Development of Cortisol Sensors with Interdigitated Electrode Platforms Based on Barium Titanate Nanoparticles
Abstract
1. Introduction
1.1. Cortisol Monitoring
1.2. Biosensors
1.3. BaTiO3
2. Materials and Methods
2.1. Materials
2.2. Active Deposit Layer
Synthesis of BaTiO3 Mesoporous Nanoparticles
2.3. Urethane-Siloxane Organic-Inorganic Binder
2.4. IDE Sensor Assembly
3. Characterization
3.1. Porosity, BET Surface Area, and Isotherm
3.2. Molecular Characterization Using FTIR Spectroscopy
3.3. Morphological Characterization Using SEM
3.4. Structural Crystallographic and Rietveld (XRD)
3.5. EIS
4. Results and Discussion
4.1. Porosity, BET Surface Area, and Isotherm Analysis
4.2. Molecular Characterization (FTIR)
4.3. Morphological Characterization (SEM)
4.4. Structural, Crystallographic, and Rietveld Analysis (XRD)
4.5. Cortisol Detection Using Complex Impedance Spectroscopy
4.6. Electrochemical Analysis Using Salivary Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Upasham, S.; Tanak, A.; Jagannath, B.; Prasad, S. Development of ultra-low volume, multi-bio fluid, cortisol sensing platform. Sci. Rep. 2018, 8, 16745. [Google Scholar] [CrossRef] [PubMed]
- Vignesh, V.; Castro-Dominguez, B.; James, T.D.; Gamble-Turner, J.M.; Lightman, S.; Reis, N.M. Advancements in Cortisol Detection: From Conventional Methods to Next-Generation Technologies for Enhanced Hormone Monitoring. ACS Sens. 2024, 9, 1666–1681. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.; Lillehoj, P.B.; Estrela, P.; Dutta, G. Electrochemical biosensors for cytokine profiling. Biosensors 2021, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Tanak, A.S.; Muthukumar, S.; Krishnan, S.; Schully, K.L.; Clark, D.V.; Prasad, S. Multiplexed Cytokine Detection Using Electrochemical Point-of-Care Sensing Device Towards Rapid Sepsis Endotyping. Biosens. Bioelectron. 2021, 171, 112726. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.Z.; Ferreira, P.; Vilarinho, P. A Facile Route for Synthesis of Mesoporous Barium Titanate Crystallites. Microporous Mesoporous Mater. 2008, 110, 392–396. [Google Scholar] [CrossRef]
- Lu, W.; Quilitz, M.; Schmidt, H. Nanoscaled BaTiO3 powders with a large surface area synthesized by precipitation from aqueous solutions: Preparation, characterization and sintering. J. Eur. Ceram. Soc. 2007, 27, 3149–3159. [Google Scholar] [CrossRef]
- Leandro, M.; Tito, J.B.; Eduardo, R.d.A.; Pascal, B.; Dilson, C. Surfactant containing Si-MCM-41: An efficient basic catalyst for the Knoevenagel condensation. Appl. Catal. A 2006, 312, 77–85. [Google Scholar]
- Dahmouche, K.; Santili, C.V.; Pulcinelli, S.H.; Craievich, A.F. Small-angle X-ray scattering study of sol-gel derived siloxane-PEG and siloxane-PPG hybrid materials. J. Phys. Chem. B 1999, 103, 4937–4942. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Mamas, I.P. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Brito, S.L.M.; Gouvêa, D. Obtenção de BaTiO3 livre de resíduos de carbonato de bário pelo método dos precursores poliméricos. Scielo Cerâmica 2011, 57, 338–347. [Google Scholar] [CrossRef]
- Rana, S.; Page, R.H.; McNeil, C.J. Impedance spectra analysis to characterize interdigitated electrodes as electrochemical sensors. Electrochim. Acta 2011, 56, 8559–8563. [Google Scholar] [CrossRef]
- Zhang, Y.; Weidenkaff, A.; Reller, A. Mesoporous Structure and Phase Transition of Nanocrystalline TiO2. Mater. Lett. 2002, 54, 375–381. [Google Scholar] [CrossRef]
- Zhao, L.; Yu, Y.; Song, L.; Ruan, M.; Hu, X.; Larbot, A. Preparation of mesoporous titania film using nonionic triblock copolymer as surfactant template. Appl. Catal. A Gen. 2004, 263, 171–177. [Google Scholar] [CrossRef]
- Allen, N.S.; Mahdjoub, N.; Vishnyakov, V.; Kelly, P.J.; Kriek, R.J. The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polym. Degrad. Stab. 2018, 150, 31–36. [Google Scholar] [CrossRef]
- Karuppaiah, G.; Lee, M.-H.; Bhansali, S.; Manickam, P. Electrochemical sensors for cortisol detection: Principles, designs, fabrication, and characterisation. Biosens. Bioelectron. 2023, 239, 115600. [Google Scholar] [CrossRef] [PubMed]
Calcination Temperature (°C) | BET (m2/g) | Pore Size (nm) |
---|---|---|
160 °C | 170.91 | 5.24 |
180 °C | 158.81 | 5.47 |
200 °C | 133.46 | 7.46 |
220 °C | 143.26 | 9.05 |
240 °C | 144.18 | 10.49 |
260 °C | 133.77 | 10.33 |
270 °C | 91.20 | 13.66 |
280 °C | 89.51 | 14.23 |
300 °C | 95.20 | 14.69 |
340 °C | 86.85 | 17.92 |
Calcination Temperature (°C) | Crystalline Phase (%) | Crystallite Size (nm) | ||||
---|---|---|---|---|---|---|
Anatase | Brookite | Rutile | Anatase | Brookite | Rutile | |
160 °C | 63.7 | 36.3 | 0 | 46.6 | 6.8 | 0 |
180 °C | 66.8 | 33.2 | 0 | 51.6 | 11.8 | 0 |
200 °C | 69.9 | 30.1 | 0 | 56.6 | 13.1 | 0 |
220 °C | 73.0 | 27.0 | 0 | 61.6 | 14.1 | 0 |
240 °C | 76.1 | 23.9 | 0 | 66.5 | 22.1 | 0 |
260 °C | 79.2 | 20.8 | 0 | 71.5 | 30.1 | 0 |
270 °C | 82.5 | 17.5 | 0 | 95.0 | 39.1 | 0 |
280 °C | 82.5 | 17.5 | 0 | 95.0 | 39.1 | 0 |
300 °C | 92.9 | 7.1 | 0 | 77.5 | 66.3 | 0 |
340 °C | 92.6 | 7.3 | 0 | 84.9 | 64.8 | 0 |
Cortisol ng/mL | Ru (TΩ) Measured | Rct (TΩ) Measured | Cdl (F) Calculated | Estimated Error Z′ (%) | Chi-Square (X2) |
---|---|---|---|---|---|
5 | 169 | 92 | 0.017917 | 3.62 | 0.72 |
7.5 | 178 | 41 | 0.014632 | 5.25 | 0.19 |
10 | 183 | 14 | 0.014211 | 6.65 | 0.66 |
20 | 185 | 6 | 0.009717 | 8.05 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roma, M.S.G.; Chaker, J.A. Development of Cortisol Sensors with Interdigitated Electrode Platforms Based on Barium Titanate Nanoparticles. Sensors 2025, 25, 3346. https://doi.org/10.3390/s25113346
Roma MSG, Chaker JA. Development of Cortisol Sensors with Interdigitated Electrode Platforms Based on Barium Titanate Nanoparticles. Sensors. 2025; 25(11):3346. https://doi.org/10.3390/s25113346
Chicago/Turabian StyleRoma, Marylene S. G., and Juliano A. Chaker. 2025. "Development of Cortisol Sensors with Interdigitated Electrode Platforms Based on Barium Titanate Nanoparticles" Sensors 25, no. 11: 3346. https://doi.org/10.3390/s25113346
APA StyleRoma, M. S. G., & Chaker, J. A. (2025). Development of Cortisol Sensors with Interdigitated Electrode Platforms Based on Barium Titanate Nanoparticles. Sensors, 25(11), 3346. https://doi.org/10.3390/s25113346