Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = banana plantations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2586 KiB  
Article
Virome Survey of Banana Plantations and Surrounding Plants in Malawi
by Johnny Isaac Gregorio Masangwa, Coline Temple, Johan Rollin, François Maclot, Serkan Önder, Jamestone Kamwendo, Elizabeth Mwafongo, Philemon Moses, Isaac Fandika and Sebastien Massart
Viruses 2025, 17(8), 1068; https://doi.org/10.3390/v17081068 - 31 Jul 2025
Viewed by 250
Abstract
A virome survey of banana plantations and their surrounding plants was carried out at nation-wide level in Malawi using virion associated nucleic acids (VANA) high throughput sequencing (HTS) on pooled samples and appropriate alien controls. In total, 366 plants were sequenced, and 23 [...] Read more.
A virome survey of banana plantations and their surrounding plants was carried out at nation-wide level in Malawi using virion associated nucleic acids (VANA) high throughput sequencing (HTS) on pooled samples and appropriate alien controls. In total, 366 plants were sequenced, and 23 plant virus species were detected, three species on banana (275 plants) and 20 species in surrounding plants (91 plants). Two putative novel virus species; ginger tymo-like virus and pepper derived totivirus were detected and confirmed by RT-PCR on ginger and pepper. Nine known virus species and detected a host plant was identified for two of them. No viral exchange between banana and surrounding plants was observed. Results from the VANA protocol, applied to pooled banana samples, were compared with previous targeted PCR results obtained from individual banana samples. HTS test detected better BanMMV than IC-(RT)-PCR on individual samples (better inclusivity) but detected with much lower sensitivity BBTV and BSV species, often with less than 10 reads per sample. Detection of novel and known viruses and new host plants calls for strengthened sanitory and phytosanitory measures within and beyond banana production systems. Our research confirms that HTS sensitivity depends on sampling, pooling protocol and targeted virus species. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Graphical abstract

18 pages, 1756 KiB  
Technical Note
Detection of Banana Diseases Based on Landsat-8 Data and Machine Learning
by Renata Retkute, Kathleen S. Crew, John E. Thomas and Christopher A. Gilligan
Remote Sens. 2025, 17(13), 2308; https://doi.org/10.3390/rs17132308 - 5 Jul 2025
Viewed by 569
Abstract
Banana is an important cash and food crop worldwide. Recent outbreaks of banana diseases are threatening the global banana industry and smallholder livelihoods. Remote sensing data offer the potential to detect the presence of disease, but formal analysis is needed to compare inferred [...] Read more.
Banana is an important cash and food crop worldwide. Recent outbreaks of banana diseases are threatening the global banana industry and smallholder livelihoods. Remote sensing data offer the potential to detect the presence of disease, but formal analysis is needed to compare inferred disease data with observed disease data. In this study, we present a novel remote-sensing-based framework that combines Landsat-8 imagery with meteorology-informed phenological models and machine learning to identify anomalies in banana crop health. Unlike prior studies, our approach integrates domain-specific crop phenology to enhance the specificity of anomaly detection. We used a pixel-level random forest (RF) model to predict 11 key vegetation indices (VIs) as a function of historical meteorological conditions, specifically daytime and nighttime temperature from MODIS and precipitation from NASA GES DISC. By training on periods of healthy crop growth, the RF model establishes expected VI values under disease-free conditions. Disease presence is then detected by quantifying the deviations between observed VIs from Landsat-8 imagery and these predicted healthy VI values. The model demonstrated robust predictive reliability in accounting for seasonal variations, with forecasting errors for all VIs remaining within 10% when applied to a disease-free control plantation. Applied to two documented outbreak cases, the results show strong spatial alignment between flagged anomalies and historical reports of banana bunchy top disease (BBTD) and Fusarium wilt Tropical Race 4 (TR4). Specifically, for BBTD in Australia, a strong correlation of 0.73 was observed between infection counts and the discrepancy between predicted and observed NDVI values at the pixel with the highest number of infections. Notably, VI declines preceded reported infection rises by approximately two months. For TR4 in Mozambique, the approach successfully tracked disease progression, revealing clear spatial spread patterns and correlations as high as 0.98 between VI anomalies and disease cases in some pixels. These findings support the potential of our method as a scalable early warning system for banana disease detection. Full article
(This article belongs to the Special Issue Plant Disease Detection and Recognition Using Remotely Sensed Data)
Show Figures

Figure 1

19 pages, 1254 KiB  
Article
A Sustainable Approach to Phosphorus Nutrition in Banana Plantations
by Hebert Teixeira Cândido, Magali Leonel, Sarita Leonel, Adalton Mazetti Fernandes, Jackson Myrellis Azevêdo Souza, Lucas Felipe dos Ouros and Paulo Ricardo Rodrigues de Jesus
Plants 2025, 14(13), 1923; https://doi.org/10.3390/plants14131923 - 23 Jun 2025
Viewed by 455
Abstract
The genetic diversity of banana plants (Musa spp.) can result in different phosphorus requirements, highlighting the importance of studies performed to optimize phosphate fertilization in order to improve the productivity and sustainability of banana plantations. This study assessed the effects of phosphate [...] Read more.
The genetic diversity of banana plants (Musa spp.) can result in different phosphorus requirements, highlighting the importance of studies performed to optimize phosphate fertilization in order to improve the productivity and sustainability of banana plantations. This study assessed the effects of phosphate fertilization on the duration of the harvest season, bunch mass, soil fertility and foliar nutrition of BRS SCS Belluna banana plants. A replicated trial was performed in two consecutive harvests, with different phosphorus levels, i.e., 25, 50, 75, 100, 125 and 150% of the recommended level for the crop. Soil analyses included macro- and micronutrients, silicon, acidity, organic matter, cation exchange capacity and base saturation. Leaf tissue was analyzed for mineral content. Thermophosphate had different effects on soil fertility and leaf nutrients. Calcium and phosphorus in the soil increased linearly. In the leaf, a reduction in zinc content was mainly observed. The lower temperatures and accumulated rainfall that occurred during the second harvest season are related to a greater number of days between flowering and harvest and a lower bunch mass. These results could support fertilization programs aimed at ensuring the long-term sustainability of phosphorus nutrition in banana plantations. Full article
(This article belongs to the Special Issue Soil Ecology and Nutrients' Cycling in Crops and Fruits)
Show Figures

Figure 1

17 pages, 1677 KiB  
Article
Resistance to Triazoles in Populations of Mycosphaerella fijiensis and M. musicola from the Sigatoka Disease Complex from Commercial Banana Plantations in Minas Gerais and São Paulo, Brazil
by Abimael Gomes da Silva, Tatiane Carla Silva, Silvino Intra Moreira, Tamiris Yoshie Kiyama Oliveira, Felix Sebastião Christiano, Daniel Macedo de Souza, Gabriela Valério Leardine, Lucas Matheus de Deus Paes Gonçalves, Maria Cândida de Godoy Gasparoto, Bart A. Fraaije, Gustavo Henrique Goldman and Paulo Cezar Ceresini
Microorganisms 2025, 13(7), 1439; https://doi.org/10.3390/microorganisms13071439 - 20 Jun 2025
Viewed by 578
Abstract
The sterol demethylation inhibitors (DMIs) are among the most widely used fungicides for controlling black Sigatoka (Mycosphaerella fijiensis) and yellow Sigatoka (Mycosphaerella musicola) in banana plantations in Brazil. Black Sigatoka is considered more important due to causing yield losses [...] Read more.
The sterol demethylation inhibitors (DMIs) are among the most widely used fungicides for controlling black Sigatoka (Mycosphaerella fijiensis) and yellow Sigatoka (Mycosphaerella musicola) in banana plantations in Brazil. Black Sigatoka is considered more important due to causing yield losses of up to 100% in commercial banana crops under predisposing conditions. In contrast, yellow Sigatoka is important due to its widespread occurrence in the country. This study aimed to determine the current sensitivity levels of Mf and Mm populations to DMI fungicides belonging to the chemical group of triazoles. Populations of both species were sampled from commercial banana plantations in Registro, Vale do Ribeira, São Paulo (SP), Ilha Solteira, Northwestern SP, and Janaúba, Northern Minas Gerais, and were further characterized phenotypically. Additionally, allelic variation in the CYP51 gene was analyzed in populations of these pathogens to identify and characterize major mutations and/or mechanisms potentially associated with resistance. Sensitivity to the triazoles propiconazole and tebuconazole was determined by calculating the 50% inhibitory concentration of mycelial growth (EC50) based on dose–response curves ranging from 0 to 5 µg mL−1. Variation in sensitivity to fungicides was evident with all nine Mf isolates showing moderate resistance levels to both propiconazole or tebuconazole, while 11 out of 42 Mm strains tested showed low to moderate levels of resistance to these triazoles. Mutations leading to CYP51 substitutions Y136F, Y461N/H, and Y463D in Mm and Y461D, G462D, and Y463D in Mf were associated with low or moderate levels of resistance to the triazoles. Interestingly, Y461H have not been reported before in Mm or Mf populations, and this alteration was found in combination with V106D and A446S. More complex CYP51 variants and CYP51 promoter inserts associated with upregulation of the target protein were not detected and can explain the absence of highly DMI-resistant strains in Brazil. Disease management programs that minimize reliance on fungicide sprays containing triazoles will be needed to slow down the further evolution and spread of novel CYP51 variants in Mf and Mm populations in Brazil. Full article
(This article belongs to the Special Issue New Methods in Microbial Research, 4th Edition)
Show Figures

Figure 1

16 pages, 1840 KiB  
Article
Sustainability Indicators of the Banana and Lemongrass Intercropping System in Different Harvest Seasons: Growth, Yield, Seasonality and Essential Oil Properties
by Paulo Ricardo Rodrigues de Jesus, Sarita Leonel, Marcelo de Souza Silva, Filipe Pereira Giardini Bonfim, Magali Leonel, Hebert Teixeira Cândido, Marco Antonio Tecchio, Nicholas Zanette Molha and Vinicius Martins Domiciano
Agriculture 2025, 15(7), 758; https://doi.org/10.3390/agriculture15070758 - 31 Mar 2025
Viewed by 494
Abstract
Lemongrass (Cymbopogon citratus) has potential for intercropping with banana (Musa spp.) plants, thus contributing to the sustainability of plantations. The study evaluated the growth and yield of ‘Prata Anã’ banana and seasonality, yield and essential oil properties of lemongrass grown [...] Read more.
Lemongrass (Cymbopogon citratus) has potential for intercropping with banana (Musa spp.) plants, thus contributing to the sustainability of plantations. The study evaluated the growth and yield of ‘Prata Anã’ banana and seasonality, yield and essential oil properties of lemongrass grown in intercropping and the land equivalent ratio. A randomized block design in a split plot arrangement was used, evaluating two cropping systems (sole crop and intercropping) and three harvest seasons during the year for lemongrass and two harvest seasons for banana, separately. The banana can be intercropped with lemongrass without interfering with its growth and production. The biomass production and essential oil yield of lemongrass differed according to cropping system and seasonality. The chemical composition of the essential oil showed stability in the concentration of citral (mixture of neral and geranial), with an average of 94.43%. Seasonal variations were observed in the content of these compounds and other components of the essential oil, emphasizing the importance of the time of harvest in the overall value of the oil. The result demonstrates the viability of intercropping, which not only provides crop yields for both species and produces more per unit area than a sole crop but also optimizes the use of resources and promotes more sustainable farming practices. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

22 pages, 2863 KiB  
Article
Patho-Ecological Distribution and Genetic Diversity of Fusarium oxysporum f. sp. cubense in Malbhog Banana Belts of Assam, India
by Anisha Baruah, Popy Bora, Thukkaram Damodaran, Bishal Saikia, Muthukumar Manoharan, Prakash Patil, Ashok Bhattacharyya, Ankita Saikia, Alok Kumar, Sangeeta Kumari, Juri Talukdar, Utpal Dey, Shenaz Sultana Ahmed, Naseema Rahman, Bharat Chandra Nath, Ruthy Tabing and Sandeep Kumar
J. Fungi 2025, 11(3), 195; https://doi.org/10.3390/jof11030195 - 4 Mar 2025
Viewed by 1154
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is recognized as one of the most devastating diseases affecting banana cultivation worldwide. In India, Foc extensively affects Malbhog banana (AAB genomic group) production. In this study, we isolated 25 Foc isolates from [...] Read more.
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is recognized as one of the most devastating diseases affecting banana cultivation worldwide. In India, Foc extensively affects Malbhog banana (AAB genomic group) production. In this study, we isolated 25 Foc isolates from wilt-affected Malbhog plantations inIndia. A pathogenicity test confirmed the identity of these isolates as Foc, the primary causative agent of wilt in bananas. The morpho-cultural characterization of Foc isolates showed large variations in colony morphological features, intensity, and pattern of pigmentation, chlamydospores, and conidial size. The molecular identification of these isolates using Race1- and Race4-specific primers established their identity as Race1 of Foc, with the absence of Tropical Race 4 of Foc. For a more comprehensive understanding of the genetic diversity of Foc isolates, we employed ISSR molecular typing, which revealed five major clusters. About 96% of the diversity within the Foc population indicated the presence of polymorphic loci in individuals of a given population evident from the results of Nei’s genetic diversity, Shannon’s information index, and the polymorphism information content values, apart from the analysis of molecular variance (AMOVA). The current findings provide significant insights toward the detection of Foc variants and, consequently, the deployment of effective management practices to keep the possible epidemic development of disease under control along the Malbhog banana growing belts of northeast India. Full article
Show Figures

Figure 1

24 pages, 2611 KiB  
Article
Evaluation of the Performance of Information Competencies in the Fertilization and Trade Strategies of Small Banana Producers in Ecuador
by Marcela Luzuriaga-Amador, Nibia Novillo-Luzuriaga, Fabricio Guevara-Viejó and Juan Diego Valenzuela-Cobos
Sustainability 2025, 17(3), 868; https://doi.org/10.3390/su17030868 - 22 Jan 2025
Viewed by 1306
Abstract
The information perceived by producers plays a crucial role in the efficient management of the agricultural production chain, encompassing both the fertilization and marketing processes of the final product. The ability of farmers to make effective use of this information depends on their [...] Read more.
The information perceived by producers plays a crucial role in the efficient management of the agricultural production chain, encompassing both the fertilization and marketing processes of the final product. The ability of farmers to make effective use of this information depends on their information behavior, the use of information technologies, and the adoption of up-to-date technical knowledge. However, small Ecuadorian producers face information gaps that limit their access to technical and commercial knowledge, which affects productivity and profitability. This study analyzed the informational competencies of small banana producers in the provinces of Guayas and Los Ríos, with the objective of identifying the causes of these gaps and their impact on fertilization and marketing. A structured survey was applied to small producers, evaluating five dimensions of information. In addition, soil analyses were conducted in 20 plantations to determine the correspondence between fertilization practices and banana nutritional requirements. The results showed that producers in Guayas presented more robust informational competencies, with greater recognition of information needs and active use of reliable sources. This was reflected in the fertilization practices more aligned with nutritional standards, where plantations in Guayas presented average values of 1.21 cmol(+)/L aluminum, 8.67 cmol(+)/L magnesium, and 0.87 cmol(+)/L potassium, largely complying with nutritional standards for banana cultivation. In contrast, growers in Los Ríos spent less time searching for information and evidenced deficiencies in soil nutrition. This study highlights the importance of strengthening knowledge transfer and improving agricultural communication systems as tools to close information gaps. It is recommended to implement inclusive public policies and training programs in the use of information technologies and sustainable practices. In addition, promoting the creation of collaborative platforms can optimize access to markets, facilitating the direct and efficient marketing of produce. Full article
Show Figures

Figure 1

10 pages, 385 KiB  
Communication
Toward Marker-Assisted Selection in Breeding for Fusarium Wilt Tropical Race-4 Type Resistant Bananas
by Claudia Fortes Ferreira, Andrew Chen, Elizabeth A. B. Aitken, Rony Swennen, Brigitte Uwimana, Anelita de Jesus Rocha, Julianna Matos da Silva Soares, Andresa Priscila de Souza Ramos and Edson Perito Amorim
J. Fungi 2024, 10(12), 839; https://doi.org/10.3390/jof10120839 - 4 Dec 2024
Cited by 1 | Viewed by 1306
Abstract
Fusarium wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of Fusarium oxysporum f. sp. cubense (Foc) belonging to the Subtropical Race 4 (STR4) and Tropical [...] Read more.
Fusarium wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of Fusarium oxysporum f. sp. cubense (Foc) belonging to the Subtropical Race 4 (STR4) and Tropical Race 4 (TR4). The wild banana diploid Musa acuminata ssp. malaccensis (AA, 2n = 22) carries resistance to Foc TR4. A previous study using segregating populations derived from M. acuminata ssp. malaccensis identified a quantitative trait locus (QTL) (12.9 cM) on the distal part of the long arm of chromosome 3, conferring resistance to both Foc TR4 and STR4. An SNP marker, based on the gene Macma4_03_g32560 of the reference genome ‘DH-Pahang’ v4, detected the segregation of resistance to Foc STR4 and TR4 at this locus. Using this marker, we assessed putative TR4 resistance sources in 123 accessions from the breeding program in Brazil, which houses one of the largest germplasm collections of Musa spp. in the world. The resistance marker allele was detected in a number of accessions, including improved diploids and commercial cultivars. Sequencing further confirmed the identity of the SNP at this locus. Results from the marker screening will assist in developing strategies for pre-breeding Foc TR4-resistant bananas. This study represents the first-ever report of marker-assisted screening in a comprehensive collection of banana accessions in South America. Accessions carrying the resistance marker allele will be validated in the field to confirm Foc TR4 resistance. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

18 pages, 3198 KiB  
Article
Moderate Phosphorus Addition to Field-Grown Bananas Enhanced Soil Microbial Enzyme Activities but Had Negligible Impacts on Bacterial, Fungal, and Nematode Diversity
by Anna-Belle C. Clarke, Hazel R. Lapis-Gaza, Stuart Irvine-Brown, Rebecca Lyons, Jiarui Sun, Anthony B. Pattison and Paul G. Dennis
Appl. Microbiol. 2024, 4(4), 1582-1599; https://doi.org/10.3390/applmicrobiol4040108 - 29 Nov 2024
Viewed by 1006
Abstract
On commercial banana (Musa spp.) plantations, soils are often supplemented with phosphorus (P) fertiliser to optimise production. Such additions may influence the diversity and function of soil microbial communities, which play important roles in P cycling and affect plant fitness. Here, we [...] Read more.
On commercial banana (Musa spp.) plantations, soils are often supplemented with phosphorus (P) fertiliser to optimise production. Such additions may influence the diversity and function of soil microbial communities, which play important roles in P cycling and affect plant fitness. Here, we characterised the effects of P addition on the diversity and function of banana-associated microbial communities. P addition was associated with significant increases in soil P and the activities of alpha-glucosidase, chitinase, arylsulphatase, and acid phosphatase, but not beta-glucosidase or xylosidase. P addition also expedited bunch emergence and harvest, but did not influence fruit yield, plant height, or foliar P. There were no significant effects of P addition on the alpha or beta diversity of bacterial, fungal, and nematode communities, including members of the core microbiome. The only exceptions to this was an increase in the relative abundance of a Fusarium population in roots. These results indicate that phosphorus application to banana soils may stimulate microbial enzyme activities with minor or negligible effects on microbial diversity. Full article
Show Figures

Figure 1

14 pages, 4998 KiB  
Article
Organic Farming Enhances Diversity and Recruits Beneficial Soil Fungal Groups in Traditional Banana Plantations
by Maria Cristina O. Oliveira, Artur Alves, Carla Ragonezi, José G. R. de Freitas and Miguel A. A. Pinheiro De Carvalho
Microorganisms 2024, 12(11), 2372; https://doi.org/10.3390/microorganisms12112372 - 20 Nov 2024
Cited by 1 | Viewed by 1103
Abstract
This study investigates the impact of organic (OF) and conventional farming (CF) on soil fungal communities in banana monoculture plantations on Madeira Island. We hypothesized that OF promotes beneficial fungal groups over harmful ones, sustaining soil health. Soil samples were collected from six [...] Read more.
This study investigates the impact of organic (OF) and conventional farming (CF) on soil fungal communities in banana monoculture plantations on Madeira Island. We hypothesized that OF promotes beneficial fungal groups over harmful ones, sustaining soil health. Soil samples were collected from six plantations (three OF and three CF) for ITS amplicon sequencing to assess fungal diversity. Results showed that OF significantly enhanced fungal alpha-diversity (Shannon–Wiener index) and Evenness. The phylum Ascomycota dominated OF systems, while Basidiomycota prevailed in CF. Mortierella, a beneficial genus, was abundant in OF and is observed in CF but was less evident, being the genus Trechispora the most well represented in CF agrosystems. Additionally, OF was associated with higher soil pH and Mg levels, which correlated positively with beneficial fungal groups. Functional analysis revealed that OF promoted saprotrophic fungi, crucial for the decomposition of organic matter and nutrient cycling. However, both systems exhibited low levels of arbuscular mycorrhizal fungi, likely due to high phosphorus levels. These findings suggest that organic practices can enhance soil fungal diversity and health, although attention to nutrient management is critical to further improving soil–plant–fungi interactions. Full article
(This article belongs to the Special Issue Harnessing Beneficial Microbiota in Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 6319 KiB  
Article
Biocontrol Agents Inhibit Banana Fusarium Wilt and Alter the Rooted Soil Bacterial Community in the Field
by Chanjuan Du, Di Yang, Shangbo Jiang, Jin Zhang, Yunfeng Ye, Lianfu Pan and Gang Fu
J. Fungi 2024, 10(11), 771; https://doi.org/10.3390/jof10110771 - 6 Nov 2024
Cited by 2 | Viewed by 1917
Abstract
Banana is an important fruit and food crop in tropical and subtropical regions worldwide. Banana production is seriously threatened by Fusarium wilt of banana (FWB), a disease caused by Fusarium oxysporum f. sp. cubense, and biological control is an important means of [...] Read more.
Banana is an important fruit and food crop in tropical and subtropical regions worldwide. Banana production is seriously threatened by Fusarium wilt of banana (FWB), a disease caused by Fusarium oxysporum f. sp. cubense, and biological control is an important means of curbing this soil-borne disease. To reveal the effects of biocontrol agents on inhibiting FWB and altering the soil bacterial community under natural ecosystems, we conducted experiments at a banana plantation. The control efficiency of a compound microbial agent (CM), Paenibacillus polymyxa (PP), Trichoderma harzianum (TH), and carbendazim (CA) on this disease were compared in the field. Meanwhile, the alterations in structure and function of the rooted soil bacterial community in different treatments during the vigorous growth and fruit development stages of banana were analyzed by microbiomics method. The results confirmed that the different biocontrol agents could effectively control FWB. In particular, CM significantly reduced the incidence of the disease and showed a field control efficiency of 60.53%. In terms of bacterial community, there were no significant differences in the richness and diversity of banana rooted soil bacteria among the different treatments at either growth stage, but their relative abundances differed substantially. CM treatment significantly increased the ratios of Bacillus, Bryobacter, Pseudomonas, Jatrophihabitans, Hathewaya, and Chujaibacter in the vigorous growth stage and Jatrophihabitans, Occallatibacter, Cupriavidus, and 1921-3 in the fruit development stage. Furthermore, bacterial community function in the banana rooted soil was affected differently by the various biocontrol agents. CM application increased the relative abundance of multiple soil bacterial functions, including carbohydrate metabolism, xenobiotic biodegradation and metabolism, terpenoid and polyketide metabolism, lipid metabolism, and metabolism of other amino acids. In summary, our results suggest that the tested biocontrol agents can effectively inhibit the occurrence of banana Fusarium wilt and alter the soil bacterial community in the field. They mainly modified the relative abundance of bacterial taxa and the metabolic functions rather than the richness and diversity. These findings provide a scientific basis for the use of biocontrol agents to control banana Fusarium wilt under field conditions, which serves as a reference for the study of the soil microbiological mechanisms of other biocontrol agents. Full article
(This article belongs to the Special Issue Current Research in Soil Borne Plant Pathogens)
Show Figures

Figure 1

20 pages, 11079 KiB  
Article
Development, Integration, and Field Experiment Optimization of an Autonomous Banana-Picking Robot
by Tianci Chen, Shiang Zhang, Jiazheng Chen, Genping Fu, Yipeng Chen and Lixue Zhu
Agriculture 2024, 14(8), 1389; https://doi.org/10.3390/agriculture14081389 - 17 Aug 2024
Cited by 4 | Viewed by 1826
Abstract
The high growth height and substantial weight of bananas present challenges for robots to harvest autonomously. To address the issues of high labor costs and low efficiency in manual banana harvesting, a highly autonomous and integrated banana-picking robot is proposed to achieve autonomous [...] Read more.
The high growth height and substantial weight of bananas present challenges for robots to harvest autonomously. To address the issues of high labor costs and low efficiency in manual banana harvesting, a highly autonomous and integrated banana-picking robot is proposed to achieve autonomous harvesting of banana bunches. A prototype of the banana-picking robot was developed, featuring an integrated end-effector capable of clamping and cutting tasks on the banana stalks continuously. To enhance the rapid and accurate identification of banana stalks, a target detection vision system based on the YOLOv5s deep learning network was developed. Modules for detection, positioning, communication, and execution were integrated to successfully develop a banana-picking robot system, which has been tested and optimized in multiple banana plantations. Experimental results show that this robot can continuously harvest banana bunches. The average precision of detection is 99.23%, and the location accuracy is less than 6 mm. The robot picking success rate is 91.69%, and the average time from identification to harvesting completion is 33.28 s. These results lay the foundation for the future application of banana-picking robots. Full article
Show Figures

Figure 1

13 pages, 1965 KiB  
Article
Geospatial Approach to Determine Nitrate Values in Banana Plantations
by Angélica Zamora-Espinoza, Juan Chin, Adolfo Quesada-Román and Veda Obando
AgriEngineering 2024, 6(3), 2513-2525; https://doi.org/10.3390/agriengineering6030147 - 1 Aug 2024
Cited by 1 | Viewed by 1531
Abstract
Banana (Musa sp.) is one of the world’s most planted and consumed crops. Analysis of plantations using a geospatial perspective is growing in Costa Rica, and it can be used to optimize environmental analysis. The aim of this study was to propose [...] Read more.
Banana (Musa sp.) is one of the world’s most planted and consumed crops. Analysis of plantations using a geospatial perspective is growing in Costa Rica, and it can be used to optimize environmental analysis. The aim of this study was to propose a methodology to identify areas prone to water accumulation to quantify nitrate concentrations using geospatial modeling techniques in a 40 ha section of a banana plantation located in Siquirres, Limón, Costa Rica. A total of five geomorphometric variables (Slope, Slope Length factor (LS factor), Terrain Ruggedness Index (TRI), Topographic Wetness Index (TWI), and Flow Accumulation) were selected in the geospatial model. A 9 cm resolution digital elevation model (DEM) derived from unmanned aerial vehicles (UAVs) was employed to calculate geomorphometric variables. ArcGIS 10.6 and SAGA GIS 7.8.2 software were used in the data integration and analysis. The results showed that Slope and Topographic Wetness Index (TWI) are the geomorphometric parameters that better explained the areas prone to water accumulation and indicated which drainage channels are proper areas to sample nitrate values. The average nitrate concentration in high-probability areas was 8.73 ± 1.53 mg/L, while in low-probability areas, it was 11.28 ± 2.49 mg/L. Despite these differences, statistical analysis revealed no significant difference in nitrate concentrations between high- and low-probability areas. The method proposed here allows us to obtain reliable results in banana fields worldwide. Full article
Show Figures

Figure 1

20 pages, 1970 KiB  
Review
Rubber-Based Agroforestry Systems Associated with Food Crops: A Solution for Sustainable Rubber and Food Production?
by Andi Nur Cahyo, Ying Dong, Taryono, Yudhistira Nugraha, Junaidi, Sahuri, Eric Penot, Aris Hairmansis, Yekti Asih Purwestri, Andrea Akbar, Hajar Asywadi, Risal Ardika, Nur Eko Prasetyo, Dwi Shinta Agustina, Taufan Alam, Fetrina Oktavia, Siti Subandiyah and Pascal Montoro
Agriculture 2024, 14(7), 1038; https://doi.org/10.3390/agriculture14071038 - 28 Jun 2024
Cited by 6 | Viewed by 4405
Abstract
Agroforestry is often seen as a sustainable land-use system for agricultural production providing ecosystem services. Intercropping with food crops leads to equal or higher productivity than monoculture and results in food production for industry and subsistence. Low rubber price and low labor productivity [...] Read more.
Agroforestry is often seen as a sustainable land-use system for agricultural production providing ecosystem services. Intercropping with food crops leads to equal or higher productivity than monoculture and results in food production for industry and subsistence. Low rubber price and low labor productivity in smallholdings have led to a dramatic conversion of rubber plantations to more profitable crops. The literature analysis performed in this paper aimed at better understanding the ins and outs that could make rubber-based agroforestry more attractive for farmers. A comprehensive search of references was conducted in March 2023 using several international databases and search engines. A Zotero library was set up consisting of 415 scientific references. Each reference was carefully read and tagged in several categories: cropping system, country, main tree species, intercrop type, intercrop product, level of product use, discipline of the study, research topic, and intercrop species. Of the 232 journal articles, 141 studies were carried out on rubber agroforestry. Since 2011, the number of studies per year has increased. Studies on rubber-based agroforestry systems are performed in most rubber-producing countries, in particular in Indonesia, Thailand, China, and Brazil. These studies focus more or less equally on perennials (forest species and fruit trees), annual intercrops, and mixed plantations. Of the 47 annual crops associated with rubber in the literature, 20 studies dealt with rice, maize, banana, and cassava. Agronomy is the main discipline in the literature followed by socio-economy and then ecology. Only four papers are devoted to plant physiology and breeding. The Discussion Section has attempted to analyze the evolution of rubber agroforestry research, progress in the selection of food crop varieties adapted to agroforestry systems, and to draw some recommendations for rubber-based agroforestry systems associated with food crops. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

22 pages, 6945 KiB  
Article
Resistance to Site-Specific Succinate Dehydrogenase Inhibitor Fungicides Is Pervasive in Populations of Black and Yellow Sigatoka Pathogens in Banana Plantations from Southeastern Brazil
by Tatiane C. Silva, Silvino I. Moreira, Daniel M. de Souza, Felix S. Christiano, Maria C. G. Gasparoto, Bart A. Fraaije, Gustavo H. Goldman and Paulo C. Ceresini
Agronomy 2024, 14(4), 666; https://doi.org/10.3390/agronomy14040666 - 25 Mar 2024
Cited by 3 | Viewed by 2177
Abstract
The Sigatoka disease complex (SDC), caused by Mycosphaerella fijiensis (Mf) and M. musicola (Mm), comprises the most destructive fungal leaf streak and spot diseases of commercial banana crops worldwide. In Brazil, the site-specific succinate dehydrogenase inhibitor (SDHI) fungicides labeled [...] Read more.
The Sigatoka disease complex (SDC), caused by Mycosphaerella fijiensis (Mf) and M. musicola (Mm), comprises the most destructive fungal leaf streak and spot diseases of commercial banana crops worldwide. In Brazil, the site-specific succinate dehydrogenase inhibitor (SDHI) fungicides labeled for SDC management since 2014 present a high risk for the emergence of resistance if deployed intensively and solo. Our study determined the levels of sensitivity to boscalid and fluxapyroxad in four populations of the SDC pathogens sampled in 2020 from three distinct geographical regions under contrasting fungicide programs. Resistance, defined as EC50 values exceeding 20 µg mL−1, was prevalent at 59.7% for fluxapyroxad and 94.0% for boscalid. Only 1.5% of isolates exhibited sensitivity to both fungicides. We also assessed the changes in the corresponding fungicide target protein-encoding genes (SdhB, C, and D). None of the target site alterations detected were associated with reduced sensitivity. A second SdhC paralog was also analyzed, but target alterations were not found. However, MDR (multidrug resistance) was detected in a selection of isolates. Further monitoring for Sdh target mutations will be important, but an important role for other resistance mechanisms such as the presence of additional Sdh paralogs and MDR cannot be ruled out. These results highlight the importance of implementing sound anti-resistance management strategies when SDHI fungicides are deployed for the management of SDC. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Back to TopTop