Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (391)

Search Parameters:
Keywords = barcode gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 3621 KiB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 365
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

28 pages, 3098 KiB  
Article
Geobotanical Study, DNA Barcoding, and Simple Sequence Repeat (SSR) Marker Analysis to Determine the Population Structure and Genetic Diversity of Rare and Endangered Prunus armeniaca L.
by Natalya V. Romadanova, Nazira A. Altayeva, Alina S. Zemtsova, Natalya A. Artimovich, Alexandr B. Shevtsov, Almagul Kakimzhanova, Aidana Nurtaza, Arman B. Tolegen, Svetlana V. Kushnarenko and Jean Carlos Bettoni
Plants 2025, 14(15), 2333; https://doi.org/10.3390/plants14152333 - 28 Jul 2025
Viewed by 437
Abstract
The ongoing genetic erosion of natural Prunus armeniaca populations in their native habitats underscores the urgent need for targeted conservation and restoration strategies. This study provides the first comprehensive characterization of P. armeniaca populations in the Almaty region of Kazakhstan, integrating morphological descriptors [...] Read more.
The ongoing genetic erosion of natural Prunus armeniaca populations in their native habitats underscores the urgent need for targeted conservation and restoration strategies. This study provides the first comprehensive characterization of P. armeniaca populations in the Almaty region of Kazakhstan, integrating morphological descriptors (46 parameters), molecular markers, geobotanical, and remote sensing analyses. Geobotanical and remote sensing analyses enhanced understanding of accession distribution, geological features, and ecosystem health across sites, while also revealing their vulnerability to various biotic and abiotic threats. Of 111 morphologically classified accessions, 54 were analyzed with 13 simple sequence repeat (SSR) markers and four DNA barcoding regions. Our findings demonstrate the necessity of integrated morphological and molecular analyses to differentiate closely related accessions. Genetic analysis identified 11 distinct populations with high heterozygosity and substantial genetic variability. Eight populations exhibited 100% polymorphism, indicating their potential as sources of adaptive genetic diversity. Cluster analysis grouped populations into three geographic clusters, suggesting limited gene flow across Gorges (features of a mountainous landscape) and greater connectivity within them. These findings underscore the need for site-specific conservation strategies, especially for genetically distinct, isolated populations with unique allelic profiles. This study provides a valuable foundation for prioritizing conservation targets, confirming genetic redundancies, and preserving genetic uniqueness to enhance the efficiency and effectiveness of the future conservation and use of P. armeniaca genetic resources in the region. Full article
Show Figures

Figure 1

21 pages, 9690 KiB  
Article
Comparative Transcriptomic Analysis for Identification of Environmental-Responsive Genes in Seven Species of Threadfin Breams (Nemipterus)
by Zhaoke Dang, Qiaer Wu, Yanbo Zhou, Liangming Wang, Yan Liu, Changping Yang, Manting Liu, Qijian Xie, Cheng Chen, Shengwei Ma and Binbin Shan
Int. J. Mol. Sci. 2025, 26(15), 7118; https://doi.org/10.3390/ijms26157118 - 23 Jul 2025
Viewed by 253
Abstract
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying [...] Read more.
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying water depths. In this study, we sequenced seven species within the genus Nemipterus after identifying the specimens using complementary morphological analysis and DNA barcoding. Each species yielded over 40,000,000 clean reads, totaling over 300,000,000 clean reads across the seven species. A total of 276,389 unigenes were obtained after de novo assembly and a total of 168,010 (60.79%) unigenes were annotated in the protein database. The comprehensive functional annotation based on the KOG, GO, and KEGG databases revealed that these unigenes are mainly associated with numerous physiological, metabolic, and molecular processes, and that the seven species exhibit similarity in these aspects. By constructing a phylogenetic tree and conducting divergence time analysis, we found that N. bathybius and N. virgatus diverged most recently, approximately during the Neogene Period (14.9 Mya). Compared with other species, N. bathybius and N. virgatus are distributed in deeper water layers. Therefore, we conducted selection pressure analysis using these two species as the foreground branches and identified several environmental-responsive genes. The results indicate that genes such as aqp1, arrdc3, ISP2, Hip, ndufa1, ndufa3, pcyt1a, ctsk, col6a2, casp2 exhibit faster evolutionary rates during long-term adaptation to deep-water environments. Specifically, these genes are considered to be associated with adaptation to aquatic osmoregulation, temperature fluctuations, and skeletal development. This comprehensive analysis provides valuable insights into the evolutionary biology and environmental adaptability of threadfin breams, contributing to the conservation and sustainable management of these species. Full article
Show Figures

Figure 1

14 pages, 1016 KiB  
Article
Identification of Auchenorrhyncha Nymphs Using DNA Barcoding and Phylogenetic Analysis of the Most Common Genera Collected in Olive Fields
by Zoi Thanou, Maria Bouga, Georgios Papadoulis and Antonios Tsagkarakis
Diversity 2025, 17(7), 496; https://doi.org/10.3390/d17070496 - 19 Jul 2025
Viewed by 206
Abstract
Due to the potential role of Auchenorrhyncha in the transmission of the bacterium Xylella fastidiosa in a wide variety of cultivations, during recent years in Europe, many studies have focused on species composition, abundance and seasonal appearance of Auchenorrhyncha. However, females and nymphs [...] Read more.
Due to the potential role of Auchenorrhyncha in the transmission of the bacterium Xylella fastidiosa in a wide variety of cultivations, during recent years in Europe, many studies have focused on species composition, abundance and seasonal appearance of Auchenorrhyncha. However, females and nymphs are difficult to identify, as species-level identification relies primarily on male genitalia morphology. Sampling was conducted over four years in olive fields in Lesvos Island, in the Northeast Aegean, Greece, using sweep nets and Malaise traps. Both adults and nymphs were collected, with males identified to species level, while females and nymphs were separated on different morphotypes. Representatives from each morphotype and identified adults were sequenced using the mitochondrial cytochrome oxidase subunit I (COI) gene. Using a classical morphological approach, 58 species were identified to species level, and using DNA barcoding, nymph morphotypes and females were successfully identified within the families Cicadellidae, Aphrophoridae, Delphacidae and Issidae. A phylogenetic tree was generated, clustering nymphs together with the corresponding adults. Our results demonstrate the utility of combining morphological and molecular methods for accurate species identification and highlight the importance of enriching online databases with additional species records. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

30 pages, 2062 KiB  
Article
Building a DNA Reference for Madagascar’s Marine Fishes: Expanding the COI Barcode Library and Establishing the First 12S Dataset for eDNA Monitoring
by Jean Jubrice Anissa Volanandiana, Dominique Ponton, Eliot Ruiz, Andriamahazosoa Elisé Marcel Fiadanamiarinjato, Fabien Rieuvilleneuve, Daniel Raberinary, Adeline Collet, Faustinato Behivoke, Henitsoa Jaonalison, Sandra Ranaivomanana, Marc Leopold, Roddy Michel Randriatsara, Jovial Mbony, Jamal Mahafina, Aaron Hartmann, Gildas Todinanahary and Jean-Dominique Durand
Diversity 2025, 17(7), 495; https://doi.org/10.3390/d17070495 - 18 Jul 2025
Viewed by 476
Abstract
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, [...] Read more.
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, this study aims to strengthen biodiversity monitoring tools. Its objectives were to enrich the COI database for Malagasy marine fishes, create the first 12S reference library, and evaluate the taxonomic resolution of different 12S metabarcodes for eDNA analysis, namely MiFish, Teleo1, AcMDB, Ac12S, and 12SF1/R1. An integrated approach combining morphological, molecular, and phylogenetic analyses was applied for specimen identification of fish captured using various types of fishing gear in Toliara and Ranobe Bays from 2018 to 2023. The Malagasy COI database now includes 2146 sequences grouped into 502 Barcode Index Numbers (BINs) from 82 families, with 14 BINs newly added to BOLD (The Barcode of Life Data Systems), and 133 cryptic species. The 12S library comprises 524 sequences representing 446 species from 78 families. Together, the genetic datasets cover 514 species from 84 families, with the most diverse being Labridae, Apogonidae, Gobiidae, Pomacentridae, and Carangidae. However, the two markers show variable taxonomic resolution: 67 species belonging to 35 families were represented solely in the COI dataset, while 10 species from nine families were identified exclusively in the 12S dataset. For 319 species with complete 12S gene sequences associated with COI BINs (Barcode Index Numbers), 12S primer sets were used to evaluate the taxonomic resolution of five 12S metabarcodes. The MiFish marker proved to be the most effective, with an optimal similarity threshold of 98.5%. This study represents a major step forward in documenting and monitoring Madagascar’s marine biodiversity and provides a valuable genetic reference for future environmental DNA (eDNA) applications. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

19 pages, 11533 KiB  
Article
Alpha, Beta and Gamma Taxonomy of Biocontrol Agent Diaeretiella rapae (Hymenoptera, Braconidae)
by Nemanja Popović, Korana Kocić, Željko Tomanović and Andjeljko Petrović
Insects 2025, 16(7), 736; https://doi.org/10.3390/insects16070736 - 18 Jul 2025
Viewed by 474
Abstract
Diaeretiella rapae (McIntosh, 1855) is a cosmopolitan koinobiont endoparasitoid of aphids, occurring mainly on crucifers and cereals. From description, it has changed several genera and has about 20 synonyms. The specimens for this study were collected between 1989 and 2023 from sites across [...] Read more.
Diaeretiella rapae (McIntosh, 1855) is a cosmopolitan koinobiont endoparasitoid of aphids, occurring mainly on crucifers and cereals. From description, it has changed several genera and has about 20 synonyms. The specimens for this study were collected between 1989 and 2023 from sites across Europe and the Middle East. For molecular analysis, the barcode mitochondrial gene COI was used, and morphological analysis was conducted with other Aphidius species. Morphologically, D. rapae falls within the determined variability of the same characters of the genus Aphidius. Dieretiella rapae comprised 23 haplotypes with a mean genetic distance between haplotypes of 0.8%. Phylogenetically, D. rapae is nested within Aphidius species with a genetic distance of 2.1% to 11.3%, which is within the range of other Aphidius species. Our results on morphological and molecular level confirm that D. rapae belongs to the genus Aphidius. Full article
Show Figures

Figure 1

13 pages, 1449 KiB  
Article
Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria
by Daniela Stoeva, Deyana Gencheva, Georgi Radoslavov, Peter Hristov, Rozalina Yordanova and Georgi Beev
Methods Protoc. 2025, 8(4), 78; https://doi.org/10.3390/mps8040078 - 9 Jul 2025
Viewed by 322
Abstract
Fusarium spp. represent a critical threat to maize production and food safety due to their mycotoxin production. This study introduces a refined molecular identification protocol integrating four genomic regions—ITS1, IGS, TEF-1α, and β-TUB—for robust species differentiation of Fusarium spp. isolates from [...] Read more.
Fusarium spp. represent a critical threat to maize production and food safety due to their mycotoxin production. This study introduces a refined molecular identification protocol integrating four genomic regions—ITS1, IGS, TEF-1α, and β-TUB—for robust species differentiation of Fusarium spp. isolates from post-harvest maize in Bulgaria. The protocol enhances species resolution, especially for closely related taxa within the Fusarium fujikuroi species complex (FFSC). A newly optimized multiplex PCR strategy was developed using three primer sets, each designed to co-amplify a specific pair of toxigenic genes: fum6/fum8, tri5/tri6, and tri5/zea2. Although all five genes were analyzed, they were detected through separate two-target reactions, not in a single multiplex tube. Among 17 identified isolates, F. proliferatum (52.9%) dominated, followed by F. verticillioides, F. oxysporum, F. fujikuroi, and F. subglutinans. All isolates harbored at least one toxin biosynthesis gene, with 18% co-harboring genes for both fumonisins and zearalenone. This dual-protocol approach enhances diagnostic precision and supports targeted mycotoxin risk management strategies. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 5645 KiB  
Article
Characterization of Complete Chloroplast Genome Sequences of Three Tropical Liana Dalbergia Species and Comparative Analysis of Phylogenetic and Structure Variations in Dalbergia Genus
by Jun Wang, Shaoying Zheng, Xianglai Sun, Lulu Wang and Xupo Ding
Horticulturae 2025, 11(7), 799; https://doi.org/10.3390/horticulturae11070799 - 5 Jul 2025
Viewed by 349
Abstract
The Dalbergia genus, a morphologically diverse group within the Fabaceae family, encompasses species of significant value in furniture production and medicinal and aromatic applications. The taxonomy of Dalbergia has relied on morphological traits, chloroplast (cp) DNA fragments, and cp genomic data. However, genomic [...] Read more.
The Dalbergia genus, a morphologically diverse group within the Fabaceae family, encompasses species of significant value in furniture production and medicinal and aromatic applications. The taxonomy of Dalbergia has relied on morphological traits, chloroplast (cp) DNA fragments, and cp genomic data. However, genomic resources for tropical liana species within this genus remain scarce. In this study, we assembled and analyzed the cp genomes of 3 liana species—Dalbergia peishaensis, D. pinnata, and D. tsoi—and compared them with those of 26 other Dalbergia species to explore their cp genome characteristics and evolutionary patterns. We employed a combination of traditional cp genome analysis and methods adapted from plant whole-genome sequencing. Phylogenetic analysis revealed that D. peishaensis has a close relationship with D. cultrata, forming a recently diverged clade, whereas D. tsoi and D. pinnata are positioned within a basal clade of the Dalbergia genus, suggesting an earlier divergence. The Dalbergia cp genomes exhibit considerable variation in size, with evidence of pseudogenization, gene loss, and duplication observed in the three liana species. Notably, the infA gene, previously reported as absent in the chloroplast genomes of Dalbergia species, was identified in the cp genomes of these three liana Dalbergia species. A total of 4533 simple sequence repeats (SSRs) were identified, providing valuable insights into cp genome evolution and facilitating future population genetics studies, particularly when combined with the high structural variation observed in the genus through whole-genome analysis methods. Additionally, seven highly divergent regions were identified as potential DNA barcode hotspots. This study enhances the genomic characterization of liana Dalbergia species and offers a robust framework for future plant cp genome analyses by integrating methodologies originally developed for whole-genome studies. Full article
Show Figures

Figure 1

17 pages, 11403 KiB  
Article
Comparative Analysis of Chloroplast Genomes of 19 Saxifraga Species, Mostly from the European Alps
by Zhenning Leng, Zhe Pang, Zaijun He and Qingbo Gao
Int. J. Mol. Sci. 2025, 26(13), 6015; https://doi.org/10.3390/ijms26136015 - 23 Jun 2025
Viewed by 351
Abstract
Complete chloroplast genome sequences are widely used in the analyses of phylogenetic relationships among angiosperms. As a species-rich genus, species diversity centers of Saxifraga L. include mountainous regions of Eurasia, such as the Alps and the Qinghai–Tibetan Plateau (QTP) sensu lato. However, [...] Read more.
Complete chloroplast genome sequences are widely used in the analyses of phylogenetic relationships among angiosperms. As a species-rich genus, species diversity centers of Saxifraga L. include mountainous regions of Eurasia, such as the Alps and the Qinghai–Tibetan Plateau (QTP) sensu lato. However, to date, datasets of chloroplast genomes of Saxifraga have been concentrated on the QTP species; those from European Alps are largely unavailable, which hinders comprehensively comparative and evolutionary analyses of chloroplast genomes in this genus. Here, complete chloroplast genomes of 19 Saxifraga species were de novo sequenced, assembled and annotated, and of these 15 species from Alps were reported for the first time. Subsequent comparative analysis and phylogenetic reconstruction were also conducted. Chloroplast genome length of the 19 Saxifraga species range from 149,217 bp to 152,282 bp with a typical quadripartite structure. All individual chloroplast genome included in this study contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs. The IR boundaries keep relatively conserved with minor expansion in S. consanguinea. mVISTA analysis and identification of polymorphic loci for molecular markers shows that six intergenic regions (ndhC-trnV, psbE-petL, rpl32-trnL, rps16-trnQ, trnF-ndhJ, trnS-trnG) can be selected as the potential DNA barcodes. A total of 1204 SSRs, 433 tandem repeats and 534 Large sequence repeats were identified in the 19 Saxifraga chloroplast genomes. The codon usage analysis revealed that Saxifraga chloroplast genome codon prefers to end in A/T. Phylogenetic reconstruction of 33 species (31 Saxifraga species included) based on 75 common protein coding genes received high bootstrap support values for nearly all identified nodes, and revealed a tree topology similar to previous studies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 1933 KiB  
Article
Mapping Integron-Associated AMR Genes in Whole Genome Sequences of Salmonella Typhimurium from Dairy Cattle
by Sami Ullah Khan Bahadur, Nora Jean Nealon, Joshua B. Daniels, Muhammad Usman Zaheer, Mo Salman and Sangeeta Rao
Antibiotics 2025, 14(7), 633; https://doi.org/10.3390/antibiotics14070633 - 21 Jun 2025
Viewed by 618
Abstract
Background: Antimicrobial resistance (AMR) is a critical global health threat, with AMR Salmonella enterica serovar Typhimurium strains being a major foodborne pathogen. Integrons, a type of mobile genetic element, capture and transfer resistance genes, thereby playing a role in the spread of AMR. Objectives: [...] Read more.
Background: Antimicrobial resistance (AMR) is a critical global health threat, with AMR Salmonella enterica serovar Typhimurium strains being a major foodborne pathogen. Integrons, a type of mobile genetic element, capture and transfer resistance genes, thereby playing a role in the spread of AMR. Objectives: This study aimed to characterize the locations of integrons carrying AMR genes within the whole genomes of 32 Salmonella Typhimurium isolates collected from dairy cattle by two U.S. Veterinary Diagnostic Laboratories between 2009 and 2012. Methods: Class I integrons were sequenced from PCR-amplified products. DNA was extracted, quantified, barcoded, and sequenced on the Illumina MiSeq platform. Whole genome sequences were trimmed and assembled using the SPAdes assembler in Geneious Prime®, and plasmids were identified with the PlasmidFinder pipeline in Linux. Integron locations were determined by aligning their sequences with whole genome contigs and plasmids, while AMR genes were identified through BLAST with the MEGARes 3.0 database and confirmed by alignment with isolate, plasmid, and integron sequences. Statistical analysis was applied to compare the proportions of isolates harboring integrons on their chromosome versus plasmids and also to examine the associations between integron presence and AMR gene presence. Results: Seven plasmid types were identified from all isolates: IncFII(S) (n = 14), IncFIB(S) (n = 13), IncC (n = 7), Inc1-I(Alpha) (n = 3), and ColpVC, Col(pAHAD28), and Col8282 (1 isolate each). Of the 32 isolates, 16 (50%) carried at least one size of integron. Twelve of them carried both 1000 and 1200 bp; 3 carried only 1000 bp and 1 carried 1800 bp integrons. Of the 15 isolates that carried 1000 bp integron, 12 harbored it on IncFIB(S) plasmids, 2 on IncC plasmids, and 1 on the chromosome. The 1200 bp integrons from all 12 isolates were located on chromosomes. There were significant positive associations between the presence of integrons and the presence of several AMR genes including sul1, aadA2, blaCARB-2, qacEdelta1, tet(G), and floR (p < 0.05). AMR genes were located as follows: aadA2 on IncFIB(S) and IncC plasmids; blaCMY-2 on IncC plasmid; qacEdelta1 on IncFIB(S), IncC, and chromosome; blaCARB-2, floR, tet(A) and tet(G) on the chromosome. Conclusions: The findings highlight the genomic and plasmid complexity of Salmonella Typhimurium which is impacted by the presence and location of integrons, and this study provides genomic insights that can inform efforts to enhance food safety and protect both animal and public health. Full article
Show Figures

Figure 1

14 pages, 1609 KiB  
Article
Comparative Analysis of Microtendipes Mitogenomes (Diptera: Chironomidae) and Their Phylogenetic Implications
by Chao Song, Yiyi Wang, Wenji Wang, Teng Lei, Xin Qi and Luxian Li
Diversity 2025, 17(6), 424; https://doi.org/10.3390/d17060424 - 16 Jun 2025
Viewed by 679
Abstract
Insect mitochondrial genomes are vital to understanding evolutionary relationships and identifying species. This study focused on Microtendipes (Chironomidae), a genus with unresolved phylogenetic positioning and cryptic species challenges. We sequenced and analyzed eight mitogenomes from five Microtendipes species, integrating 23 published [...] Read more.
Insect mitochondrial genomes are vital to understanding evolutionary relationships and identifying species. This study focused on Microtendipes (Chironomidae), a genus with unresolved phylogenetic positioning and cryptic species challenges. We sequenced and analyzed eight mitogenomes from five Microtendipes species, integrating 23 published Chironominae mitogenomes to reconstruct phylogenies using Maximum Likelihood and Bayesian Inference. The mitogenomes exhibited conserved gene arrangements but variable control region lengths (338–1266 bp) and high AT content (94.14–96.42% in control regions). Our results show that Microtendipes species may be a separate group within the subfamily, while also supporting the monophyly of the Harnischia, Polypedilum, and Chironomus complexes. The monophyly of Microtendipes bimaculus was weakly supported, which may demonstrate the presence of two potential cryptic species. Notably, larval morphology-based species groupings conflicted with the molecular data, suggesting that classifications derived from larval morphological traits may be unreliable. This study advances the evolutionary understanding of Chironomidae and underscores the limitations of single-gene barcodes in species-rich genera. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

15 pages, 4578 KiB  
Article
New Species and Old Semaphoronts: Updating Taxonomic Knowledge of Kempnyia Klapálek, 1914 (Plecoptera: Perlidae) with an Integrative Approach
by Lucas Henrique de Almeida, Rodrigo Braga Gastaldo, Frederico Falcão Salles and Pitágoras da Conceição Bispo
Diversity 2025, 17(6), 416; https://doi.org/10.3390/d17060416 - 13 Jun 2025
Viewed by 312
Abstract
Kempnyia Klapálek, 1914 (Plecoptera: Perlidae) is the only genus within its family endemic to Brazil, being present in the Atlantic Forest and sections of the Cerrado. Taxonomic knowledge of the genus is incomplete, especially for nymphs. An integrative approach to the description of [...] Read more.
Kempnyia Klapálek, 1914 (Plecoptera: Perlidae) is the only genus within its family endemic to Brazil, being present in the Atlantic Forest and sections of the Cerrado. Taxonomic knowledge of the genus is incomplete, especially for nymphs. An integrative approach to the description of species and semaphoronts is essential for further studies. We describe a new species of Kempnyia based on morphological and molecular data, associate and describe the nymphs of both the new species and Kempnyia umbrina Froehlich, 1988, as well as expand its distribution and correct past mistakes in identification of K. umbrina. Specimens were identified morphologically and sequenced for the barcode region of the cytochrome oxidase subunit I (COI) mitochondrial gene, resulting in eight new sequences for three species of the genus. Both morphological and molecular analyses revealed a new species, Kempnyia krenaki sp. nov. Its nymph and that of K. umbrina are also described. With our additions, the number of known Kempnyia species rises to 41, of which 26 have COI sequences available in GenBank. Although only 11 nymphs have been associated and described for the genus so far, as the Kempnyia sequence database continues to grow, studies associating and describing nymphs will become more common, gradually reducing the Haeckelian deficit. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Graphical abstract

28 pages, 4157 KiB  
Article
Comprehensive Analysis of Genetic and Morphological Diversity in Echinochloa spp. Populations Infesting Paddy Fields in Ningxia, China
by Jinhui Li, Yi Zhang, Yan Liu, Shouhui Wei, Zhaofeng Huang, Lu Chen and Hongjuan Huang
Int. J. Mol. Sci. 2025, 26(12), 5623; https://doi.org/10.3390/ijms26125623 - 12 Jun 2025
Viewed by 355
Abstract
Barnyard grass is the most problematic weed in paddy fields in Ningxia. Its substantial morphological variation complicates both identification and control, yet the genetic diversity of barnyard grass infesting paddy fields in Ningxia has not been thoroughly studied. In this research, we analyzed [...] Read more.
Barnyard grass is the most problematic weed in paddy fields in Ningxia. Its substantial morphological variation complicates both identification and control, yet the genetic diversity of barnyard grass infesting paddy fields in Ningxia has not been thoroughly studied. In this research, we analyzed the genetic diversity of 46 barnyard grass populations from Ningxia’s paddy fields based on the assessment of morphological traits, DNA barcoding, and SCoT-targeted gene markers. Nine morphological traits were quantitatively analyzed, among which three phenological traits, i.e., leaf length, stem diameter, and plant height, exhibited notable variations. Correlational analysis revealed a positive relationship between morphological traits and multi-herbicide resistance profiles. To assess genetic diversity, four DNA barcodes (ITS, psbA, matK, and trnL-F) were used, among which ITS demonstrated the strongest potential in single-gene barcoding for barnyard grass species identification. Cluster analysis based on ITS barcode sequences was performed to group the populations into five main categories. Additionally, SCoT marker analysis using six primers was performed to classify the 46 barnyard grass samples into five groups. The results showed that the predominant barnyard grass species in Ningxia were E. colona, E. crus-galli var. Formosensis, E. crusgalli, E. oryzoides, and E. crusgalli var. Zelayensis, with E. colona being the most prevalent. The differences observed between the morphological and molecular marker-based classifications were method-dependent. However, both SCoT molecular marker technology and DNA barcoding contributed to identifying the genetic diversity of barnyard grass. Taken together, our study revealed significant morphological and genetic variations among barnyard grass populations, which correlated with herbicide sensitivity in Ningxia’s paddy fields, underscoring the necessity for an integrated weed management approach to combat this troublesome weed species. Full article
Show Figures

Figure 1

13 pages, 8394 KiB  
Article
Report of a New Sand Fly (Diptera: Psychodidae) Species, Sergentomyia (Neophlebotomus) pradeepii n. sp. from Madhya Pradesh, India
by Harish Kumar Shah, Pananchikkaparambil Abdu Fathima, Manju Rahi and Prasanta Saini
Insects 2025, 16(6), 598; https://doi.org/10.3390/insects16060598 - 6 Jun 2025
Viewed by 735
Abstract
Madhya Pradesh, a biodiversity-rich state in central India, reports sporadic non-indigenous leishmaniasis cases. Systematic entomological surveillance as part of molecular xenomonitoring in sand flies led to the discovery of a new species, Sergentomyia (Neophlebotomus) pradeepii n. sp. (Diptera: Psychodidae), from Johariya village [...] Read more.
Madhya Pradesh, a biodiversity-rich state in central India, reports sporadic non-indigenous leishmaniasis cases. Systematic entomological surveillance as part of molecular xenomonitoring in sand flies led to the discovery of a new species, Sergentomyia (Neophlebotomus) pradeepii n. sp. (Diptera: Psychodidae), from Johariya village in Sagar district, Madhya Pradesh, India. A systematic cross-sectional survey of sand flies was conducted in Bhopal, Sagar, and Hoshangabad districts of Madhya Pradesh. Standard collection methods were employed for two months, i.e., from July to August 2023. DNA barcoding targeting the mitochondrial Cytochrome c oxidase subunit I (COI) gene was performed, and the generated sequences were phylogenetically analyzed. Se. (Neo.) pradeepii, a newly recorded sand fly species, is reported in this study. Its taxonomic relationship to other congeners of subgenus Neophlebotomus is discussed. COI barcoding and phylogenetic analysis established that the specimens fit into the same taxonomic group, exhibiting negligible gene flow within the population, while a 13.4% genetic distance from congeners establishes it as a separate species. Madhya Pradesh, with its rich biodiversity and favorable conditions for sand fly proliferation, lacks systematic entomological surveillance. This study enhances the knowledge of the state’s sand fly fauna by reporting and providing a detailed morphological and molecular description of the new species. Full article
(This article belongs to the Special Issue Diptera Diversity: Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

16 pages, 4146 KiB  
Article
Comparative Analysis of Plastomes of Artemisia and Insights into the Infra-Generic Phylogenetic Relationships Within the Genus
by Xinqiang Guo, Weiquan Huang, Zhiyi Zhao, Dawei Xue and Yuhuan Wu
Genes 2025, 16(6), 659; https://doi.org/10.3390/genes16060659 - 29 May 2025
Viewed by 561
Abstract
Background: Artemisia is a large and complex genus comprising about 500 species. Currently, only a limited number of plastomes (the chloroplast genome) of Artemisia are available. Their structures have not been comparatively analyzed, and a phylogenetic backbone based on plastome-scale data is [...] Read more.
Background: Artemisia is a large and complex genus comprising about 500 species. Currently, only a limited number of plastomes (the chloroplast genome) of Artemisia are available. Their structures have not been comparatively analyzed, and a phylogenetic backbone based on plastome-scale data is still lacking. This situation has greatly hindered our understanding of the plastome variation patterns and infra-generic relationships of the genus. Methods: We newly sequenced 34 Artemisia plastomes representing 30 species and three varieties. Combining this with previously published plastomes, we comparatively analyzed their structure and constructed phylogenetic relationships using the protein-coding sequences (CDS) of plastomes. Results: Our analyses indicated that the Artemisia plastomes are conserved in terms of their structure, GC content, gene number, and order. The sequence divergence is higher in the LSC and SSC regions than in the IR regions. Three protein-coding genes and four non-coding regions, i.e., accD, petG, ycf1, rpoC1-rpoC2, rpoC2-rps2, trnG(UCC)-trnfM(CAU), and ndhG-ndhI, were highly diverse and could be chosen as candidates of DNA barcodes. Phylogenetic trees were divided into several clades, and all four main subgenera were not monophyletic. Additionally, the phylogenetic position of A. stracheyi is still controversial. Conclusions: Plastomes can provide important information for phylogenetic constructions. This study provides insights into the infra-generic relationships within Artemisia and also lays a foundation for future evolutionary studies of this genus. Full article
(This article belongs to the Topic Plant Chloroplast Genome and Evolution)
Show Figures

Figure 1

Back to TopTop