Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = benzoxazinoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1529 KiB  
Review
From Nutrition to Energy: Evaluating the Role of Rye (Secale cereale L.) Grain in Sustainable Food Systems and Biofuel Applications
by Adam Kleofas Berbeć and Marta Wyzińska
Foods 2025, 14(11), 1971; https://doi.org/10.3390/foods14111971 - 1 Jun 2025
Cited by 1 | Viewed by 671
Abstract
Rye (Secale cereale L.), a cereal with valuable agronomic and nutritional benefits, contributes to sustainable agriculture, especially in areas where more demanding crops cannot be cultivated due to the poor agronomic value of soil. This review explores rye grain quality optimization strategies [...] Read more.
Rye (Secale cereale L.), a cereal with valuable agronomic and nutritional benefits, contributes to sustainable agriculture, especially in areas where more demanding crops cannot be cultivated due to the poor agronomic value of soil. This review explores rye grain quality optimization strategies through production techniques. The quality and yield of grain are under the significant impact of agronomic factors, such as variety selection, crop rotation, soil tillage, fertilization, sowing practices, chemical protection, and harvest timing. It is also under the strong influence of the chosen farm’s management strategy, like organic or conventional farming system. This review emphasizes its diverse potential utilization routes, and the importance of bioactive compounds, dietary fibers, phenolic acids, phytoestrogens, and benzoxazinoids that enhance its value as a functional food. Cereal grain with quality issues cannot be used as food for humans, however, it can still be utilized alternatively as a renewable biofuel. This review showed rye grain to have a potential to contribute to sustainable agriculture and at the same time build farms’ resilience through possible alternative utilization strategies. It can serve as both a food source and a sustainable biofuel, offering a dual-purpose solution within the circular bioeconomy. Full article
Show Figures

Figure 1

22 pages, 4603 KiB  
Article
Root Transcriptome Analysis Identifies Salt-Tolerance Genes in Sweet Corn Chromosome Segment Substitution Lines (CSSLs)
by Zili Zhang, Xuxuan Duan, Pengfei Liu, Qingchun Chen, Wei Sun, Xiaorong Wan, Yixiong Zheng, Jianting Lin, Feng Jiang and Faqiang Feng
Plants 2025, 14(11), 1687; https://doi.org/10.3390/plants14111687 - 31 May 2025
Viewed by 705
Abstract
Salt stress severely constrains global crop productivity. However, most sweet corn cultivars exhibit weak tolerance to salt stress. In this study, two sweet corn CSSLs, salt-tolerant line D55 and salt-sensitive line D96, were selected as materials. We conducted comparative phenotyping and physiological profiling [...] Read more.
Salt stress severely constrains global crop productivity. However, most sweet corn cultivars exhibit weak tolerance to salt stress. In this study, two sweet corn CSSLs, salt-tolerant line D55 and salt-sensitive line D96, were selected as materials. We conducted comparative phenotyping and physiological profiling of seedlings under salinity treatment, and transcriptome analysis was carried out by sampling root tissues at 0 h, 4 h, 12 h, and 72 h post-treatment. The results indicated that D55 exhibited enhanced seedling height, root length, fresh weight, relative chlorophyll content, and antioxidant enzyme activities, while showing reduced malondialdehyde accumulation in comparison to D96. Pairwise comparisons across time points (0 h, 4 h, 12 h, 72 h) identified 6317 and 6828 differentially expressed genes (DEGs) in D55 and D96. A total of 49 shared DEGs across four time points were identified in D55 and D96, which were enriched in 12 significant Gene Ontology (GO) terms. Only eight DEGs were shared between genotypes across all comparisons. Transcriptomic analysis revealed 1281, 1946, and 1717 DEGs in genotypes D55 and D96 at 4 h, 12 h, and 72 h post-salt treatment, respectively. Genes associated with reactive oxygen species (ROS) homeostasis, phenylpropanoid metabolism, cutin, suberin and wax biosynthesis, and benzoxazinoid synthesis exhibit enhanced sensitivity in the salt-tolerant genotype D55. This leads to an enhanced ROS scavenging capacity and the establishment of a multi-layered defense mechanism. Additionally, brassinosteroid (BR), gibberellin (GA), and abscisic acid (ABA) and auxin-related genes exhibited different responses to salt stress in sweet corn. A hypothetical model, which established a multi-layered salt adaptation strategy, by integrating ROS detoxification, osmotic balance, and phytohormone signaling, was put forward. By integrating transcriptome and differential chromosomal fragment data, our findings identify 14 candidate genes for salt tolerance, providing potential ideal target genes in breeding to improve salt tolerance in sweet corn. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 1874 KiB  
Article
Genome-Wide Association Study and RNA-Seq Elucidate the Genetic Mechanisms Behind Aphid (Rhopalosiphum maidis F.) Resistance in Maize
by Doudou Sun, Yijun Wei, Chunyan Han, Xiaopeng Li, Zhen Zhang, Shiwei Wang, Zijian Zhou, Jingyang Gao, Jiafa Chen and Jianyu Wu
Plants 2025, 14(11), 1614; https://doi.org/10.3390/plants14111614 - 25 May 2025
Viewed by 520
Abstract
Maize is a crucial food crop and industrial raw material, significantly contributing to national food security. Aphids are one of the most prevalent and destructive pests in maize production, necessitating the exploration of pest-resistant germplasm and the development of resistant varieties as the [...] Read more.
Maize is a crucial food crop and industrial raw material, significantly contributing to national food security. Aphids are one of the most prevalent and destructive pests in maize production, necessitating the exploration of pest-resistant germplasm and the development of resistant varieties as the most fundamental and effective strategy for mitigating aphid-induced damage. This study established an aphid resistance evaluation system and identified 17 elite resistant inbred lines through multi-year screening. A genome-wide association study (GWAS) revealed 22 significant single-nucleotide polymorphisms (SNPs) associated with aphid resistance, including genes involved in benzoxazinoid (Bx) biosynthesis (such as Bx2), insect resistance-related transcription factors (such as WRKY23), plant lectins, and other resistance pathways. RNA-seq analysis of the samples before and after aphid infestation detected 1037 differentially expressed genes (DEGs) in response to aphid infestation, with KEGG enrichment highlighting benzoxazinoid biosynthesis and starch/sucrose metabolism as primary response pathways. Integrating GWAS and RNA-seq results revealed the presence of several benzoxazinoid synthesis-related genes on the short arm of chromosome 4 (Chr4S). FMqRrm1, a Kompetitive Allele-Specific PCR (KASP) marker, was derived from the Chr4S region. We subsequently utilized this marker for marker-assisted selection (MAS) to introgress the Chr4S region from the aphid-resistant inbred line into two aphid-susceptible inbred lines. The results demonstrated that the Chr4S favorable allele significantly reduced aphid occurrence by 1.5 to 2.1 grades. This study provides a critical theoretical foundation and practical guidance for understanding the molecular mechanism of aphid resistance in maize and molecular breeding for aphid resistance. Full article
(This article belongs to the Special Issue Identification of Resistance of Maize Germplasm Resources to Disease)
Show Figures

Figure 1

22 pages, 12733 KiB  
Article
Research on the Quality Variation Patterns During the Fermentation Process of Coffee-Grounds Craft Beer
by Jiashun Jiang, Jingan Yang, Tong Zhu, Yongjin Hu, Hong Li and Lijing Liu
Foods 2025, 14(6), 1014; https://doi.org/10.3390/foods14061014 - 17 Mar 2025
Viewed by 1089
Abstract
To investigate the metabolic differences and mechanisms during the fermentation process of coffee-grounds craft beer, HS-SPME-GC/MS untargeted metabolomics technology was used to study the metabolic differences during the fermentation process of coffee-grounds craft beer. Multivariate statistical analysis and pathway analysis were combined to [...] Read more.
To investigate the metabolic differences and mechanisms during the fermentation process of coffee-grounds craft beer, HS-SPME-GC/MS untargeted metabolomics technology was used to study the metabolic differences during the fermentation process of coffee-grounds craft beer. Multivariate statistical analysis and pathway analysis were combined to screen for significantly different metabolites with variable weight values of VIP ≥ 1 and p < 0.05. The results indicate that at time points T7, T14, T21, and T28, a total of 183 differential metabolites were detected during the four fermentation days, with 86 metabolites showing significant differences. Its content composition is mainly composed of lipids and lipid-like molecules, organic oxygen compounds, and benzoids, accounting for 63.64% of the total differential metabolites. KEGG enrichment analysis of differentially expressed metabolites showed a total of 35 metabolic pathways. The top 20 metabolic pathways were screened based on the corrected p-value, and the significantly differentially expressed metabolites were mainly enriched in pathways such as protein digestion and absorption, glycosaminoglycan biosynthesis heparan sulfate/heparin, and benzoxazinoid biosynthesis. The different metabolic mechanisms during the fermentation process of coffee-grounds craft beer reveal the quality changes during the fermentation process, providing theoretical basis for improving the quality of coffee-grounds craft beer and having important theoretical and practical significance for improving the quality evaluation system of coffee-grounds craft beer. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

15 pages, 3327 KiB  
Article
Transcriptomic Analysis Reveals the Biosynthesis Mechanism of Coixol Under Salicylic Acid Treatment
by Yao Wang, Hanli Ye, Xuqin Luo, Ziwei Li, Chuanqi Zheng and Dali Sun
Horticulturae 2025, 11(3), 234; https://doi.org/10.3390/horticulturae11030234 - 21 Feb 2025
Viewed by 672
Abstract
Background: Coix (Coix lacryma-jobi L.) is cultivated as medicine and food homologous resources containing various active components. As one of its main ingredients, coixol possesses the biological activities of fever reduction, pain relief, tumor suppression, blood glucose, and pressure decrease. However, the [...] Read more.
Background: Coix (Coix lacryma-jobi L.) is cultivated as medicine and food homologous resources containing various active components. As one of its main ingredients, coixol possesses the biological activities of fever reduction, pain relief, tumor suppression, blood glucose, and pressure decrease. However, the biosynthesis mechanism of coixol in coix is still unclear. Methods: In this study, different dosages of salicylic acid (SA) were applied to coix plants, and the contents of coixol from different parts were detected by an ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). The biosynthesis pathway of coixol was determined by high-throughput transcriptome sequencing analysis and the genes were then verified by qRT-PCR. Results: SA treatment significantly increased plant height, root length, and fresh weight and increased the coixol contents in the root, stem, leaf, and seed. In total, eight enzyme-encoding genes were screened out as the key genes in the biosynthesis of coixol. The bioaccumulation of coixol was mainly through benzoxazinoid biosynthetic metabolic pathway (ko00402). Conclusions: These findings not only pointed the way for increasing the content of coixol in cultivation but also provided a reference for further elucidation of the gene functions involved in the bioaccumulation of coixol. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

19 pages, 2906 KiB  
Article
Metabolomic Analysis Reveals the Diversity of Defense Metabolites in Nine Cereal Crops
by Sishu Huang, Xindong Li, Kejin An, Congping Xu, Zhenhuan Liu, Guan Wang, Huanteng Hou, Ran Zhang, Yutong Wang, Honglun Yuan and Jie Luo
Plants 2025, 14(4), 629; https://doi.org/10.3390/plants14040629 - 19 Feb 2025
Viewed by 961
Abstract
Cereal crops are important staple foods, and their defense metabolites hold significant research importance. In this study, we employed LC-MS-based untargeted and widely-targeted metabolomics to profile the leaf metabolome of nine cereal species, including rice, wheat, maize, barley, sorghum, common oat, foxtail millet, [...] Read more.
Cereal crops are important staple foods, and their defense metabolites hold significant research importance. In this study, we employed LC-MS-based untargeted and widely-targeted metabolomics to profile the leaf metabolome of nine cereal species, including rice, wheat, maize, barley, sorghum, common oat, foxtail millet, broomcorn millet, and adlay. A total of 9869 features were detected, among them, 1131 were annotated, encompassing 18 classes such as flavonoids, lipids, and alkaloids. Results revealed that 531 metabolites were detected in all species, while each cereal crop possessed 4 to 12 unique metabolites. Focusing on defense metabolites, we identified eight benzoxazinoids uniquely present in maize, wheat, and adlay. Hierarchical clustering based on metabolite abundance divided all metabolites into nine clusters, and subsequent pathway enrichment analysis revealed that the stress-related flavonoid biosynthesis pathway was enriched in multiple clusters. Further analysis showed that four downstream compounds of HBOA (2-hydroxy-1,4-benzoxazin-3-one) in the benzoxazinoid biosynthesis pathway were enriched in maize. Wheat uniquely accumulated the 4′-methylated product of tricin, trimethoxytricetin, whereas adlay accumulated the tricin precursor tricetin in the flavonoid biosynthesis pathway. In summary, this study elucidates the metabolic diversity in defense metabolites among various cereal crops, providing valuable background information for the improvement of stress resistance in cereal crops. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

24 pages, 5822 KiB  
Article
Transcriptome Analysis Revealed the Regulatory Mechanism of DIMBOA Affecting Early Somatic Embryogenesis in Dimocarpus longan Lour.
by Xiaoqiong Xu, Chunyu Zhang, Ning Tong, Xiaoyuan Lan, Jing Cui, Awais Muhammad, Zhilin Zhang, Zihao Zhang, Yukun Chen, Yuling Lin and Zhongxiong Lai
Plants 2025, 14(3), 442; https://doi.org/10.3390/plants14030442 - 3 Feb 2025
Viewed by 1230
Abstract
Dimocarpus longan Lour. is an evergreen tree of the genus Longan in the Sapindaceae family, native to tropical and subtropical regions. Longan embryonic development is closely related to fruit set and fruit quality. An in-depth study of the mechanism of longan embryonic development [...] Read more.
Dimocarpus longan Lour. is an evergreen tree of the genus Longan in the Sapindaceae family, native to tropical and subtropical regions. Longan embryonic development is closely related to fruit set and fruit quality. An in-depth study of the mechanism of longan embryonic development could therefore contribute to the development of the longan industry. DIMBOA is the principal compound representing benzoxazinoids (BXs), and is closely linked to auxin biosynthesis and signal transduction. Auxin is one of the crucial hormones for inducing somatic embryogenesis (SE) in plants. Previous research has shown that DIMBOA promotes morphogenesis in the early somatic embryogenesis of longan, but the specific regulatory mechanism has not yet been clarified. To elucidate the molecular mechanism by which DIMBOA affects early somatic embryogenesis in longan, we chose longan embryogenic cultures grown under 0 mg/L DIMBOA as the control group (the check, CK), and longan embryogenic cultures grown under 0.1 mg/L DIMBOA as the treatment group (D) to be analyzed by transcriptomic sequencing. A total of 478 differentially expressed genes (DEGs) are detected in check vs. D, of which 193 are upregulated and 285 are downregulated. These DEGs are significantly enriched in the biosynthetic and metabolic functions of various substances such as vitamin B6 (VB6) biosynthesis, phenylpropanoid pathways, and carbohydrate metabolism. DIMBOA affects SE processes in longan via TFs, including MYB, ZF, bHLH, LBD, NAC, WRKY, etc. After DIMBOA treatment, the expression of most of the key genes for IAA synthesis was significantly downregulated, VB6 content was significantly reduced, and H2O2 content was significantly increased. Therefore, it is suggested that DIMBOA directly or indirectly affects the H2O2 content through the VB6 metabolic pathway, thereby regulating the endogenous IAA level to modulate the early SE morphogenesis of longan. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

15 pages, 2566 KiB  
Article
Impact of Year and Genotype on Benzoxazinoids and Their Microbial Metabolites in the Rhizosphere of Early-Vigour Wheat Genotypes in Southern Australia
by Paul A. Weston, Shahnaj Parvin, Pieter-W. Hendriks, Saliya Gurusinghe, Greg J. Rebetzke and Leslie A. Weston
Plants 2025, 14(1), 90; https://doi.org/10.3390/plants14010090 - 31 Dec 2024
Cited by 1 | Viewed by 704
Abstract
Wheat (Triticum aestivum) is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and [...] Read more.
Wheat (Triticum aestivum) is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and subsequent release of these metabolites by commercial wheat cultivars, however, has not yet been targeted by focussed breeding programmes seeking to develop more competitive crops. Recently, the Commonwealth Scientific and Industrial Organisation (CSIRO), through an extensive recurrent selection programme investment, released numerous early-vigour wheat genotypes for commercial use, but the physiological basis for their improved vigour is under investigation. In the current study, we evaluated several early-vigour genotypes alongside common commercial and heritage wheat cultivars to assess the impact of improved early vigour on the production and release of targeted benzoxazinoids by field-grown wheat roots over a two-year period. Using UPLC coupled with triple quadrupole mass spectrometry (LC-MS QQQ), we quantified common wheat benzoxazinoids and their microbially produced metabolites (aminophenoxazinones) in soil collected from the rhizosphere and rhizoplane of wheat plants over two growing seasons in the Riverina region of New South Wales, Australia. The benzoxazolinone MBOA and several aminophenoxazinones were readily detected in soil samples, but actual soil concentrations differed greatly between years and among genotypes. In contrast to 2019, the concentration of aminophenoxazinones in wheat rhizosphere soil was significantly elevated in 2020, a year receiving adequate rainfall for optimal wheat growth. Aminophenoxazinones were detected in the rhizosphere of early-vigour genotypes and also parental lines exhibiting weed suppression, suggesting that improved early vigour and subsequent weed competitiveness may be related to increased root exudation and production of microbial metabolites in addition to changes in canopy architecture or other root-related early-vigour traits. As previously reported, MBOA was detected frequently in both the rhizoplane and rhizosphere of wheat. Depending on the year and genotype, we also observed enhanced biotransformation of these metabolites to several microbially transformed aminophenoxazinones in the rhizosphere of many of the evaluated genotypes. We are now investigating the role of early-vigour traits, including early canopy closure and biomass accumulation upon improved competitive ability of wheat, which will eventually result in more cost-effective weed management. Full article
Show Figures

Figure 1

16 pages, 1526 KiB  
Article
Impact of Alternative Substrates on Plant Growth and Root Exudates in Plant Interactions: A Study on Secale cereale L. and Amaranthus retroflexus L.
by Elise De Snyders, Marie-Laure Fauconnier, Pauline Canelle, Judith Wirth and Aurélie Gfeller
Agronomy 2024, 14(12), 3000; https://doi.org/10.3390/agronomy14123000 - 17 Dec 2024
Cited by 2 | Viewed by 1124
Abstract
This study investigates the effects of substrate composition on root architecture, plant growth, and allelopathic secondary metabolites, specifically benzoxazinoids (BXs), in the rhizospheres of rye (Secale cereale L.) and redroot pigweed (Amaranthus retroflexus L.). Given the complexities of root exudate analysis, [...] Read more.
This study investigates the effects of substrate composition on root architecture, plant growth, and allelopathic secondary metabolites, specifically benzoxazinoids (BXs), in the rhizospheres of rye (Secale cereale L.) and redroot pigweed (Amaranthus retroflexus L.). Given the complexities of root exudate analysis, including the influence of substrate on root morphology and exudation, the experiment compared plant growth and BX release in two substrates: glass microbeads and a mixture of clay beads and attapulgite. Rye, pigweed, and co-cultures of the two were grown under controlled conditions, with root and shoot parameters measured to assess substrate suitability. Additionally, UPLC-QTOF-MS was used to analyze BXs in rye and rye–pigweed co-cultures. The results demonstrated that the clay bead and attapulgite mixture provided better growth conditions and was effective for BX extraction, making it a suitable substrate for studying allelopathy in controlled environments. The findings highlight the critical role of substrate composition in both plant development and the study of root exudates, with implications for better understanding of crop–weed interactions and allelopathy. Full article
(This article belongs to the Special Issue Application of Allelochemicals in Agriculture)
Show Figures

Figure 1

14 pages, 1503 KiB  
Article
Influence of Exogenous Ethylene and Mechanical Damage on Gene Expression and Physiological Parameters of Maize Hybrids
by Péter Makleit, Gabriella Gulyás, Levente Czeglédi and Szilvia Veres
Agronomy 2024, 14(9), 1950; https://doi.org/10.3390/agronomy14091950 - 29 Aug 2024
Viewed by 811
Abstract
This study investigated the responses of two maize hybrids, Armagnac and Desszert R-78, to exogenous ethylene and mechanical damage as stress treatments. The amounts of benzoxazinoids (BXDs) and malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and catalase (CAT) were examined 2 [...] Read more.
This study investigated the responses of two maize hybrids, Armagnac and Desszert R-78, to exogenous ethylene and mechanical damage as stress treatments. The amounts of benzoxazinoids (BXDs) and malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and catalase (CAT) were examined 2 and 4 h after ethylene and mechanical damage treatments as well as at the age of 24 days, and the activity of genes encoding BXD biosynthesis and other stress-related genes was measured in shoots. In both hybrids, mechanical damage upregulated the genes responsible for the synthesis of BXDs (BX8 and BX9), the AOC1 gene encoding jasmonate, and the DEH gene encoding lipid biosynthesis enzymes. Significant genotype differences were found in the amounts of BXDs. In the case of the Desszert R-78 hybrid, the BXDs level was increased at 4 h after stress treatments compared to the control. In the case of the Armagnac hybrid, the amount of BXDs decreased in response to ethylene compared to the control. The absence/presence of a correlation between the activity of genes encoding BXDs and the amount of BXDs is thought to be due to the different rate/speed of the response in the two hybrids. Mechanical damage and ethylene treatments did not significantly affect the activities of SOD and CAT as well as the amount of MDA during the four-hour study period. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

15 pages, 9605 KiB  
Article
Transcriptomic and Hormonal Changes in Wheat Roots Enhance Growth under Moderate Soil Drying
by Ying Li, Shuqiu Jiang, Yonghui Hong, Zixuan Yao, Yadi Chen, Min Zhu, Jinfeng Ding, Chunyan Li, Xinkai Zhu, Weifeng Xu, Wenshan Guo, Nanyan Zhu and Jianhua Zhang
Int. J. Mol. Sci. 2024, 25(17), 9157; https://doi.org/10.3390/ijms25179157 - 23 Aug 2024
Cited by 1 | Viewed by 1281
Abstract
Understanding the mechanisms that regulate plant root growth under soil drying is an important challenge in root biology. We observed that moderate soil drying promotes wheat root growth. To understand whether metabolic and hormonic changes are involved in this regulation, we performed transcriptome [...] Read more.
Understanding the mechanisms that regulate plant root growth under soil drying is an important challenge in root biology. We observed that moderate soil drying promotes wheat root growth. To understand whether metabolic and hormonic changes are involved in this regulation, we performed transcriptome sequencing on wheat roots under well-watered and moderate soil drying conditions. The genes upregulated in wheat roots under soil drying were mainly involved in starch and sucrose metabolism and benzoxazinoid biosynthesis. Various plant hormone-related genes were differentially expressed during soil drying. Quantification of the plant hormones under these conditions showed that the concentrations of abscisic acid (ABA), cis-zeatin (CZ), and indole-3-acetic acid (IAA) significantly increased during soil drying, whereas the concentrations of salicylic (SA), jasmonic (JA), and glycosylated salicylic (SAG) acids significantly decreased. Correlation analysis of total root length and phytohormones indicated that CZ, ABA, and IAA are positively associated with wheat root length. These results suggest that changes in metabolic pathways and plant hormones caused by moderate soil drying help wheat roots grow into deeper soil layers. Full article
(This article belongs to the Special Issue Genetic Engineering of Plants for Stress Tolerance)
Show Figures

Figure 1

18 pages, 5695 KiB  
Article
Benzoxazinoids Biosynthetic Gene Cluster Identification and Expression Analysis in Maize under Biotic and Abiotic Stresses
by Xiaoqiang Zhao, Zhenzhen Shi, Fuqiang He, Yining Niu, Guoxiang Qi, Siqi Sun, Xin Li and Xiquan Gao
Int. J. Mol. Sci. 2024, 25(13), 7460; https://doi.org/10.3390/ijms25137460 - 7 Jul 2024
Cited by 2 | Viewed by 1751
Abstract
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern [...] Read more.
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00–4.01/4.03–4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses. Full article
(This article belongs to the Special Issue Recent Advances in Maize Stress Biology)
Show Figures

Figure 1

13 pages, 4364 KiB  
Article
Arbuscular Mycorrhizal Fungi Regulate Lipid and Amino Acid Metabolic Pathways to Promote the Growth of Poncirus trifoliata (L.) Raf
by Yihao Kang, Gratien Twagirayezu, Jie Xu, Yunying Wen, Pengxiang Shang, Juan Song, Qian Wang, Xianliang Li, Shengqiu Liu, Tingsu Chen, Tong Cheng and Jinlian Zhang
J. Fungi 2024, 10(6), 427; https://doi.org/10.3390/jof10060427 - 18 Jun 2024
Cited by 3 | Viewed by 1644
Abstract
Arbuscular mycorrhizal (AM) fungi can enhance the uptake of soil nutrients and water by citrus, promoting its growth. However, the specific mechanisms underlying the action of AM fungi in promoting the growth of citrus were not fully elucidated. This study aimed to explore [...] Read more.
Arbuscular mycorrhizal (AM) fungi can enhance the uptake of soil nutrients and water by citrus, promoting its growth. However, the specific mechanisms underlying the action of AM fungi in promoting the growth of citrus were not fully elucidated. This study aimed to explore the role of AM fungi Funneliformis mosseae in the regulatory mechanisms of P. trifoliata growth. Pot experiments combined with non-targeted metabolomics methods were used to observe the growth process and changes in metabolic products of P. trifoliata under the conditions of F. mosseae inoculation. The results showed that F. mosseae could form an excellent symbiotic relationship with P. trifoliata, thereby enhancing the utilization of soil nutrients and significantly promoting its growth. Compared with the control, the plant height, stem diameter, number of leaves, and aboveground and underground dry weight in the F. mosseae inoculation significantly increased by 2.57, 1.29, 1.57, 4.25, and 2.78 times, respectively. Moreover, the root system results confirmed that F. mosseae could substantially promote the growth of P. trifoliata. Meanwhile, the metabolomics data indicated that 361 differential metabolites and 56 metabolic pathways were identified in the roots of P. trifoliata and were inoculated with F. mosseae. This study revealed that the inoculated F. mosseae could participate in ABC transporters by upregulating their participation, glycerophospholipid metabolism, aminoacyl tRNA biosynthesis, tryptophan metabolism and metabolites from five metabolic pathways of benzoxazinoid biosynthesis [mainly enriched in lipid (39.50%) and amino acid-related metabolic pathways] to promote the growth of P. trifoliata. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

25 pages, 7876 KiB  
Article
Genome-Wide Identification and Expression Analysis of Bx Involved in Benzoxazinoids Biosynthesis Revealed the Roles of DIMBOA during Early Somatic Embryogenesis in Dimocarpus longan Lour
by Xiaoqiong Xu, Chunyu Zhang, Chunwang Lai, Zhilin Zhang, Jiajia Wu, Qun Su, Yu Gan, Zihao Zhang, Yukun Chen, Rongfang Guo, Yuling Lin and Zhongxiong Lai
Plants 2024, 13(10), 1373; https://doi.org/10.3390/plants13101373 - 15 May 2024
Cited by 2 | Viewed by 2036
Abstract
Benzoxazinoids (BXs) are tryptophan-derived indole metabolites and play a role in various physiological processes, such as auxin metabolism. Auxin is essential in the process of somatic embryogenesis (SE) in plants. In this study, we used bioinformatics, transcriptome data, exogenous treatment experiments, and qPCR [...] Read more.
Benzoxazinoids (BXs) are tryptophan-derived indole metabolites and play a role in various physiological processes, such as auxin metabolism. Auxin is essential in the process of somatic embryogenesis (SE) in plants. In this study, we used bioinformatics, transcriptome data, exogenous treatment experiments, and qPCR analysis to study the evolutionary pattern of Bx genes in green plants, the regulatory mechanism of DlBx genes during early SE, and the effect of 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3-one (DIMBOA) on the early SE in Dimocarpus longan Lour. The results showed that 27 putative DlBxs were identified in the longan genome; the Bx genes evolved independently in monocots and dicots, and the main way of gene duplication for the DlBx was tandem duplication (TD) and the DlBx were strongly constrained by purification selection during evolution. The transcriptome data indicated varying expression levels of DlBx during longan early SE, and most DlBxs responded to light, temperature, drought stress, and 2,4-dichlorophenoxyacetic acid (2,4-D) treatment; qRT-PCR results showed DlBx1, DlBx6g and DlBx6h were responsive to auxin, and treatment with 0.1mg/L DIMBOA for 9 days significantly upregulated the expression levels of DlBx1, DlBx3g, DlBx6c, DlBx6f, DlB6h, DlBx7d, DlBx8, and DlBx9b. The correlation analysis showed a significantly negative correlation between the expression level of DlBx1 and the endogenous IAA contents; DIMBOA significantly promoted the early SE and significantly changed the endogenous IAA content, and the IAA content increased significantly at the 9th day and decreased significantly at the 13th day. Therefore, the results suggested that DIMBOA indirectly promote the early SE by changing the endogenous IAA content via affecting the expression level of DlBx1 and hydrogen peroxide (H2O2) content in longan. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

14 pages, 3244 KiB  
Article
CRISPR/Cas9-Based Functional Characterization of SfUGT50A15 Reveals Its Roles in the Resistance of Spodoptera frugiperda to Chlorantraniliprole, Emamectin Benzoate, and Benzoxazinoids
by Zhan Shi, Mei Luo, Jinxi Yuan, Bin Gao, Minghuan Yang and Guirong Wang
Insects 2024, 15(5), 314; https://doi.org/10.3390/insects15050314 - 26 Apr 2024
Cited by 5 | Viewed by 2075
Abstract
UDP-glycosyltransferases (UGTs) are a diverse superfamily of enzymes. Insects utilize uridine diphosphate-glucose (UDP-glucose) as a glycosyl donor for glycosylation in vivo, involved in the glycosylation of lipophilic endosymbionts and xenobiotics, including phytotoxins. UGTs act as second-stage detoxification metabolizing enzymes, which are essential for [...] Read more.
UDP-glycosyltransferases (UGTs) are a diverse superfamily of enzymes. Insects utilize uridine diphosphate-glucose (UDP-glucose) as a glycosyl donor for glycosylation in vivo, involved in the glycosylation of lipophilic endosymbionts and xenobiotics, including phytotoxins. UGTs act as second-stage detoxification metabolizing enzymes, which are essential for the detoxification metabolism of insecticides and benzoxazine compounds. However, the UGT genes responsible for specific glycosylation functions in S. frugiperda are unclear at present. In this study, we utilized CRISPR/Cas9 to produce a SfUGT50A15-KO strain to explore its possible function in governing sensitivity to chemical insecticides or benzoxazinoids. The bioassay results suggested that the SfUGT50A15-KO strain was significantly more sensitive to chlorantraniliprole, emamectin benzoate, and benzoxazinoids than the wild-type strains. This finding suggests that the overexpression of the SfUGT50A15 gene may be linked to S. frugiperda resistance to pesticides (chlorantraniliprole and emamectin benzoate) as well as benzoxazinoids (BXDs). Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Back to TopTop