Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = beta-3 adrenoceptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2241 KiB  
Article
PDE Inhibitors and Autophagy Regulators Modulate CRE-Dependent Luciferase Activity in Neuronal Cells from the Mouse Suprachiasmatic Nucleus
by Erik Maronde and Abdelhaq Rami
Molecules 2025, 30(15), 3229; https://doi.org/10.3390/molecules30153229 (registering DOI) - 1 Aug 2025
Abstract
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly [...] Read more.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter. Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter. Results: In this study the different impacts of common PDE inhibitors and autophagy modulators on CRE-luciferase activity applied alone and in combination with known CRE-luciferase activating agents showed that (1) PDE3, 4 and 5 are present in SCNCRE cells, with (2) PDE3 being the most active and (3) the autophagy inhibitor 3-Methyladenin (3-MA) displaying PDE inhibitor-like behavior. Conclusions: Experiments provide evidence that, in addition to the extracellular signaling pathways components shown before to be involved in CRE-luciferase activity regulation like cAMP analogs, adenylate cyclase activators and beta-adrenoceptor agonists, cyclic nucleotide metabolism as realized by phosphodiesterase activity, or molecule/agents influencing processes like autophagy or inflammation, modulate transcriptional CRE-dependent activity in these cells. Specifically, we provide evidence that the autophagy inhibitor 3-MA, given that PDEs are expressed, may also act as a PDE inhibitor and inducer of CRE-mediated transcriptional activity. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

22 pages, 2399 KiB  
Article
Study of Carvedilol–β-Cyclodextrin Derivatives Interactions
by Ema-Teodora Niţu, Amalia Ridichie, Claudia Temereancă, Ioana Mitrofan, Luciana Buliga, Sebastian Simu, Cornelia Muntean, Gerlinde Rusu, Ionuţ Ledeţi, Adriana Ledeţi and Laura Sbârcea
Processes 2025, 13(4), 1141; https://doi.org/10.3390/pr13041141 - 10 Apr 2025
Viewed by 579
Abstract
Carvedilol (CARV) is a nonselective beta and alpha-1 adrenoceptor antagonist commonly indicated for chronic heart failure and hypertension. Its clinical potential is limited by its low aqueous solubility, resulting in poor bioavailability. Encapsulation of CARV by cyclodextrins (CDs) was performed to exceed its [...] Read more.
Carvedilol (CARV) is a nonselective beta and alpha-1 adrenoceptor antagonist commonly indicated for chronic heart failure and hypertension. Its clinical potential is limited by its low aqueous solubility, resulting in poor bioavailability. Encapsulation of CARV by cyclodextrins (CDs) was performed to exceed its solubility-related barriers. This study examines the impact of the CD type and ethanol, as a co-solvent used in the preparation step, on the complexation of CARV with two β-CD derivatives. The inclusion complexes (ICs) were prepared employing the kneading method and investigated using different analytical techniques, including thermoanalytical methods, powder X-ray diffractometry (PXRD), universal attenuated total reflectance Fourier transform infrared (UATR-FTIR) spectroscopy, UV spectroscopy and saturation solubility studies. The binary products of CARV with heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) and randomly methylated β-cyclodextrin (RM-β-CD) exhibit different thermal behavior, different FTIR spectral and diffractometric profiles from those of the parent compounds, emphasizing the interaction between the components and the IC formation. CARV solubility increased 1.78 to 3.32 times as a result of drug complexation with CDs. Analytical data indicate a significant influence of both solvent systems and CD type on the IC solubility, highlighting the CARV/DM-β-CD IC as a promising entity for further research to obtain new formulations containing CARV with improved bioavailability. Full article
(This article belongs to the Special Issue Application of Carbohydrate Polymers in Drug Delivery)
Show Figures

Figure 1

18 pages, 22636 KiB  
Article
Beta-3 Adrenoceptor Agonism Protects the Enteric Nervous Tissue Against Hyperoxia-Induced Damage
by Patrizia Nardini, Luca Filippi, Virginia Zizi, Marta Molino, Camilla Fazi, Matteo Chivetti and Alessandro Pini
Cells 2025, 14(7), 475; https://doi.org/10.3390/cells14070475 - 21 Mar 2025
Viewed by 490
Abstract
The beta-3 adrenergic receptor (β3-AR), whose expression is modulated by oxygen levels, was found to play a key role in organ maturation, and its agonism was reported to mitigate hyperoxia-induced large bowel damage by preventing organ hypoplasia, preserving epithelial integrity, vascularization, and the [...] Read more.
The beta-3 adrenergic receptor (β3-AR), whose expression is modulated by oxygen levels, was found to play a key role in organ maturation, and its agonism was reported to mitigate hyperoxia-induced large bowel damage by preventing organ hypoplasia, preserving epithelial integrity, vascularization, and the neurochemical coding in the colonic myenteric plexus. This study explored the effects of β3-AR agonism in preventing hyperoxia-related alterations on the ileal enteric nervous system (ENS). Sprague–Dawley rat pups were reared under normoxia or hyperoxia (85%) during the first two weeks after birth and treated or not with the β3-AR agonist BRL37344 at 1, 3, or 6 mg/kg. Hyperoxia caused an imbalance of inhibitory nitrergic and excitatory cholinergic neurons in both the myenteric and submucosal plexuses and decreased the amounts of neurons in the submucosal plexus and that of S100β+ and GFAP+ glial cells in the myenteric plexus. Administration of 3 mg/kg BRL37344 preserved the neuronal chemical coding and partially prevented the loss of myenteric GFAP+ glial cells, while it did not counteract submucosal neuronal loss. Our findings indicate the potential of β3-AR agonism as a new therapeutic strategy for hyperoxia-induced ileal ENS alterations. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

16 pages, 2737 KiB  
Review
Developmental Changes in the Excitation–Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals
by Shogo Hamaguchi, Naoki Agata, Maika Seki, Iyuki Namekata and Hikaru Tanaka
J. Cardiovasc. Dev. Dis. 2024, 11(9), 267; https://doi.org/10.3390/jcdd11090267 - 29 Aug 2024
Cited by 1 | Viewed by 1861
Abstract
The developmental changes in the excitation–contraction mechanisms of the ventricular myocardium of small animals (guinea pig, rat, mouse) and their sympathetic regulation will be summarized. The action potential duration monotonically decreases during pre- and postnatal development in the rat and mouse, while in [...] Read more.
The developmental changes in the excitation–contraction mechanisms of the ventricular myocardium of small animals (guinea pig, rat, mouse) and their sympathetic regulation will be summarized. The action potential duration monotonically decreases during pre- and postnatal development in the rat and mouse, while in the guinea pig it decreases during the fetal stage but turns into an increase just before birth. Such changes can be attributed to changes in the repolarizing potassium currents. The T-tubule and the sarcoplasmic reticulum are scarcely present in the fetal cardiomyocyte, but increase during postnatal development. This causes a developmental shift in the Ca2+ handling from a sarcolemma-dependent mechanism to a sarcoplasmic reticulum-dependent mechanism. The sensitivity for beta-adrenoceptor-mediated positive inotropy decreases during early postnatal development, which parallels the increase in sympathetic nerve innervation. The alpha-adrenoceptor-mediated inotropy in the mouse changes from positive in the neonate to negative in the adult. This can be explained by the change in the excitation–contraction mechanism mentioned above. The shortening of the action potential duration enhances trans-sarcolemmal Ca2+ extrusion by the Na+-Ca2+ exchanger. The sarcoplasmic reticulum-dependent mechanism of contraction in the adult allows Na+-Ca2+ exchanger activity to cause negative inotropy, a mechanism not observed in neonatal myocardium. Such developmental studies would provide clues towards a more comprehensive understanding of cardiac function. Full article
Show Figures

Figure 1

18 pages, 18799 KiB  
Article
Protective Effects of Beta-3 Adrenoceptor Agonism on Mucosal Integrity in Hyperoxia-Induced Ileal Alterations
by Patrizia Nardini, Virginia Zizi, Marta Molino, Camilla Fazi, Maura Calvani, Francesco Carrozzo, Giorgia Giuseppetti, Laura Calosi, Daniele Guasti, Denise Biagini, Fabio Di Francesco, Luca Filippi and Alessandro Pini
Antioxidants 2024, 13(7), 863; https://doi.org/10.3390/antiox13070863 - 18 Jul 2024
Cited by 2 | Viewed by 1243
Abstract
Organogenesis occurs in the uterus under low oxygen levels (4%). Preterm birth exposes immature newborns to a hyperoxic environment, which can induce a massive production of reactive oxygen species and potentially affect organ development, leading to diseases such as necrotizing enterocolitis. The β3-adrenoreceptor [...] Read more.
Organogenesis occurs in the uterus under low oxygen levels (4%). Preterm birth exposes immature newborns to a hyperoxic environment, which can induce a massive production of reactive oxygen species and potentially affect organ development, leading to diseases such as necrotizing enterocolitis. The β3-adrenoreceptor (β3-AR) has an oxygen-dependent regulatory mechanism, and its activation exerts an antioxidant effect. To test the hypothesis that β3-AR could protect postnatal ileal development from the negative impact of high oxygen levels, Sprague–Dawley rat pups were raised under normoxia (21%) or hyperoxia (85%) for the first 2 weeks after birth and treated or not with BRL37344, a selective β3-AR agonist, at 1, 3, or 6 mg/kg. Hyperoxia alters ileal mucosal morphology, leading to increased cell lipid oxidation byproducts, reduced presence of β3-AR-positive resident cells, decreased junctional protein expression, disrupted brush border, mucin over-production, and impaired vascularization. Treatment with 3 mg/kg of BRL37344 prevented these alterations, although not completely, while the lower 1 mg/kg dose was ineffective, and the higher 6 mg/kg dose was toxic. Our findings indicate the potential of β3-AR agonism as a new therapeutic approach to counteract the hyperoxia-induced ileal alterations and, more generally, the disorders of prematurity related to supra-physiologic oxygen exposure. Full article
(This article belongs to the Special Issue Hormones and Oxidative Stress)
Show Figures

Figure 1

25 pages, 4693 KiB  
Article
Long-Term Impact of Diffuse Traumatic Brain Injury on Neuroinflammation and Catecholaminergic Signaling: Potential Relevance for Parkinson’s Disease Risk
by Ing Chee Wee, Alina Arulsamy, Frances Corrigan and Lyndsey Collins-Praino
Molecules 2024, 29(7), 1470; https://doi.org/10.3390/molecules29071470 - 26 Mar 2024
Cited by 4 | Viewed by 2767
Abstract
Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson’s disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, [...] Read more.
Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson’s disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, remains uncertain. In this study, male Sprague-Dawley rats underwent sham surgery or Marmarou’s impact acceleration model to induce varying TBI severities: single mild TBI (mTBI), repetitive mild TBI (rmTBI), or moderate–severe TBI (msTBI). At 12 months post-injury, astrocyte reactivity (GFAP) and microglial levels (IBA1) were assessed in the striatum (STR), substantia nigra (SN), and prefrontal cortex (PFC) using immunohistochemistry. Key enzymes and receptors involved in catecholaminergic transmission were measured via Western blot within the same regions. Minimal changes in these markers were observed, regardless of initial injury severity. Following mTBI, elevated protein levels of dopamine D1 receptors (DRD1) were noted in the PFC, while msTBI resulted in increased alpha-2A adrenoceptors (ADRA2A) in the STR and decreased dopamine beta-hydroxylase (DβH) in the SN. Neuroinflammatory changes were subtle, with a reduced number of GFAP+ cells in the SN following msTBI. However, considering the potential for neurodegenerative outcomes to manifest decades after injury, longer post-injury intervals may be necessary to observe PD-relevant alterations within these systems. Full article
(This article belongs to the Special Issue Dopamine Receptors and Neurodegeneration)
Show Figures

Figure 1

10 pages, 456 KiB  
Article
EEG Frequency Correlates with α2-Receptor Density in Parkinson’s Disease
by Adam F. Kemp, Martin Kinnerup, Birger Johnsen, Steen Jakobsen, Adjmal Nahimi and Albert Gjedde
Biomolecules 2024, 14(2), 209; https://doi.org/10.3390/biom14020209 - 10 Feb 2024
Cited by 3 | Viewed by 2000
Abstract
Introduction: Increased theta and delta power and decreased alpha and beta power, measured with quantitative electroencephalography (EEG), have been demonstrated to have utility for predicting the development of dementia in patients with Parkinson’s disease (PD). Noradrenaline modulates cortical activity and optimizes cognitive processes. [...] Read more.
Introduction: Increased theta and delta power and decreased alpha and beta power, measured with quantitative electroencephalography (EEG), have been demonstrated to have utility for predicting the development of dementia in patients with Parkinson’s disease (PD). Noradrenaline modulates cortical activity and optimizes cognitive processes. We claim that the loss of noradrenaline may explain cognitive impairment and the pathological slowing of EEG waves. Here, we test the relationship between the number of noradrenergic α2 adrenoceptors and changes in the spectral EEG ratio in patients with PD. Methods: We included nineteen patients with PD and thirteen healthy control (HC) subjects in the study. We used positron emission tomography (PET) with [11C]yohimbine to quantify α2 adrenoceptor density. We used EEG power in the delta (δ, 1.5–3.9 Hz), theta (θ, 4–7.9 Hz), alpha (α, 8–12.9 Hz) and beta (β, 13–30 Hz) bands in regression analyses to test the relationships between α2 adrenoceptor density and EEG band power. Results: PD patients had higher power in the theta and delta bands compared to the HC volunteers. Patients’ theta band power was inversely correlated with α2 adrenoceptor density in the frontal cortex. In the HC subjects, age was correlated with, and occipital background rhythm frequency (BRF) was inversely correlated with, α2 adrenoceptor density in the frontal cortex, while occipital BRF was inversely correlated with α2 adrenoceptor density in the thalamus. Conclusions: The findings support the claim that the loss or dysfunction of noradrenergic neurotransmission may relate to the parallel processes of cognitive decline and EEG slowing. Full article
(This article belongs to the Special Issue Novel Imaging Biomarkers for Brain PET Imaging)
Show Figures

Figure 1

17 pages, 3855 KiB  
Article
β3 Adrenoceptor Agonism Prevents Hyperoxia-Induced Colonic Alterations
by Luca Filippi, Patrizia Nardini, Virginia Zizi, Marta Molino, Camilla Fazi, Maura Calvani, Francesco Carrozzo, Giacomo Cavallaro, Giorgia Giuseppetti, Laura Calosi, Olivia Crociani and Alessandro Pini
Biomolecules 2023, 13(12), 1755; https://doi.org/10.3390/biom13121755 - 6 Dec 2023
Cited by 6 | Viewed by 1721
Abstract
Oxygen level is a key regulator of organogenesis and its modification in postnatal life alters the maturation process of organs, including the intestine, which do not completely develop in utero. The β3-adrenoreceptor (β3-AR) is expressed in the colon and has an oxygen-dependent regulatory [...] Read more.
Oxygen level is a key regulator of organogenesis and its modification in postnatal life alters the maturation process of organs, including the intestine, which do not completely develop in utero. The β3-adrenoreceptor (β3-AR) is expressed in the colon and has an oxygen-dependent regulatory mechanism. This study shows the effects of the β3-AR agonist BRL37344 in a neonatal model of hyperoxia-driven colonic injury. For the first 14 days after birth, Sprague–Dawley rat pups were exposed to ambient oxygen levels (21%) or hyperoxia (85%) and treated daily with BRL37344 at 1, 3, 6 mg/kg or untreated. At the end of day 14, proximal colon samples were collected for analysis. Hyperoxia deeply influences the proximal colon development by reducing β3-AR-expressing cells (27%), colonic length (26%) and mucin production (47%), and altering the neuronal chemical coding in the myenteric plexus without changes in the neuron number. The administration of BRL37344 at 3 mg/kg, but not at 1 mg/kg, significantly prevented these alterations. Conversely, it was ineffective in preventing hyperoxia-induced body weight loss. BRL37344 at 6 mg/kg was toxic. These findings pave the way for β3-AR pharmacological targeting as a therapeutic option for diseases caused by hyperoxia-impaired development, typical prematurity disorders. Full article
(This article belongs to the Special Issue Advances in β3-Adrenoceptor)
Show Figures

Figure 1

11 pages, 1394 KiB  
Article
Association between Incidence of Prescriptions for Alzheimer’s Disease and Beta-Adrenoceptor Antagonists: A Prescription Sequence Symmetry Analysis
by Ali Alghamdi, Maarten J. Bijlsma, Stijn de Vos, Catharina C.M. Schuiling-Veninga, Jens H. J. Bos and Eelko Hak
Pharmaceuticals 2023, 16(12), 1694; https://doi.org/10.3390/ph16121694 - 6 Dec 2023
Cited by 1 | Viewed by 1552
Abstract
Background: Alzheimer’s disease (AD) is the most common cause of dementia, with a growing number of patients worldwide. The association between AD and treatment with drugs targeting the beta-adrenergic receptor is controversial. The aim of this study is to assess the association between [...] Read more.
Background: Alzheimer’s disease (AD) is the most common cause of dementia, with a growing number of patients worldwide. The association between AD and treatment with drugs targeting the beta-adrenergic receptor is controversial. The aim of this study is to assess the association between the initiation of AD medication and beta-adrenoceptor antagonists (beta-blockers) in adults. Materials and Methods: We conducted a prescription sequence symmetry analysis using the University of Groningen IADB.nl prescription database. We determined the order of the first prescription for treating AD and the first prescription for beta-blockers, with the dispensing date of the first prescription for AD defined as the index date. Participants were adults over 45 years old starting any AD medication and beta-blockers within two years. We calculated adjusted sequence ratios with corresponding 95% confidence intervals. Results: We identified 510 users of both AD and beta-blockers, and 145 participants were eligible. The results were compatible with either a significant decrease in the incidence of AD after using beta-blockers (adjusted sequence ratio (aSR) = 0.52; 95% CI: 0.35–0.72) or, conversely, an increase in beta-blockers after AD medication (aSR = 1.96; 95% CI: 1.61–2.30). Conclusions: There is a relationship between the use of beta-blockers and AD medications. Further research is needed with larger populations to determine whether drug therapy for AD increases the risk of hypertension or whether beta-blockers have potential protective properties against AD development. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

21 pages, 5031 KiB  
Article
Dysregulated Cyclic Nucleotide Metabolism in Alcohol-Associated Steatohepatitis: Implications for Novel Targeted Therapies
by Diego Montoya-Durango, Mary Nancy Walter, Walter Rodriguez, Yali Wang, Julia H. Chariker, Eric C. Rouchka, Claudio Maldonado, Shirish Barve, Craig J. McClain and Leila Gobejishvili
Biology 2023, 12(10), 1321; https://doi.org/10.3390/biology12101321 - 10 Oct 2023
Cited by 5 | Viewed by 2893
Abstract
Background: Cyclic nucleotides are second messengers, which play significant roles in numerous biological processes. Previous work has shown that cAMP and cGMP signaling regulates various pathways in liver cells, including Kupffer cells, hepatocytes, hepatic stellate cells, and cellular components of hepatic sinusoids. Importantly, [...] Read more.
Background: Cyclic nucleotides are second messengers, which play significant roles in numerous biological processes. Previous work has shown that cAMP and cGMP signaling regulates various pathways in liver cells, including Kupffer cells, hepatocytes, hepatic stellate cells, and cellular components of hepatic sinusoids. Importantly, it has been shown that cAMP levels and enzymes involved in cAMP homeostasis are affected by alcohol. Although the role of cyclic nucleotide signaling is strongly implicated in several pathological pathways in liver diseases, studies describing the changes in genes regulating cyclic nucleotide metabolism in ALD are lacking. Methods: Male C57B/6 mice were used in an intragastric model of alcohol-associated steatohepatitis (ASH). Liver injury, inflammation, and fibrogenesis were evaluated by measuring plasma levels of injury markers, liver tissue cytokines, and gene expression analyses. Liver transcriptome analysis was performed to examine the effects of alcohol on regulators of cyclic AMP and GMP levels and signaling. cAMP and cGMP levels were measured in mouse livers as well as in livers from healthy human donors and patients with alcohol-associated hepatitis (AH). Results: Our results show significant changes in several phosphodiesterases (PDEs) with specificity to degrade cAMP (Pde4a, Pde4d, and Pde8a) and cGMP (Pde5a, Pde6d, and Pde9a), as well as dual-specificity PDEs (Pde1a and Pde10a) in ASH mouse livers. Adenylyl cyclases (ACs) 7 and 9, which are responsible for cAMP generation, were also affected by alcohol. Importantly, adenosine receptor 1, which has been implicated in the pathogenesis of liver diseases, was significantly increased by alcohol. Adrenoceptors 1 and 3 (Adrb), which couple with stimulatory G protein to regulate cAMP and cGMP signaling, were significantly decreased. Additionally, beta arrestin 2, which interacts with cAMP-specific PDE4D to desensitize G-protein-coupled receptor to generate cAMP, was significantly increased by alcohol. Notably, we observed that cAMP levels are much higher than cGMP levels in the livers of humans and mice; however, alcohol affected them differently. Specifically, cGMP levels were higher in patients with AH and ASH mice livers compared with controls. As expected, these changes in liver cyclic nucleotide signaling were associated with increased inflammation, steatosis, apoptosis, and fibrogenesis. Conclusions: These data strongly implicate dysregulated cAMP and cGMP signaling in the pathogenesis of ASH. Future studies to identify changes in these regulators in a cell-specific manner could lead to the development of novel targeted therapies for ASH. Full article
(This article belongs to the Special Issue Non-alcoholic and Alcohol-Associated Liver Injury)
Show Figures

Figure 1

18 pages, 2674 KiB  
Review
A Systematic Review of the Effect of Vericiguat on Patients with Heart Failure
by Urjosee Sahana, Markus Wehland, Ulf Simonsen, Herbert Schulz and Daniela Grimm
Int. J. Mol. Sci. 2023, 24(14), 11826; https://doi.org/10.3390/ijms241411826 - 23 Jul 2023
Cited by 12 | Viewed by 12128
Abstract
Despite recent advances in heart failure (HF) therapy, the risk of cardiovascular (CV) mortality, morbidity, and HF hospitalization (HFH) are major challenges in HF treatment. We aimed to review the potential of vericiguat as a treatment option for HF. A systematic literature review [...] Read more.
Despite recent advances in heart failure (HF) therapy, the risk of cardiovascular (CV) mortality, morbidity, and HF hospitalization (HFH) are major challenges in HF treatment. We aimed to review the potential of vericiguat as a treatment option for HF. A systematic literature review was performed using the PubMed database and ClinicalTrials.gov. Four randomized controlled trials were identified, which study the safety and efficacy of vericiguat in HF patients. Vericiguat activates soluble guanylate cyclase (sGC) by binding to the beta-subunit, bypassing the requirement for NO-induced activation. The nitric oxide (NO)–sGC–cyclic guanosine monophosphate (cGMP) pathway plays an essential role in cardiovascular (CV) regulation and the protection of healthy cardiac function but is impaired in HF. Vericiguat reduced the risk of CV death and HFH in HF patients with reduced ejection fraction (HFrEF) but showed no therapeutic effect on HF with preserved ejection fraction (HFpEF). The trials demonstrated a favorable safety profile with most common adverse events such as hypotension, syncope, and anemia. Therefore, vericiguat is recommended for patients with HFrEF and a minimum systolic blood pressure of 100 mmHg. Treatment with vericiguat is considered when the individual patient experiences decompensation despite being on guideline-recommended medication, e.g., angiotensin-converting inhibitor/AT1 receptor antagonist, beta-adrenoceptor antagonist, spironolactone, and sodium-glucose transporter 2 inhibitors. Furthermore, larger studies are required to investigate any potential effect of vericiguat in HFpEF patients. Despite the limitations, vericiguat can be recommended for patients with HFrEF, where standard-of-care is insufficient, and the disease worsens. Full article
(This article belongs to the Special Issue Recent Advances in Hypertension and Cardiovascular Disease)
Show Figures

Figure 1

10 pages, 1462 KiB  
Article
Valvular Cardiomyopathy in Aortic Valve Regurgitation Correlates with Myocardial Fibrosis
by Johannes Petersen, Shahria Iqbal, Naomi Gedeon, Benjamin Kloth, Simon Pecha, Yalin Yildirim, Thomas Eschenhagen, Hermann Reichenspurner, Torsten Christ and Evaldas Girdauskas
J. Clin. Med. 2023, 12(8), 2915; https://doi.org/10.3390/jcm12082915 - 17 Apr 2023
Cited by 3 | Viewed by 1581
Abstract
Objective: At the tissue level, disruption of the extracellular matrix network leads to irreversible cardiac fibrosis, which contributes to myocardial dysfunction. At the myocyte level, downregulation of beta-adrenoceptors (beta-AR) reduces adaptation to increased workload. The aim of our study was to analyse the [...] Read more.
Objective: At the tissue level, disruption of the extracellular matrix network leads to irreversible cardiac fibrosis, which contributes to myocardial dysfunction. At the myocyte level, downregulation of beta-adrenoceptors (beta-AR) reduces adaptation to increased workload. The aim of our study was to analyse the correlation between myocardial fibrosis and beta-AR sensitivity in patients with aortic valve (AV) disease. Methods: A total of 92 consecutive patients who underwent elective AV surgery between 2017–2019 were included in our study (51 with aortic regurgitation (AR-group); 41 with aortic stenosis (AS-group) and left ventricular (LV) biopsies were obtained intraoperatively. In vitro force contractility testing was performed by measuring beta-AR sensitivity (−log EC50[ISO]). In parallel, a quantitative analysis of myocardial fibrosis burden was performed. Results: Mean age at the time of AV surgery was not statistically different in both groups (AR: 53.3 ± 15.3 years vs. AS: 58.7 ± 17.0 years; p = 0.116). The LV end-diastolic diameter was significantly enlarged in the AR-group when compared to the AS-group (59.4 ± 15.6 vs. 39.7 ± 21.2; p < 0.001). Analysis of beta-AR sensitivity (AR: −6.769 vs. AS: −6.659; p = 0.316) and myocardial fibrosis (AR: 8.9% vs. AS: 11.3%; p = 0.284) showed no significant differences between patients with AS and AR. There was no correlation between myocardial fibrosis and beta-AR sensitivity in the whole study cohort (R = 0.1987; p = 0.100) or in the AS-subgroup (R = 0.009; p = 0.960). However, significant correlation of fibrosis and beta-AR sensitivity was seen in AR-patients (R = 0.363; p = 0.023). Conclusion: More severe myocardial fibrosis was associated with reduced beta-AR sensitivity in patients presenting with AR but not with AS. Therefore, our results suggest that in patients with AR, cellular myocardial dysfunction is present and correlates with the extent of myocardial fibrosis in the myocardium. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

18 pages, 1618 KiB  
Systematic Review
The Sympathetic Nervous System in Dental Implantology
by Johannes Raphael Kupka, Keyvan Sagheb, Bilal Al-Nawas and Eik Schiegnitz
J. Clin. Med. 2023, 12(8), 2907; https://doi.org/10.3390/jcm12082907 - 17 Apr 2023
Cited by 5 | Viewed by 14837
Abstract
The sympathetic nervous system plays a vital role in various regulatory mechanisms. These include the well-known fight-or-flight response but also, for example, the processing of external stressors. In addition to many other tissues, the sympathetic nervous system influences bone metabolism. This effect could [...] Read more.
The sympathetic nervous system plays a vital role in various regulatory mechanisms. These include the well-known fight-or-flight response but also, for example, the processing of external stressors. In addition to many other tissues, the sympathetic nervous system influences bone metabolism. This effect could be highly relevant concerning osseointegration, which is responsible for the long-term success of dental implants. Accordingly, this review aims to summarize the current literature on this topic and to reveal future research perspectives. One in vitro study showed differences in mRNA expression of adrenoceptors cultured on implant surfaces. In vivo, sympathectomy impaired osseointegration in mice, while electrical stimulation of the sympathetic nerves promoted it. As expected, the beta-blocker propranolol improves histological implant parameters and micro-CT measurements. Overall, the present data are considered heterogeneous. However, the available publications reveal the potential for future research and development in dental implantology, which helps to introduce new therapeutic strategies and identify risk factors for dental implant failure. Full article
(This article belongs to the Special Issue New Challenges in Dental Implants)
Show Figures

Graphical abstract

14 pages, 2029 KiB  
Article
Alpha1A- and Beta3-Adrenoceptors Interplay in Adipose Multipotent Mesenchymal Stromal Cells: A Novel Mechanism of Obesity-Driven Hypertension
by Vadim Chechekhin, Anastasia Ivanova, Konstantin Kulebyakin, Veronika Sysoeva, Daria Naida, Mikhail Arbatsky, Nataliya Basalova, Maxim Karagyaur, Mariya Skryabina, Anastasia Efimenko, Olga Grigorieva, Natalia Kalinina, Vsevolod Tkachuk and Pyotr Tyurin-Kuzmin
Cells 2023, 12(4), 585; https://doi.org/10.3390/cells12040585 - 11 Feb 2023
Cited by 4 | Viewed by 2482
Abstract
Hypertension is a major risk factor for cardiovascular diseases, such as strokes and myocardial infarctions. Nearly 70% of hypertension onsets in adults can be attributed to obesity, primarily due to sympathetic overdrive and the dysregulated renin-angiotensin system. Sympathetic overdrive increases vasoconstriction via α1-adrenoceptor [...] Read more.
Hypertension is a major risk factor for cardiovascular diseases, such as strokes and myocardial infarctions. Nearly 70% of hypertension onsets in adults can be attributed to obesity, primarily due to sympathetic overdrive and the dysregulated renin-angiotensin system. Sympathetic overdrive increases vasoconstriction via α1-adrenoceptor activation on vascular cells. Despite the fact that a sympathetic outflow increases in individuals with obesity, as a rule, there is a cohort of patients with obesity who do not develop hypertension. In this study, we investigated how adrenoceptors’ expression and functioning in adipose tissue are affected by obesity-driven hypertension. Here, we demonstrated that α1A is a predominant isoform of α1-adrenoceptors expressed in the adipose tissue of patients with obesity, specifically by multipotent mesenchymal stromal cells (MSCs). These cells respond to prolonged exposure to noradrenaline in the model of sympathetic overdrive through the elevation of α1A-adrenoceptor expression and signaling. The extent of MSCs’ response to noradrenaline correlates with a patient’s arterial hypertension. scRNAseq analysis revealed that in the model of sympathetic overdrive, the subpopulation of MSCs with contractile phenotype expanded significantly. Elevated α1A-adrenoceptor expression is triggered specifically by beta3-adrenoceptors. These data define a novel pathophysiological mechanism of obesity-driven hypertension by which noradrenaline targets MSCs to increase microvessel constrictor responsivity. Full article
(This article belongs to the Special Issue Adipose Tissue in Cardiovascular Health)
Show Figures

Graphical abstract

20 pages, 1016 KiB  
Review
Sympathetic System in Wound Healing: Multistage Control in Normal and Diabetic Skin
by Evgenii Ivanov, Marina Akhmetshina, Aleksei Erdiakov and Svetlana Gavrilova
Int. J. Mol. Sci. 2023, 24(3), 2045; https://doi.org/10.3390/ijms24032045 - 20 Jan 2023
Cited by 21 | Viewed by 5886
Abstract
In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both [...] Read more.
In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both mediators decrease blood flow and interact with inflammatory cells and keratinocytes. NE acts in an ambiguous way depending on receptor type. Beta2-adrenoceptors could be activated near sympathetic endings; they suppress inflammation and re-epithelialization. Alpha1- and alpha2-adrenoceptors induce inflammation and activate keratinocytes. Sudomotor neurons secrete acetylcholine (ACh) and vasoactive intestinal peptide (VIP). Both induce vasodilatation, angiogenesis, inflammation, keratinocytes proliferation and migration. In healthy skin, all effects are important for successful healing. In treatment of diabetic ulcers, mediator balance could be shifted in different ways. Beta2-adrenoceptors blockade and nicotinic ACh receptors activation are the most promising directions in treatment of diabetic ulcers with neuropathy, but they require further research. Full article
(This article belongs to the Special Issue Sympathetic Nerves and Cardiovascular Diseases)
Show Figures

Figure 1

Back to TopTop