Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (115)

Search Parameters:
Keywords = barium titanate (BaTiO3)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 6922 KiB  
Review
A Brief Review of Atomistic Studies on BaTiO3 as a Photocatalyst for Solar Water Splitting
by Aisulu U. Abuova, Ulzhan Zh. Tolegen, Talgat M. Inerbaev, Mirat Karibayev, Balzhan M. Satanova, Fatima U. Abuova and Anatoli I. Popov
Ceramics 2025, 8(3), 100; https://doi.org/10.3390/ceramics8030100 - 4 Aug 2025
Viewed by 24
Abstract
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role [...] Read more.
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role of density functional theory (DFT), ab initio molecular dynamics (MD), and classical all-atom MD in exploring its photocatalytic behavior, in line with various experimental findings. DFT studies have offered valuable insights into the electronic structure, density of state, optical properties, bandgap engineering, and other features of BaTiO3, while MD simulations have enabled dynamic understanding of water-splitting mechanisms at finite temperatures. Experimental studies demonstrate photocatalytic water decomposition and certain modifications, often accompanied by schematic diagrams illustrating the principles. This review discusses the impact of doping, surface modifications, and defect engineering on enhancing charge separation and reaction kinetics. Key findings from recent computational works are summarized, offering a deeper understanding of BaTiO3’s photocatalytic activity. This study underscores the significance of advanced multiscale simulation techniques for optimizing BaTiO3 for solar water splitting and provides perspectives on future research in developing high-performance photocatalytic materials. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

15 pages, 5712 KiB  
Article
Synthesis of Magnetic Nanoparticle/Polymer Matrix Nanocomposites with Induced Magnetic Performance
by Anastasios C. Patsidis, Aikaterini Sanida, Georgia C. Manika, Sevasti Gioti, Georgios N. Mathioudakis, Nicholas Petropoulos, Athanasios Kanapitsas, Christos Tsonos, Thanassis Speliotis and Georgios C. Psarras
Polymers 2025, 17(14), 1913; https://doi.org/10.3390/polym17141913 - 10 Jul 2025
Viewed by 425
Abstract
In this work magnetic nanoparticles (Fe3O4, or ZnFe2O4, or SrFe12O19) and BaTiO3 microparticles were embedded in an epoxy resin for the synthesis of three series of hybrid magnetic polymer nanocomposites. [...] Read more.
In this work magnetic nanoparticles (Fe3O4, or ZnFe2O4, or SrFe12O19) and BaTiO3 microparticles were embedded in an epoxy resin for the synthesis of three series of hybrid magnetic polymer nanocomposites. Barium titanate content was kept constant, while magnetic phase content was varied. Fabricated specimens were structurally and morphologically characterized by employing scanning electron microscopy images and X-ray diffraction patterns. Results implied successful synthesis of the hybrid nanocomposites. The magnetic behavior of the pure magnetic nanoparticles and the fabricated nanocomposites was investigated via a Vibrating Sample Magnetometer. The magnetic performance of each type of magnetic phase (i.e., soft and hard) was induced in the nanocomposites, and magnetic performance is strengthened with the increase in magnetic phase content. Initial magnetization curves were used for the determination of mass magnetic susceptibility of all nanocomposites. Magnetic saturation and magnetic remanence have been found to follow a linear relationship with magnetic phase content, giving the opportunity to predict the system’s response in advance. Full article
(This article belongs to the Special Issue Polymers in Inorganic Chemistry: Synthesis and Applications)
Show Figures

Graphical abstract

14 pages, 1677 KiB  
Article
Development of Cortisol Sensors with Interdigitated Electrode Platforms Based on Barium Titanate Nanoparticles
by Marylene S. G. Roma and Juliano A. Chaker
Sensors 2025, 25(11), 3346; https://doi.org/10.3390/s25113346 - 26 May 2025
Viewed by 717
Abstract
Cortisol is a key biomarker for stress detection, and its levels can be monitored using point-of-care devices with sensors such as nanoparticles and interdigitated array electrodes (IDEs). This study developed an IDE platform using barium titanate (BaTiO3) particles synthesized via colloidal [...] Read more.
Cortisol is a key biomarker for stress detection, and its levels can be monitored using point-of-care devices with sensors such as nanoparticles and interdigitated array electrodes (IDEs). This study developed an IDE platform using barium titanate (BaTiO3) particles synthesized via colloidal precipitation with titanium tetraisopropoxide, barium chloride, and Pluronic® P123. The calcination temperatures varied between 160 °C and 340 °C, with optimal results observed at 160 °C. Scanning electron microscopy revealed particles with an average size of 26 nm, and Fourier transform infrared spectroscopy confirmed the molecular composition after the removal of P123. X-ray diffraction analysis revealed anatase and brookite phases. Brunauer-Emmett-Teller analysis indicated changes in pore morphology, with samples treated at 160 °C exhibiting a type IV(a) mesoporous structure, a surface area of 163 m2/g, and an average pore diameter of 5.24 nm. Higher temperatures led to transitions to type IV(b) at 260 °C and type V at 340 °C, with reduced pore size. Electrochemical impedance spectroscopy was employed to evaluate the performance of the IDE sensor integrated with BaTiO3 nanoparticles and albumin across cortisol concentrations ranging from 5.0 to 20 ng/mL. Impedance measurements revealed a significant decrease in impedance (Z′) with increasing cortisol concentrations, indicating increased conductivity. Specifically, Nyquist plots for a saliva sample containing 5 ng/mL cortisol—within the typical physiological range—exhibited a marked increase in charge-transfer resistance (Rct), confirming the sensor’s ability to detect low hormone levels in biological fluids. These findings underscore the potential of BaTiO3-based IDE platforms at 160 °C for stress biomarker monitoring. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

13 pages, 3749 KiB  
Article
Multipurpose X-Ray Stage and Its Application for In Situ Poling Studies
by Antonio Iacomini, Davide Sanna, Marzia Mureddu, Laura Caggiu, Costantino Cau, Stefano Enzo, Edgar Eduardo Villalobos-Portillo, Lorena Pardo and Sebastiano Garroni
Materials 2025, 18(5), 1004; https://doi.org/10.3390/ma18051004 - 25 Feb 2025
Cited by 1 | Viewed by 545
Abstract
A 3D-printable, ARDUINO-based multipurpose X-ray stage of compact dimensions enabling in situ electric field and temperature-dependent measurements is put into practice and tested here. It can be routinely applied in combination with a technique of structural characterization of materials. Using high-performance X-ray laboratory [...] Read more.
A 3D-printable, ARDUINO-based multipurpose X-ray stage of compact dimensions enabling in situ electric field and temperature-dependent measurements is put into practice and tested here. It can be routinely applied in combination with a technique of structural characterization of materials. Using high-performance X-ray laboratory equipment, two investigations were conducted to illustrate the device’s performance. The lattice characteristics and microstructure evolution of piezoelectric ceramics of barium titanate, BaTiO3 (BT), and barium calcium zirconate titanate, with compositions of (Ba0.92Ca0.08) (Ti0.95Zr0.05)O3 (BC8TZ5), were studied as a function of the applied electric field and temperature. The X-ray stage is amenable as an off-the-shelf device for a diffraction line in a synchrotron. It provides valuable information for poling piezoceramics and subsequent optimization of their performance. Full article
(This article belongs to the Special Issue Piezoelectrics and Ferroelectrics for End Users)
Show Figures

Graphical abstract

12 pages, 4571 KiB  
Article
High-Efficiency Lithium Niobate Electro-Optic Modulator with Barium Titanate Cladding on Quartz
by Hongkang Liu, Jianping Li, Weiqin Zheng, Zixin Chen, Jianbo Zhang and Yuwen Qin
Photonics 2025, 12(2), 157; https://doi.org/10.3390/photonics12020157 - 14 Feb 2025
Viewed by 1666
Abstract
The thin-film lithium niobate (TFLN)-based electro-optic (EO) modulator is one of the most important devices for optical communications in terms of the advantages of low voltages and large bandwidth. However, the large size of devices limits their applicability in large-scale integrated optical systems, [...] Read more.
The thin-film lithium niobate (TFLN)-based electro-optic (EO) modulator is one of the most important devices for optical communications in terms of the advantages of low voltages and large bandwidth. However, the large size of devices limits their applicability in large-scale integrated optical systems, posing a key challenge in maintaining performance advantages under restricted design space. In this paper, we propose a novel TFLN modulator on a quartz substrate incorporating barium titanate (BaTiO3, BTO) as the cladding material. The device is designed with silicon–lithium niobate (Si-LN) hybrid waveguides for operation at a wavelength of 1.55 µm. After theoretical analysis and parameter optimization, the proposed 10 mm long modulator demonstrates high-efficiency modulation, featuring a low half-wave voltage-length product of 1.39 V·cm, a broad 3 dB EO bandwidth of 152 GHz, and low optical loss. This theoretical model provides a novel design solution for TFLN modulators on quartz substrates. Moreover, it is a promising solution for enhancing the integration of photonic devices on the TFLN platform. Full article
Show Figures

Figure 1

138 pages, 31774 KiB  
Review
Green Ammonia, Nitric Acid, Advanced Fertilizer and Electricity Production with In Situ CO2 Capture and Utilization by Integrated Intensified Nonthermal Plasma Catalytic Processes: A Technology Transfer Review for Distributed Biorefineries
by Galip Akay
Catalysts 2025, 15(2), 105; https://doi.org/10.3390/catal15020105 - 22 Jan 2025
Cited by 2 | Viewed by 3646
Abstract
An Integrated Process Intensification (IPI) technology-based roadmap is proposed for the utilization of renewables (water, air and biomass/unavoidable waste) in the small-scale distributed production of the following primary products: electricity, H2, NH3, HNO3 and symbiotic advanced (SX) fertilizers [...] Read more.
An Integrated Process Intensification (IPI) technology-based roadmap is proposed for the utilization of renewables (water, air and biomass/unavoidable waste) in the small-scale distributed production of the following primary products: electricity, H2, NH3, HNO3 and symbiotic advanced (SX) fertilizers with CO2 mineralization capacity to achieve negative CO2 emission. Such a production platform is an integrated intensified biorefinery (IIBR), used as an alternative to large-scale centralized production which relies on green electricity and CCUS. Hence, the capacity and availability of the renewable biomass and unavoidable waste were examined. The critical elements of the IIBR include gasification/syngas production; syngas cleaning; electricity generation; and the conversion of clean syngas (which contains H2, CO, CH4, CO2 and N2) to the primary products using nonthermal plasma catalytic reactors with in situ NH3 sequestration for SA fertilizers. The status of these critical elements is critically reviewed with regard to their techno-economics and suitability for industrial applications. Using novel gasifiers powered by a combination of CO2, H2O and O2-enhanced air as the oxidant, it is possible to obtain syngas with high H2 concentration suitable for NH3 synthesis. Gasifier performances for syngas generation and cleaning, electricity production and emissions are evaluated and compared with gasifiers at 50 kWe and 1–2 MWe scales. The catalyst and plasma catalytic reactor systems for NH3 production with or without in situ reactive sequestration are considered in detail. The performance of the catalysts in different plasma reactions is widely different. The high intensity power (HIP) processing of perovskite (barium titanate) and unary/binary spinel oxide catalysts (or their combination) performs best in several syntheses, including NH3 production, NOx from air and fertigation fertilizers from plasma-activated water. These catalysts can be represented as BaTi1−vO3−x{#}yNz (black, piezoelectric barium titanate, bp-{BTO}) and M(1)3−jM(2)kO4−m{#}nNr/SiO2 (unary (k = 0) or a binary (k > 0) silane-coated SiO2-supported spinel oxide catalyst, denoted as M/Si = X) where {#} infers oxygen vacancy. HIP processing in air causes oxygen vacancies, nitrogen substitution, the acquisition of piezoelectric state and porosity and chemical/morphological heterogeneity, all of which make the catalysts highly active. Their morphological evaluation indicates the generation of dust particles (leading to porogenesis), 2D-nano/micro plates and structured ribbons, leading to quantum effects under plasma catalytic synthesis, including the acquisition of high-energy particles from the plasma space to prevent product dissociation as a result of electron impact. M/Si = X (X > 1/2) and bp-{BTO} catalysts generate plasma under microwave irradiation (including pulsed microwave) and hence can be used in a packed bed mode in microwave plasma reactors with plasma on and within the pores of the catalyst. Such reactors are suitable for electric-powered small-scale industrial operations. When combined with the in situ reactive separation of NH3 in the so-called Multi-Reaction Zone Reactor using NH3 sequestration agents to create SA fertilizers, the techno-economics of the plasma catalytic synthesis of fertilizers become favorable due to the elimination of product separation costs and the quality of the SA fertilizers which act as an artificial root system. The SA fertilizers provide soil fertility, biodiversity, high yield, efficient water and nutrient use and carbon sequestration through mineralization. They can prevent environmental damage and help plants and crops to adapt to the emerging harsh environmental and climate conditions through the formation of artificial rhizosphere and rhizosheath. The functions of the SA fertilizers should be taken into account when comparing the techno-economics of SA fertilizers with current fertilizers. Full article
(This article belongs to the Special Issue Catalysis for CO2 Conversion, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 11484 KiB  
Article
Tunable Filters Using Defected Ground Structures at Millimeter-Wave Frequencies
by Kaushik Annam, Birhanu Alemayehu, Eunsung Shin and Guru Subramanyam
Micromachines 2025, 16(1), 60; https://doi.org/10.3390/mi16010060 - 31 Dec 2024
Cited by 1 | Viewed by 1133
Abstract
This paper explores the potential of phase change materials (PCM) for dynamically tuning the frequency response of a dumbbell u-slot defected ground structure (DGS)-based band stop filter. The DGSs are designed using co-planar waveguide (CPW) line structure on top of a barium strontium [...] Read more.
This paper explores the potential of phase change materials (PCM) for dynamically tuning the frequency response of a dumbbell u-slot defected ground structure (DGS)-based band stop filter. The DGSs are designed using co-planar waveguide (CPW) line structure on top of a barium strontium titanate (Ba0.6Sr0.4TiO3) (BST) thin film. BST film is used as the high-dielectric material for the planar DGS. Lower insertion loss of less than −2 dB below the lower cutoff frequency, and enhanced band-rejection with notch depth of −39.64 dB at 27.75 GHz is achieved by cascading two-unit cells, compared to −12.26 dB rejection with a single-unit cell using BST thin film only. Further tunability is achieved by using a germanium telluride (GeTe) PCM layer. The electrical properties of PCM can be reversibly altered by transitioning between amorphous and crystalline phases. We demonstrate that incorporating a PCM layer into a DGS device allows for significant tuning of the resonance frequency: a shift in resonance frequency from 30.75 GHz to 33 GHz with a frequency shift of 2.25 GHz is achieved, i.e., 7.32% tuning is shown with a single DGS cell. Furthermore, by cascading two DGS cells with PCM, an even wider tuning range is achievable: a shift in resonance frequency from 27 GHz to 30.25 GHz with a frequency shift of 3.25 GHz is achieved, i.e., 12.04% tuning is shown by cascading two DGS cells. The results are validated through simulations and measurements, showcasing excellent agreement. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

15 pages, 5385 KiB  
Article
Yb3+-Doped Titanate–Germanate Glasses for Near-IR Luminescence Applications: Synthesis, Characterization, and the Influence of TiO2 Concentration
by Karolina Kowalska, Joanna Pisarska and Wojciech A. Pisarski
Materials 2024, 17(23), 5874; https://doi.org/10.3390/ma17235874 - 29 Nov 2024
Viewed by 940
Abstract
In the framework of luminescent rare-earth-doped glasses for near-infrared applications, TiO2-containing inorganic glasses have been recently demonstrated to be a promising alternative to commercially used high-phonon SiO2-based glasses. This study investigates the effect of TiO2 concentration on the [...] Read more.
In the framework of luminescent rare-earth-doped glasses for near-infrared applications, TiO2-containing inorganic glasses have been recently demonstrated to be a promising alternative to commercially used high-phonon SiO2-based glasses. This study investigates the effect of TiO2 concentration on the near-infrared spectroscopic properties of Yb3+ ions in multicomponent titanate–germanate glasses. A series of glass samples in the xTiO2-(60−x)GeO2-BaO-Ga2O3-Yb2O3 system (x ranging from 0 to 50 mol%) were synthesized using the melt-quenching technique. X-ray diffraction analysis confirmed the fully amorphous nature of the fabricated titanate–germanate samples. Fundamental spectroscopic properties of Yb3+-doped titanate–germanate system consisting of absorption spectra, near-IR emission spectra, and luminescence decay curves have been determined based on measurement using optical spectroscopy. The intensity of the emission band at 1 µm due to the 2F5/22F7/2 laser transition of Yb3+ ions increases by over 2.3-fold (TiO2 as the network former) compared to a barium gallo-germanate sample without TiO2. Our previous studies indicate that Yb3+-doped titanate–germanate glass is a promising optical material and could be successfully applied to laser technology. Full article
(This article belongs to the Special Issue Functional Photoelectric Materials: Design, Synthesis and Application)
Show Figures

Figure 1

14 pages, 23867 KiB  
Article
Solid-State Synthesis for High-Tetragonality, Small-Particle Barium Titanate
by Tianyu Hao, Jing Shen, Qiaochu Peng, Jie Liu, Wenbin Hu and Cheng Zhong
Materials 2024, 17(22), 5655; https://doi.org/10.3390/ma17225655 - 20 Nov 2024
Cited by 2 | Viewed by 1484
Abstract
This study successfully synthesized high-tetragonality barium titanate (BaTiO3) particles with a small particle size by implementing ball milling in the solid-state synthesis of BaTiO3 and utilizing nanoscale raw materials. This study also addressed the issues of impurities and uneven particle [...] Read more.
This study successfully synthesized high-tetragonality barium titanate (BaTiO3) particles with a small particle size by implementing ball milling in the solid-state synthesis of BaTiO3 and utilizing nanoscale raw materials. This study also addressed the issues of impurities and uneven particle size distribution that could exist in the synthesized BaTiO3 particles. The crystal structure, morphology, and particle size of the synthesized BaTiO3 particles have been meticulously analyzed and discussed through the use of techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and the laser particle size analyzer. BaTiO3 has been successfully synthesized, exhibiting a uniform particle size with an average diameter of 170 nm and a high tetragonality value of 1.01022. This new solid-state synthesis method provided insights to avoid the impact of “size effects” during the process of electronic device miniaturization. Full article
Show Figures

Figure 1

16 pages, 5705 KiB  
Article
Performance and Characterization of Additively Manufactured BST Varactor Enhanced by Photonic Thermal Processing
by Carlos Molina, Ugur Guneroglu, Adnan Zaman, Liguan Li and Jing Wang
Crystals 2024, 14(11), 990; https://doi.org/10.3390/cryst14110990 - 16 Nov 2024
Viewed by 1516
Abstract
The demand for reconfigurable devices for emerging RF and microwave applications has been growing in recent years, with additive manufacturing and photonic thermal treatment presenting new possibilities to supplement conventional fabrication processes to meet this demand. In this paper, we present the realization [...] Read more.
The demand for reconfigurable devices for emerging RF and microwave applications has been growing in recent years, with additive manufacturing and photonic thermal treatment presenting new possibilities to supplement conventional fabrication processes to meet this demand. In this paper, we present the realization and analysis of barium–strontium–titanate-(Ba0.5Sr0.5TiO3)-based ferroelectric variable capacitors (varactors), which are additively deposited on top of conventionally fabricated interdigitated capacitors and enhanced by photonic thermal processing. The ferroelectric solution with suspended BST nanoparticles is deposited on the device using an ambient spray pyrolysis method and is sintered at low temperatures using photonic thermal processing by leveraging the high surface-to-volume ratio of the BST nanoparticles. The deposited film is qualitatively characterized using SEM imaging and XRD measurements, while the varactor devices are quantitatively characterized by using high-frequency RF measurements from 300 MHz to 10 GHz under an applied DC bias voltage ranging from 0 V to 50 V. We observe a maximum tunability of 60.6% at 1 GHz under an applied electric field of 25 kV/mm (25 V/μm). These results show promise for the implementation of photonic thermal processing and additive manufacturing as a means to integrate reconfigurable ferroelectric varactors in flexible electronics or tightly packaged on-chip applications, where a limited thermal budget hinders the conventional thermal processing. Full article
(This article belongs to the Special Issue Ceramics: Processes, Microstructures, and Properties)
Show Figures

Figure 1

15 pages, 15469 KiB  
Article
Unveiling BaTiO3-SrTiO3 as Anodes for Highly Efficient and Stable Lithium-Ion Batteries
by Nischal Oli, Nawraj Sapkota, Brad R. Weiner, Gerardo Morell and Ram S. Katiyar
Nanomaterials 2024, 14(21), 1723; https://doi.org/10.3390/nano14211723 - 29 Oct 2024
Cited by 2 | Viewed by 1831
Abstract
Amidst the swift expansion of the electric vehicle industry, the imperative for alternative battery technologies that balance economic feasibility with sustainability has reached unprecedented importance. Herein, we utilized Perovskite-based oxide compounds barium titanate (BaTiO3) and strontium titanate (SrTiO3) nanoparticles [...] Read more.
Amidst the swift expansion of the electric vehicle industry, the imperative for alternative battery technologies that balance economic feasibility with sustainability has reached unprecedented importance. Herein, we utilized Perovskite-based oxide compounds barium titanate (BaTiO3) and strontium titanate (SrTiO3) nanoparticles as anode materials for lithium-ion batteries from straightforward and standard carbonate-based electrolyte with 10% fluoroethylene carbonate (FEC) additive [1M LiPF6 (1:1 EC: DEC) + 10% FEC]. SrTiO3 and BaTiO3 electrodes can deliver a high specific capacity of 80 mA h g−1 at a safe and low average working potential of ≈0.6 V vs. Li/Li+ with excellent high-rate performance with specific capacity of ~90 mA h g−1 at low current density of 20 mA g−1 and specific capacity of ~80 mA h g−1 for over 500 cycles at high current density of 100 mA g−1. Our findings pave the way for the direct utilization of perovskite-type materials as anode materials in Li-ion batteries due to their promising potential for Li+ ion storage. This investigation addresses the escalating market demands in a sustainable manner and opens avenues for the investigation of diverse perovskite oxides as advanced anodes for next-generation metal-ion batteries. Full article
Show Figures

Graphical abstract

15 pages, 8638 KiB  
Article
Effect of Rh Doping on Optical Absorption and Oxygen Evolution Reaction Activity on BaTiO3 (001) Surfaces
by Talgat M. Inerbaev, Aisulu U. Abuova, Zhadyra Ye. Zakiyeva, Fatima U. Abuova, Yuri A. Mastrikov, Maksim Sokolov, Denis Gryaznov and Eugene A. Kotomin
Molecules 2024, 29(11), 2707; https://doi.org/10.3390/molecules29112707 - 6 Jun 2024
Cited by 6 | Viewed by 1388
Abstract
In the present work, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is a way of making [...] Read more.
In the present work, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is a way of making BaTiO3 absorb more light and have less overpotential needed for water to oxidize. It has been shown that a TiO2-terminated BaTiO3 (001) surface is more promising from the point of view of its use as a catalyst. Rh doping expands the spectrum of absorbed light to the entire visible range. The aqueous environment significantly affects the ability of Rh-doped BaTiO3 to absorb solar radiation. After Ti→Rh replacement, the doping ion can take over part of the electron density from neighboring oxygen ions. As a result, during the water oxidation reaction, rhodium ions can be in an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of reaction intermediates on the catalyst’s surface, reducing the overpotential value. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Figure 1

15 pages, 5559 KiB  
Article
Effects of Calcination Temperature on the Synthesis of One-Pot Sol-Gelled Barium Titanate Powder and Its Performance as an Endodontic Radiopacifier
by Pei-Jung Chang, May-Show Chen, Chi-Han Cheng, Yuh-Jing Chiou, Chin-Yi Chen, Cherng-Yuh Su and Chung-Kwei Lin
Materials 2024, 17(11), 2701; https://doi.org/10.3390/ma17112701 - 3 Jun 2024
Viewed by 1486
Abstract
Barium titanate (BaTiO3, BTO), conventionally used for dielectric and ferroelectric applications, has been assessed for biomedical applications, such as its utilization as a radiopacifier in mineral trioxide aggregates (MTA) for endodontic treatment. In the present study, BTO powders were prepared using [...] Read more.
Barium titanate (BaTiO3, BTO), conventionally used for dielectric and ferroelectric applications, has been assessed for biomedical applications, such as its utilization as a radiopacifier in mineral trioxide aggregates (MTA) for endodontic treatment. In the present study, BTO powders were prepared using the sol-gel process, followed by calcination at 400–1100 °C. The X-ray diffraction technique was then used to examine the as-prepared powders to elucidate the effect of calcination on the phase composition and crystalline size of BTO. Calcined BTO powders were then used as radiopacifiers for MTA. MTA-like cements were investigated to determine the optimal calcination temperature based on the radiopacity and diametral tensile strength (DTS). The experimental results showed that the formation of BTO phase was observed after calcination at temperatures of 600 °C and above. The calcined powders were a mixture of BaTiO3 phase with residual BaCO3 and/or Ba2TiO4 phases. The performance of MTA-like cements with BTO addition increased with increasing calcination temperature up to 1000 °C. The radiopacity, however, decreased after 7 days of simulated oral environmental storage, whereas an increase in DTS was observed. Optimal MTA-like cement was obtained by adding 40 wt.% 1000 °C-calcined BTO powder, with its resulting radiopacity and DTS at 4.83 ± 0.61 mmAl and 2.86 ± 0.33 MPa, respectively. After 7 days, the radiopacity decreased slightly to 4.69 ± 0.51 mmAl, accompanied by an increase in DTS to 3.13 ± 0.70 MPa. The optimal cement was biocompatible and verified using MG 63 and L929 cell lines, which exhibited cell viability higher than 95%. Full article
(This article belongs to the Special Issue New Materials and Techniques for Root Canal Preparation and Filling)
Show Figures

Figure 1

13 pages, 7096 KiB  
Article
Microstructure and Biocompatibility of Graphene Oxide/BCZT Composite Ceramics via Fast Hot-Pressed Sintering
by Bingqing Zhao, Qibin Liu, Geng Tang and Dunying Wang
Coatings 2024, 14(6), 689; https://doi.org/10.3390/coatings14060689 - 1 Jun 2024
Cited by 1 | Viewed by 1694
Abstract
Improving fracture toughness, electrical conductivity, and biocompatibility has consistently presented challenges in the development of artificial bone replacement materials. This paper presents a new strategy for creating high-performance, multifunctional composite ceramic materials by doping graphene oxide (GO), which is known to induce osteoblast [...] Read more.
Improving fracture toughness, electrical conductivity, and biocompatibility has consistently presented challenges in the development of artificial bone replacement materials. This paper presents a new strategy for creating high-performance, multifunctional composite ceramic materials by doping graphene oxide (GO), which is known to induce osteoblast differentiation and enhance cell adhesion and proliferation into barium calcium zirconate titanate (BCZT) ceramics that already exhibit good mechanical properties, piezoelectric effects, and low cytotoxicity. Using fast hot-pressed sintering under vacuum conditions, (1 − x)(Ba0.85Ca0.15Zr0.1Ti0.9)O3−xGO (0.2 mol% ≤ x ≤ 0.5 mol%) composite piezoelectric ceramics were successfully synthesized. Experimental results revealed that these composite ceramics exhibited high piezoelectric properties (d33 = 18 pC/N, kp = 62%) and microhardness (173.76 HV0.5), meeting the standards for artificial bone substitutes. Furthermore, the incorporation of graphene oxide significantly reduced the water contact angle and enhanced their wettability. Cell viability tests using Cell Counting Kit-8, alkaline phosphatase staining, and DAPI staining demonstrated that the GO/BCZT composite ceramics were non-cytotoxic and effectively promoted cell proliferation and growth, indicating excellent biocompatibility. Consequently, with their superior mechanical properties, piezoelectric performance, and biocompatibility, GO/BCZT composite ceramics show extensive potential for application in bone defect repair. Full article
(This article belongs to the Special Issue Advances of Ceramic and Alloy Coatings, 2nd Edition)
Show Figures

Figure 1

9 pages, 1931 KiB  
Article
Influence of Stress on the Chiral Polarization and Elastrocaloric Effect in BaTiO3 with 180° Domain Structure
by Yuanyuan Shi and Bo Li
Crystals 2024, 14(6), 511; https://doi.org/10.3390/cryst14060511 - 28 May 2024
Viewed by 1029
Abstract
The polarization and elastrocaloric effect of chiral barium titanate (BaTiO3) with an Ising–Bloch-type domain wall under stress was investigated using the Landau–Ginzburg–Devonshire (LGD) theory. It has been shown that tensile stresses increase the magnitude of the Ising polarization component in barium [...] Read more.
The polarization and elastrocaloric effect of chiral barium titanate (BaTiO3) with an Ising–Bloch-type domain wall under stress was investigated using the Landau–Ginzburg–Devonshire (LGD) theory. It has been shown that tensile stresses increase the magnitude of the Ising polarization component in barium titanate, together with a decrease in the domain wall width. Compressive stresses cause a reduction in the Ising polarization component and an increase in the domain width. Under compressive stress, barium titanate exhibits a negative elastrocaloric effect and temperature changes with increasing stress, while BaTiO3 exhibits a positive elastrocaloric effect under tensile stress. Bloch polarization shows angle-dependent polarization under external force, but the temperature change from the elastrocaloric effect is smaller than that of Ising polarization under stress. This work contributes to the understanding of polarization evolution under tension in ferroelectrics with chiral structure. Full article
Show Figures

Figure 1

Back to TopTop