Association between Incidence of Prescriptions for Alzheimer’s Disease and Beta-Adrenoceptor Antagonists: A Prescription Sequence Symmetry Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Method
4.1. Study Population
4.2. Study Design and Data Source
4.3. AD Drug Therapies
4.4. Beta-Blocker Drug Therapy
4.5. Outcome Associations
- u = last day of the study period;
- m = a given day within the study period;
- Im = number of incident users of the index drug on a given day;
- d = specified number of days within the study period;
- n = consecutive days of the study period (exposure window);
- Mn = number of patients receiving first marker drug on a given day.
5. Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGill University, September 2021, Alzheimer’s Disease International, Viewed Date: 24 January 2022. Available online: https://www.alzint.org/resource/world-alzheimer-report-2021/ (accessed on 24 January 2022).
- Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci. 2009, 11, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Tian, Y.; Wang, Z.T.; Ma, Y.H.; Tan, L.; Yu, J.T. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J. Prev. Alzheimer’s Dis. 2021, 8, 313–321. [Google Scholar] [CrossRef]
- Ministry of Health, Welfare and Sport, October 2020, National Dementia Strategy 2021–2030, Viewed Date 24 January 2022. Available online: https://www.government.nl/documents/publications/2020/11/30/national-dementia-strategy-2021-2030 (accessed on 24 January 2022).
- Perl, D.P. Neuropathology of Alzheimer’s disease. Mt. Sinai J. Med. 2010, 77, 32–42. [Google Scholar] [CrossRef]
- Medeiros, R.; Baglietto-Vargas, D.; Laferla, F.M. The Role of Tau in Alzheimer’s Disease and Related Disorders. CNS Neurosci. Ther. 2011, 17, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019, 57, 87–105. [Google Scholar] [CrossRef]
- Crous-Bou, M.; Minguillón, C.; Gramunt, N.; Molinuevo, J.L. Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimer’s Res. Ther. 2017, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Singer, W.; Opfer-Gehrking, T.L.; McPhee, B.R.; Hilz, M.J.; Bharucha, A.E.; Low, P.A. Acetylcholinesterase inhibition: A novel approach in the treatment of neurogenic orthostatic hypotension. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1294–1298. [Google Scholar] [CrossRef]
- Lee, D.H.; Choi, Y.H.; Cho, K.H.; Yun, S.Y.; Lee, H.M. A case of rivastigmine toxicity caused by transdermal patch. Am. J. Emerg. Med. 2011, 29, 695.e1–695.e2. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kamijo, Y.; Yoshizawa, T.; Fujita, Y.; Usui, K.; Kishino, T. Acute cholinergic syndrome in a patient with mild Alzheimer’s type dementia who had applied a large number of rivastigmine transdermal patches on her body. Clin. Toxicol. 2017, 55, 1008–1010. [Google Scholar] [CrossRef]
- Wallukat, G. The β-adrenergic receptors. Herz 2002, 27, 683–690. [Google Scholar] [CrossRef]
- Srinivasan, A.V. Propranolol: A 50-year historical perspective. Ann. Indian Acad. Neurol. 2019, 22, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Rouette, J.; McDonald, E.G.; Schuster, T.; Brophy, J.M.; Azoulay, L. Treatment and prescribing trends of antihypertensive drugs in 2.7 million UK primary care patients over 31 years: A population-based cohort study. BMJ Open 2022, 12, e057510. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.M.; Servais, J.; Martin, C.B.; Kohen, D. Prescription Drug Use Among Adults Aged 40–79 in the United States and Canada Key findings Data from the National Health and Nutrition Examination Survey and the Canadian Health Measures Survey. n.d. Available online: https://www.cdc.gov/nchs/products/index.htm (accessed on 8 April 2022).
- Cojocariu, S.A.; Maștaleru, A.; Sascău, R.A.; Stătescu, C.; Mitu, F.; Leon-Constantin, M.M. Neuropsychiatric Consequences of Lipophilic Beta-Blockers. Medicina 2021, 57, 155. [Google Scholar] [CrossRef] [PubMed]
- Gliebus, G.; Lippa, C.F. The influence of beta-blockers on delayed memory function in people with cognitive impairment. Am. J. Alzheimers Dis. Demen. 2007, 22, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Beaman, E.E.; Bonde, A.N.; Larsen, S.M.U.; Ozenne, B.; Lohela, T.J.; Nedergaard, M.; Gíslason, G.H.; Knudsen, G.M.; Holst, S.C. Blood–brain barrier permeable β-blockers linked to lower risk of Alzheimer’s disease in hypertension. Brain 2023, 146, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Rouch, L.; Cestac, P.; Hanon, O.; Cool, C.; Helmer, C.; Bouhanick, B.; Chamontin, B.; Dartigues, J.F.; Vellas, B.; Andrieu, S. Antihypertensive drugs, prevention of cognitive decline and dementia: A systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 2015, 29, 113–130. [Google Scholar] [CrossRef]
- Petrovitch, H.; White, L.R.; Izmirilian, G.; Ross, G.W.; Havlik, R.J.; Markesbery, W.; Nelson, J.; Davis, D.G.; Hardman, J.; Foley, D.J.; et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: The HAAS. Honolulu-Asia aging Study. Neurobiol. Aging 2000, 21, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Kennelly, S.; Abdullah, L.; Kenny, R.A.; Mathura, V.; Luis, C.A.; Mouzon, B.; Crawford, F.; Mullan, M.; Lawlor, B. Apolipoprotein E genotype-specific short-term cognitive benefits of treatment with the antihypertensive nilvadipine in Alzheimer’s patients—An open-label trial. Int. J. Geriatr. Psychiatry 2012, 27, 415–422. [Google Scholar] [CrossRef]
- Hajjar, I.; Hart, M.; Milberg, W.; Novak, V.; Lipsitz, L. The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC) trial in elderly hypertensives with early cognitive impairment: Role of the renin angiotensin system inhibition. BMC Geriatr. 2009, 9, 48. [Google Scholar] [CrossRef]
- Rygiel, K. Can angiotensin-converting enzyme inhibitors impact cognitive decline in early stages of Alzheimer’s disease? An overview of research evidence in the elderly patient population. J. Postgrad. Med. 2016, 62, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Tzourio, C.; Anderson, C.; Chapman, N.; Woodward, M.; Neal, B.; MacMahon, S.; Chalmers, J.; PROGRESS Collaborative Group. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern Med. 2003, 163, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Lai, E.C.; Pratt, N.; Hsieh, C.Y.; Lin, S.J.; Pottegård, A.; Roughead, E.E.; Kao Yang, Y.H.; Hallas, J. Sequence symmetry analysis in pharmacovigilance and pharmacoepidemiologic studies. Eur. J. Epidemiol. 2017, 32, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Hallas, J. Evidence of Depression Provoked by Cardiovascular Medication: A Prescription Sequence Symmetry Analysis. Epidemiology 1996, 7, 478–484. Available online: http://www.jstor.org/stable/3702146 (accessed on 19 September 2023). [CrossRef] [PubMed]
- Morris, E.J.; Hollmann, J.; Hofer, A.K.; Bhagwandass, H.; Oueini, R.; Adkins, L.E.; Hallas, J.; Vouri, S.M. Evaluating the use of prescription sequence symmetry analysis as a pharmacovigilance tool: A scoping review. Res. Soc. Adm. Pharm. 2022, 18, 3079–3093. [Google Scholar] [CrossRef] [PubMed]
- Hort, J.; O’Brien, J.T.; Gainotti, G.; Pirttila, T.; Popescu, B.O.; Rektorova, I.; Sorbi, S.; Scheltens, P. EFNS guidelines for the diagnosis and management of Alzheimer’s disease. Eur. J. Neurol. 2010, 17, 1236–1248. [Google Scholar] [CrossRef] [PubMed]
- Kruik-Kollöffel, W.J.; Linssen, G.C.M.; Kruik, H.J.; Movig KL, L.; Heintjes, E.M.; van der Palen, J. Effects of European Society of Cardiology guidelines on medication profiles after hospitalization for heart failure in 22,476 Dutch patients: From 2001 until 2015. Heart Fail. Rev. 2019, 24, 499–510. [Google Scholar] [CrossRef]
- Abdulrahman, H.; van Dalen, J.W.; den Brok, M.; Latimer, C.S.; Larson, E.B.; Richard, E. Hypertension and Alzheimer’s disease pathology at autopsy: A systematic review. Alzheimer’s Dement. 2022, 18, 2308–2326. [Google Scholar] [CrossRef]
- Peskind, E.R.; Tsuang, D.W.; Bonner, L.T.; Pascualy, M.; Riekse, R.G.; Snowden, M.B.; Thomas, R.; Raskind, M.A. Propranolol for Disruptive Behaviors in Nursing Home Residents with Probable or Possible Alzheimer Disease A Placebo-Controlled Study. Dis. Assoc. Disord. 2005, 19, 23–28. [Google Scholar] [CrossRef]
- Oppenheim, G.; Mintzer, J.; Halperin, Y.; Eliakim, R.; Stessman, J.; Ebstein, R.P. Acute desensitization of lymphocyte beta-adrenergic-stimulated adenylate cyclase in old age and Alzheimer’s disease. Life Sci. 1984, 35, 1795–1802. [Google Scholar] [CrossRef]
- Lu‘o’ng, K.V.Q.; Nguyen, L.T.H. The role of beta-adrenergic receptor blockers in Alzheimer’s disease: Potential genetic and cellular signaling mechanisms. Am. J. Alzheimer’s Dis. Dement. 2013, 28, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Govindaiah, G.; Liu, R.; de Arcangelis, V.; Cox, C.L.; Xiang, Y.K. Binding of amyloid β peptide to β 2 adrenergic receptor induces PKA—Dependent AMPA receptor hyperactivity. FASEB J. 2010, 24, 3511–3521. [Google Scholar] [CrossRef]
- Isik, A.T.; Soysal, P.; Stubbs, B.; Solmi, M.; Basso, C.; Maggi, S.; Schofield, P.; Veronese, N.; Mueller, C. Cardiovascular Outcomes of Cholinesterase Inhibitors in Individuals with Dementia: A Meta-Analysis and Systematic Review. J. Am. Geriatr. Soc. 2018, 66, 1805–1811. [Google Scholar] [CrossRef]
- IADB.nl. Available online: http://iadb.nl/ (accessed on 29 June 2022).
- Sediq, R.; van der Schans, J.; Dotinga, A.; Alingh, R.A.; Wilffert, B.; Bos, J.H.; Schuiling-Veninga, C.C.; Hak, E. Concordance assessment of self-reported medication use in the Netherlands three-generation Lifelines Cohort study with the pharmacy database iaDB.nl: The PharmLines initiative. Clin. Epidemiol. 2018, 10, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Moreno, T.; González-Acedo, A.; Rivas-Domínguez, A.; García-Morales, V.; García-Cozar, F.J.; Ramos-Rodríguez, J.J.; Melguizo-Rodríguez, L. Therapeutic Approach to Alzheimer’s Disease: Current Treatments and New Perspectives. Pharmaceutics 2022, 14, 1117. [Google Scholar] [CrossRef] [PubMed]
- Wahab, I.A.; Pratt, N.L.; Wiese, M.D.; Kalisch, L.M.; Roughead, E.E. The validity of sequence symmetry analysis (SSA) for adverse drug reaction signal detection. Pharmacoepidemiol. Drug Saf. 2013, 22, 496–502. [Google Scholar] [CrossRef]
- Stichting Farmaceutische Kengetallen. Inzet-Medicijnen-Bij-Dementia-Loopt-Terug. 2016. Available online: https://www.sfk.nl/publicaties/PW/2016/inzet-medicijnen-bij-dementie-looptterug (accessed on 25 January 2023).
- Pratt, N.L.; Ilomäki, J.; Raymond, C.; Roughead, E.E. The performance of sequence symmetry analysis as a tool for post-market surveillance of newly marketed medicines: A simulation study. BMC Med. Res. Methodol. 2014, 14, 66. [Google Scholar] [CrossRef]
- Østerhus, R.; Dalen, I.; Bergland, A.K.; Aarsland, D.; Kjosavik, S.R. Risk of Hospitalization in Patients with Alzheimer’s Disease and Lewy Body Dementia: Time to and Length of Stay. J. Alzheimer’s Dis. 2020, 74, 1221–1230. [Google Scholar] [CrossRef]
- Arlt, S.; Lindner, R.; Rösler, A.; von Renteln-Kruse, W. Adherence to medication in patients with dementia: Predictors and strategies for improvement. Drugs Aging 2008, 25, 1033–1047. [Google Scholar] [CrossRef]
Medication | Patients, n (%) |
---|---|
BB | |
Metoprolol | 90 (62) |
Bisoprolol | 31 (21.4) |
Propranolol | 10 (6.8) |
Sotalol | 7 (4.8) |
Atenolol | 3 (2) |
Nebivolol | 2 (1.4) |
Carvedilol | 1 (0.68) |
Celiprolol | 1 (0.68) |
AD medications | |
Rivastigmine | 104 (71.7) |
Galantamine | 38 (26.2) |
Memantine | 2 (1.4) |
Donepezil | 1 (0.68) |
Total Number | BB Medication First | AD Medication First | cSR | neSR | aSR | 95% CI | |
---|---|---|---|---|---|---|---|
BB and AD medications | 145 | 50 | 95 | 0.52 | 1.02 | 0.51 | 0.35–0.72 |
Reverse order for BB and AD medications | 145 | 50 | 95 | 1.96 | 0.96 | 1.96 | 1.61–2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.; Bijlsma, M.J.; de Vos, S.; Schuiling-Veninga, C.C.M.; Bos, J.H.J.; Hak, E. Association between Incidence of Prescriptions for Alzheimer’s Disease and Beta-Adrenoceptor Antagonists: A Prescription Sequence Symmetry Analysis. Pharmaceuticals 2023, 16, 1694. https://doi.org/10.3390/ph16121694
Alghamdi A, Bijlsma MJ, de Vos S, Schuiling-Veninga CCM, Bos JHJ, Hak E. Association between Incidence of Prescriptions for Alzheimer’s Disease and Beta-Adrenoceptor Antagonists: A Prescription Sequence Symmetry Analysis. Pharmaceuticals. 2023; 16(12):1694. https://doi.org/10.3390/ph16121694
Chicago/Turabian StyleAlghamdi, Ali, Maarten J. Bijlsma, Stijn de Vos, Catharina C.M. Schuiling-Veninga, Jens H. J. Bos, and Eelko Hak. 2023. "Association between Incidence of Prescriptions for Alzheimer’s Disease and Beta-Adrenoceptor Antagonists: A Prescription Sequence Symmetry Analysis" Pharmaceuticals 16, no. 12: 1694. https://doi.org/10.3390/ph16121694
APA StyleAlghamdi, A., Bijlsma, M. J., de Vos, S., Schuiling-Veninga, C. C. M., Bos, J. H. J., & Hak, E. (2023). Association between Incidence of Prescriptions for Alzheimer’s Disease and Beta-Adrenoceptor Antagonists: A Prescription Sequence Symmetry Analysis. Pharmaceuticals, 16(12), 1694. https://doi.org/10.3390/ph16121694