented thorough collection of both experimental and theoretical studies. Hundreds of references are included in the review; therefore, it can be considered as a vademecum in the field. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

14 pages, 3796 KiB  
Article
Nanoarchitectonics and Theoretical Evaluation on Electronic Transport Mechanism of Spin-Filtering Devices Based on Bridging Molecules
by Haiyan Wang, Shuaiqi Liu, Chao Wu, Fang Xie, Zhiqiang Fan and Xiaobo Li
Nanomaterials 2025, 15(10), 759; https://doi.org/10.3390/nano15100759 - 18 May 2025
Viewed by 509
Abstract
By combining density functional theory with the non-equilibrium Green’s function method, we conducted a first-principles investigation of spin-dependent transport properties in a molecular device featuring a dynamic covalent chemical bridge connected to zigzag graphene nanoribbon electrodes. The effects of spin-filtering and spin-rectifying on [...] Read more.
By combining density functional theory with the non-equilibrium Green’s function method, we conducted a first-principles investigation of spin-dependent transport properties in a molecular device featuring a dynamic covalent chemical bridge connected to zigzag graphene nanoribbon electrodes. The effects of spin-filtering and spin-rectifying on the IV characteristics are revealed and explained for the proposed molecular device. Interestingly, our results demonstrate that all three devices exhibit significant single-spin-filtering behavior in parallel (P) magnetization and dual-spin-filtering effects in antiparallel (AP) configurations, achieving nearly 100% spin-filtering efficiency. At the same time, from the IV curves, we find that there is a weak negative differential resistance effect. Moreover, a high rectifying ratio is found for spin-up electron transport in AP magnetization, which is explained by the transmission spectrum and local density of state. The fundamental mechanisms governing these phenomena have been elucidated through a systematic analysis of spin-resolved transmission spectra and spin-polarized electron transport pathways. These results extend the design principles of spin-controlled molecular electronics beyond graphene-based systems, offering a universal strategy for manipulating spin-polarized currents through dynamic covalent interfaces. The nearly ideal spin-filtering efficiency and tunable rectification suggest potential applications in energy-efficient spintronic logic gates and non-volatile memory devices, while the methodology provides a framework for optimizing spin-dependent transport in hybrid organic–inorganic nanoarchitectures. Our findings suggest that such systems are promising candidates for future spintronic applications. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

14 pages, 1919 KiB  
Article
Non-Invasive Hydration Monitoring with a Graphene Dual Sweat Sensor
by Joseph J. Q. Ng, Sergey Tkachev, Glendon C. F. Sim, Luiza Felippi de Lima, Gavin K. W. Koon, Alexandre P. Lima and Antonio H. Castro Neto
Appl. Sci. 2025, 15(9), 4970; https://doi.org/10.3390/app15094970 - 30 Apr 2025
Viewed by 645
Abstract
Maintaining optimal hydration is critical for physiological function, particularly during intense physical activities, in which dehydration or overhydration can impair performance and recovery. Traditional methods for monitoring hydration status, such as body weight changes, bioelectrical impedance, and urine specific gravity, are limited by [...] Read more.
Maintaining optimal hydration is critical for physiological function, particularly during intense physical activities, in which dehydration or overhydration can impair performance and recovery. Traditional methods for monitoring hydration status, such as body weight changes, bioelectrical impedance, and urine specific gravity, are limited by inconvenience and lack of real-time capability. This study introduces a novel graphene-based dual-sensing electrochemical sensor for the rapid and non-invasive quantification of sodium and potassium concentrations in human sweat, key biomarkers of hydration status. Leveraging graphene’s exceptional conductivity and functionalization potential, the sensor employs open-circuit potentiometry (OCP) to achieve high sensitivity and selectivity in detecting sodium and potassium. The sensor performance was validated against that of a commercial analyzer and ICP-OES, demonstrating a near-Nernstian response (61.93 mV/decade for sodium and 61.21 mV/decade for potassium detection) and a linear detection range spanning from 0.1 mM to 100 mM for both sodium and potassium monitoring in sweat. Sweat samples from an athlete during endurance exercise confirmed the sensor’s reliability, with results closely matching those of ICP-OES and outperforming the commercial analyzer in regards to accuracy and sample efficiency. This work represents a cross-validated study of a sweat-based sensor with a second analytical technique, highlighting its potential as a real-time hydration monitoring tool for use in sports and beyond. Full article
(This article belongs to the Special Issue Research and Design of Two-Dimensional Functional Materials)
Show Figures

Figure 1

21 pages, 8011 KiB  
Article
Dynamic Mechanical Analysis and Optimization of Vibration Damping in Epoxy-Based Nano Cement Composite Dampers for Sustainable Structures
by Sandhya R. Jalgar, Anand M. Hunashyal, U. Satisha Prabhu, B. M. Gurumurthy, Pavan Hiremath and Nithesh Naik
J. Compos. Sci. 2025, 9(5), 202; https://doi.org/10.3390/jcs9050202 - 24 Apr 2025
Viewed by 2690
Abstract
Traditional cement-based materials often fall short in delivering both high mechanical strength and effective vibration damping. Although nano-modified composites have shown promise, a gap remains in understanding the interaction between nanofillers and polymeric phases in epoxy-based cement systems. This study investigates the development [...] Read more.
Traditional cement-based materials often fall short in delivering both high mechanical strength and effective vibration damping. Although nano-modified composites have shown promise, a gap remains in understanding the interaction between nanofillers and polymeric phases in epoxy-based cement systems. This study investigates the development of epoxy-based cement composite dampers with enhanced mechanical strength and vibration damping for structural applications. The composite integrates nano-SiO2 and graphene to improve the energy dissipation, structural integrity, and long-term performance. A comprehensive experimental and mathematical modeling approach was employed to evaluate the storage modulus, loss modulus, and damping factor (tan δ) using Dynamic Mechanical Analysis (DMA). The results indicated that incorporating 2.0 wt.% nano-SiO2 and 0.05 wt.% graphene leads to an optimum increase in both mechanical and damping properties, achieving a 92% enhancement in compressive strength and a 38% improvement in damping factor compared to conventional cement composites. Beyond this optimal composition, agglomeration effects reduce the reinforcement efficiency. Microstructural investigations using TEM and EDX confirmed the homogeneous dispersion of the nanofillers, leading to enhanced matrix densification and improved interfacial bonding. A validated mathematical model was proposed to predict viscoelastic behavior, correlating well with experimental findings. These results highlight the potential of epoxy-based cement composites for high-performance damping applications in sustainable infrastructures. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

20 pages, 2819 KiB  
Review
Research Progress on Nanotechnology-Driven Enzyme Biosensors for Electrochemical Detection of Biological Pollution and Food Contaminants
by Liang Qu, Xue Zhang, Yanhong Chu, Yuyang Zhang, Zhiyuan Lin, Fanzhuo Kong, Xing Ni, Yani Zhao, Qiongya Lu and Bin Zou
Foods 2025, 14(7), 1254; https://doi.org/10.3390/foods14071254 - 3 Apr 2025
Viewed by 825
Abstract
Electrochemical biosensors have attracted widespread attention from researchers due to their simple and rapid operation. Recent advancements in nanobiotechnology have further enhanced their performance, with nanomaterials like graphene, carbon nanotubes, and metal nanoparticles being widely used as carriers for immobilizing enzymes, cells, and [...] Read more.
Electrochemical biosensors have attracted widespread attention from researchers due to their simple and rapid operation. Recent advancements in nanobiotechnology have further enhanced their performance, with nanomaterials like graphene, carbon nanotubes, and metal nanoparticles being widely used as carriers for immobilizing enzymes, cells, and DNA molecules. These materials improve stability, sensitivity, and selectivity, making biosensors more effective. This article reviews the introduction, principles, and classification of enzyme-based electrode sensors, as well as their research and application progress in the detection of food risk factors (including foodborne pathogens, biotoxins, drug residues, food additives, allergens, etc.). It also explores future prospects, including advancements in nanotechnology and enzyme immobilization techniques, highlighting their potential in food safety and beyond. Full article
(This article belongs to the Special Issue Food Grade Immobilisation Systems for Enzymes)
Show Figures

Figure 1

22 pages, 713 KiB  
Review
Functional Graphene Coatings in Electrochemical Energy Technology—Beyond Corrosion Protection
by Qunting Qu, Lijun Fu, Lili Liu, Veniamin Kondratiev and Rudolf Holze
Molecules 2025, 30(7), 1436; https://doi.org/10.3390/molecules30071436 - 24 Mar 2025
Cited by 1 | Viewed by 723
Abstract
Coating the surfaces of active masses and auxiliary components in devices of electrochemical energy technology with graphene and closely related materials has been suggested and experimentally verified in numerous examples. The results in terms of improved performance are promising and suggest the need [...] Read more.
Coating the surfaces of active masses and auxiliary components in devices of electrochemical energy technology with graphene and closely related materials has been suggested and experimentally verified in numerous examples. The results in terms of improved performance are promising and suggest the need for further research and technological development. This report provides a complete overview, providing details that are relevant for understanding the way in which these coatings work. Suggestions and directions for further development are indicated. Full article
Show Figures

Figure 1

19 pages, 3731 KiB  
Article
NMR Characterization of Graphene Oxide-Doped Carbon Aerogel in a Liquid Environment
by Dávid Nyul, Mónika Kéri, Levente Novák, Hanna Szabó, Attila Csík and István Bányai
Gels 2025, 11(2), 129; https://doi.org/10.3390/gels11020129 - 11 Feb 2025
Viewed by 763
Abstract
In this study, we report the findings of a morphological analysis of a resorcinol–formaldehyde (RF)-based carbon aerogel (CA) and its graphene oxide (GO)-doped version (CA-GO), prepared for possible applications as an electrode material. Beyond some electron microscopic and N2 sorption investigations, we [...] Read more.
In this study, we report the findings of a morphological analysis of a resorcinol–formaldehyde (RF)-based carbon aerogel (CA) and its graphene oxide (GO)-doped version (CA-GO), prepared for possible applications as an electrode material. Beyond some electron microscopic and N2 sorption investigations, we mostly used NMR cryoporometry and relaxometry to characterize the gels in a wet state, as they are usually applied. The precursor RF polymer aerogel was prepared both with and without GO and was subsequently carbonized into carbon aerogel. Modifying the polymer aerogel using GO resulted in a larger variety of C-O bonds in both polymer aerogels. However, the most important changes occurred in the morphology of the carbon aerogels. NMR relaxometry revealed the highly hydrophilic nature of the pore wall of the RF polymer aerogels, as demonstrated by their uniform wetting behavior. The carbonization resulted in a mostly hydrophobic pore wall decorated by some oxygen-containing spots and a macroporous system. Doping with GO after pyrolysis resulted in spherical pores in the CA and cylindrical pores in the CA-GO, which is potentially a more promising material for electrochemical use than CA. Full article
Show Figures

Graphical abstract

21 pages, 6317 KiB  
Article
Additive Fabrication of Polyaniline and Carbon-Based Composites for Energy Storage
by Niwat Hemha, Jessada Khajonrit and Wiwat Nuansing
Polymers 2024, 16(23), 3369; https://doi.org/10.3390/polym16233369 - 29 Nov 2024
Viewed by 1135
Abstract
The growing demand for efficient energy storage systems, particularly in portable electronics and electric vehicles, has led to increased interest in supercapacitors, which offer high power density, rapid charge/discharge rates, and long cycle life. However, improving their energy density without compromising performance remains [...] Read more.
The growing demand for efficient energy storage systems, particularly in portable electronics and electric vehicles, has led to increased interest in supercapacitors, which offer high power density, rapid charge/discharge rates, and long cycle life. However, improving their energy density without compromising performance remains a challenge. In this study, we developed novel 3D-printed reduced graphene oxide (rGO) electrodes coated with polyaniline (PANI) to enhance their electrochemical properties. The rGO 3D-printed electrodes were fabricated using direct ink writing (DIW), which allowed precise control over thickness, ranging from 4 to 24 layers. A unique ink formulation was optimized for the printing process, consisting of rGO, cellulose acetate (CA) as a binder, and acetone as a solvent. The PANI coating was applied via chemical oxidative polymerization (COP) with up to five deposition cycles. Electrochemical testing, including cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS), revealed that 12-layer electrodes with three PANI deposition cycles achieved the highest areal capacitance of 84.32 mF/cm2. While thicker electrodes (16 layers and beyond) experienced diminished performance due to ion diffusion limitations, the composite electrodes demonstrated excellent cycling stability, retaining over 80% of their initial capacitance after 1500 cycles. This work demonstrates the potential of 3D-printed PANI/rGO electrodes for scalable, high-performance supercapacitors with customizable architectures. Full article
(This article belongs to the Special Issue Advances in Polymer/Graphene Composites and Nanocomposites)
Show Figures

Graphical abstract

19 pages, 8731 KiB  
Article
Sensing with Thermally Reduced Graphene Oxide under Repeated Large Multi-Directional Strain
by Armin Yazdi, Li-Chih Tsai and Nathan P. Salowitz
Sensors 2024, 24(17), 5739; https://doi.org/10.3390/s24175739 - 4 Sep 2024
Cited by 2 | Viewed by 1390
Abstract
This paper presents a recent investigation into the electromechanical behavior of thermally reduced graphene oxide (rGO) as a strain sensor undergoing repeated large mechanical strains up to 20.72%, with electrical signal output measurement in multiple directions relative to the applied strain. Strain is [...] Read more.
This paper presents a recent investigation into the electromechanical behavior of thermally reduced graphene oxide (rGO) as a strain sensor undergoing repeated large mechanical strains up to 20.72%, with electrical signal output measurement in multiple directions relative to the applied strain. Strain is one the most basic and most common stimuli sensed. rGO can be synthesized from abundant materials, can survive exposure to large strains (up to 20.72%), can be synthesized directly on structures with relative ease, and provides high sensitivity, with gauge factors up to 200 regularly reported. In this investigation, a suspension of graphene oxide flakes was deposited onto Polydimethylsiloxane (PDMS) substrates and thermally reduced to create macroscopic rGO-strain sensors. Electrical resistance parallel to the direction of applied tension (x^) demonstrated linear behavior (similar to the piezoresistive behavior of solid materials under strain) up to strains around 7.5%, beyond which nonlinear resistive behavior (similar to percolative electrical behavior) was observed. Cyclic tensile testing results suggested that some residual micro-cracks remained in place after relaxation from the first cycle of tensile loading. A linear fit across the range of strains investigated produced a gauge factor of 91.50(Ω/Ω)/(m/m), though it was observed that the behavior at high strains was clearly nonlinear. Hysteresis testing showed high consistency in the electromechanical response of the sensor between loading and unloading within cycles as well as increased consistency in the pattern of the response between different cycles starting from cycle 2. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

18 pages, 6087 KiB  
Article
Strain and Substrate-Induced Electronic Properties of Novel Mixed Anion-Based 2D ScHX2 (X = I/Br) Semiconductors
by Ashima Rawat and Ravindra Pandey
Nanomaterials 2024, 14(17), 1390; https://doi.org/10.3390/nano14171390 - 26 Aug 2024
Viewed by 1398
Abstract
Exploration of compounds featuring multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offers an avenue for developing materials with the prospect of novel functionality. In this paper, we present the results for a mixed anion layered material, ScHX2 (X: [...] Read more.
Exploration of compounds featuring multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offers an avenue for developing materials with the prospect of novel functionality. In this paper, we present the results for a mixed anion layered material, ScHX2 (X: Br, I) based on density functional theory. The result predicted the ScHX2 (X: Br, I) monolayers to be stable and semiconducting. Notably, the electronic and mechanical properties of the ScHX2 monolayers are comparable to well-established 2D materials like graphene and MoS2, rendering them highly suitable for electronic devices. Additionally, these monolayers exhibit an ability to adjust their band gaps and band edges in response to strain and substrate engineering, thereby influencing their photocatalytic applications. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

9 pages, 2451 KiB  
Article
Harnessing Quantum Capacitance in 2D Material/Molecular Layer Junctions for Novel Electronic Device Functionality
by Bhartendu Papnai, Ding-Rui Chen, Rapti Ghosh, Zhi-Long Yen, Yu-Xiang Chen, Khalil Ur Rehman, Hsin-Yi Tiffany Chen, Ya-Ping Hsieh and Mario Hofmann
Nanomaterials 2024, 14(11), 972; https://doi.org/10.3390/nano14110972 - 3 Jun 2024
Viewed by 1876
Abstract
Two-dimensional (2D) materials promise advances in electronic devices beyond Moore’s scaling law through extended functionality, such as non-monotonic dependence of device parameters on input parameters. However, the robustness and performance of effects like negative differential resistance (NDR) and anti-ambipolar behavior have been limited [...] Read more.
Two-dimensional (2D) materials promise advances in electronic devices beyond Moore’s scaling law through extended functionality, such as non-monotonic dependence of device parameters on input parameters. However, the robustness and performance of effects like negative differential resistance (NDR) and anti-ambipolar behavior have been limited in scale and robustness by relying on atomic defects and complex heterojunctions. In this paper, we introduce a novel device concept that utilizes the quantum capacitance of junctions between 2D materials and molecular layers. We realized a variable capacitance 2D molecular junction (vc2Dmj) diode through the scalable integration of graphene and single layers of stearic acid. The vc2Dmj exhibits NDR with a substantial peak-to-valley ratio even at room temperature and an active negative resistance region. The origin of this unique behavior was identified through thermoelectric measurements and ab initio calculations to be a hybridization effect between graphene and the molecular layer. The enhancement of device parameters through morphology optimization highlights the potential of our approach toward new functionalities that advance the landscape of future electronics. Full article
Show Figures

Figure 1

Back to TopTop