Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = azo polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
68 pages, 4761 KB  
Review
Advances in Molecularly Imprinted Electrochemical Platforms for Food Quality Control: Targeting Antioxidants, Sweeteners, Colorants, Contaminants and Toxicants
by Lu Zhang, Shichao Zhao, Jiangwei Zhu and Li Fu
Chemosensors 2025, 13(11), 398; https://doi.org/10.3390/chemosensors13110398 - 13 Nov 2025
Cited by 2 | Viewed by 2089
Abstract
Ensuring food safety and quality has become increasingly critical due to the complexities introduced by globalization, industrialization, and extended supply chains. Traditional analytical methods for food quality control, such as chromatography and mass spectrometry, while accurate, face limitations including high costs, lengthy analysis [...] Read more.
Ensuring food safety and quality has become increasingly critical due to the complexities introduced by globalization, industrialization, and extended supply chains. Traditional analytical methods for food quality control, such as chromatography and mass spectrometry, while accurate, face limitations including high costs, lengthy analysis times, and limited suitability for on-site rapid monitoring. Electrochemical sensors integrated with molecularly imprinted polymers (MIPs) have emerged as promising alternatives, combining high selectivity and sensitivity with portability and affordability. MIPs, often termed ‘plastic antibodies,’ are synthetic receptors capable of selective molecular recognition, tailored specifically for target analytes. This review comprehensively discusses recent advancements in MIP-based electrochemical sensing platforms, highlighting their applications in detecting various food quality markers. It particularly emphasizes the detection of antioxidants—both natural (e.g., vitamins, phenolics) and synthetic (e.g., BHA, TBHQ), artificial sweeteners (e.g., aspartame, acesulfame-K), colorants (e.g., azo dyes, anthocyanins), traditional contaminants (e.g., pesticides, heavy metals), and toxicants such as mycotoxins (e.g., aflatoxins, ochratoxins). The synthesis methods, including bulk, precipitation, surface imprinting, sol–gel polymerization, and electropolymerization (EP), are critically evaluated for their effectiveness in creating highly selective binding sites. Furthermore, the integration of advanced nanomaterials, such as graphene, carbon nanotubes, and metallic nanoparticles, into these platforms to enhance sensitivity, selectivity, and stability is examined. Practical challenges, including sensor reusability, regeneration strategies, and adaptability to complex food matrices, are addressed. Finally, the review provides an outlook on future developments and practical considerations necessary to transition these innovative MIP electrochemical sensors from laboratory research to widespread adoption in industry and regulatory settings, ultimately ensuring comprehensive food safety and consumer protection. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymer (MIP) Sensors)
Show Figures

Figure 1

18 pages, 4715 KB  
Article
Acid Yellow 9 Azo Dye Gets the Blues: An Optical Spectroscopy and DFT Study of Unusual Photochemistry in Multilayer Films with PAH and Chitosan
by Mikhail Kim, Tristan H. Borchers, Monica Lin and Christopher J. Barrett
Molecules 2025, 30(19), 3850; https://doi.org/10.3390/molecules30193850 - 23 Sep 2025
Viewed by 1512
Abstract
Multilayer and free-standing films self-assembled from water-soluble anionic azo dye acid yellow 9 (AY9) and both poly(allylamine hydrochloride) (PAH) and chitosan (CS) cationic polyelectrolytes were fabricated from water solution using a layer-by-layer (LbL) technique and characterized by UV–Vis and Raman spectroscopy. Observations were [...] Read more.
Multilayer and free-standing films self-assembled from water-soluble anionic azo dye acid yellow 9 (AY9) and both poly(allylamine hydrochloride) (PAH) and chitosan (CS) cationic polyelectrolytes were fabricated from water solution using a layer-by-layer (LbL) technique and characterized by UV–Vis and Raman spectroscopy. Observations were made of a strong, unexpected, and highly unusual colour change from deep red to a distinct dark blue upon exposure of the multilayer films to an acidic environment. The colour change was attributed to the multilayer films only and was not observed either for the polymer or the dye alone, or their mixture in water solution, nor when cast as free-standing films. The significant shift to blue colour of the absorption peaks was quantified with UV–Vis spectroscopy, and a proposed explanation is presented based on density functional theory (DFT) calculations exploring possible and most likely acid-base equilibria configurations of the azo dye that result from being self-assembled. Full article
(This article belongs to the Special Issue Study on Synthesis and Photochemistry of Dyes)
Show Figures

Figure 1

12 pages, 4818 KB  
Article
Photo-Induced Birefringence in Layered Composite Materials Based on Ge–Te–In and Azo Polymer Prepared Through Different Methods
by Yordanka Trifonova, Ani Stoilova, Deyan Dimov, Georgi Mateev, Vladislava Ivanova, Iliyan Mitov and Olya Surleva
Materials 2025, 18(16), 3837; https://doi.org/10.3390/ma18163837 - 15 Aug 2025
Viewed by 711
Abstract
Bulk chalcogenides from the system (GeTe4)1−xInx, where x = 0; 5 and 10 mol%, were synthesized by a two-step melt quenching technique. New layered composite materials based on them and the azo polymer [1-4-(3-carboxy-4-hydrophenylazo) benzensulfonamido]-1,2-ethanediyl, sodium salt] [...] Read more.
Bulk chalcogenides from the system (GeTe4)1−xInx, where x = 0; 5 and 10 mol%, were synthesized by a two-step melt quenching technique. New layered composite materials based on them and the azo polymer [1-4-(3-carboxy-4-hydrophenylazo) benzensulfonamido]-1,2-ethanediyl, sodium salt] has been prepared through spin coating, electrospray deposition and via vacuum-thermal evaporation of the chalcogenide and spin coating of the azo polymer onto it. Using the latter technology, a material consisting of one chalcogenide and one azo polymer film and three chalcogenide and three azo polymer films has been fabricated. The carried-out SEM analysis shows that in the materials, initially prepared as a bilayer and multilayer structure, diffusion at the chalcogenide/polymer interface occurs leading to the formation of a homogenous composite environment. Birefringence was induced at 444 nm in all the fabricated thin film materials. The highest value of the maximal induced birefringence has been measured for the material fabricated as a stack, Δnmax = 0.118. For the material prepared as a bilayer structure and the composite material obtained through electrospray deposition, the maximal induced birefringence takes values of Δnmax = 0.101 and Δnmax = 0.095, respectively. The sample prepared via spin coating of the chalcogenide/PAZO dispersion has the lowest value of the maximal induced birefringence (Δnmax = 0.066) in comparison to the pure PAZO polymer film (Δnmax = 0.083). Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

13 pages, 3594 KB  
Article
The Synthesis of New Chalcogenides from the System GeTe6-Cu and a Layered Structure Based on Them and an Azo Polymer for Application in Optoelectronics
by Yordanka Trifonova, Ani Stoilova, Deyan Dimov, Georgi Mateev, Dimana Nazarova, Lian Nedelchev, Vladislava Ivanova and Vanya Lilova
Materials 2025, 18(14), 3387; https://doi.org/10.3390/ma18143387 - 18 Jul 2025
Viewed by 724
Abstract
New bulk chalcogenides from the system (GeTe6)1−xCux, where x = 5, 10, 15 and 20 mol%, have been synthesized. The structure and composition of the materials were studied using X-ray powder diffraction (XRD) and energy-dispersive spectroscopy (EDS). [...] Read more.
New bulk chalcogenides from the system (GeTe6)1−xCux, where x = 5, 10, 15 and 20 mol%, have been synthesized. The structure and composition of the materials were studied using X-ray powder diffraction (XRD) and energy-dispersive spectroscopy (EDS). Scanning electron microscopy (SEM) was applied to analyze the surface morphology of the samples. Some thermal characteristics such as the glass transition, crystallization and melting temperature and some physico-chemical properties such as the density, compactness and molar and free volumes were also determined. The XRD patterns show sharp diffraction peaks, indicating that the synthesized new bulk materials are crystalline. The following four crystal phases were determined: Te, Cu, CuTe and Cu2GeTe3. The results from the EDS confirmed the presence of Ge, Te and Cu in the bulk samples in concentrations in good correspondence with those theoretically determined. A layered thin-film material based on Ge14Te81Cu5, which exhibits lower network compactness compared to the other synthesized new chalcogenides, and the azo polymer PAZO was fabricated, and the kinetics of the photoinduced birefringence at 444 nm was measured. The results indicated an increase in the maximal induced birefringence for the layered structure in comparison to the non-doped azo polymer film. Full article
Show Figures

Figure 1

25 pages, 2564 KB  
Article
Kinetic and Isotherm Studies of Organic and Inorganic Anions Adsorption from Water by Quaternized Pentablock Copolymeric Film (PTBr)
by Simona Crispi, Simona Filice, Viviana Scuderi, Massimo Zimbone, Daniela Iannazzo, Consuelo Celesti and Silvia Scalese
Polymers 2025, 17(12), 1624; https://doi.org/10.3390/polym17121624 - 11 Jun 2025
Viewed by 1706
Abstract
Nowadays, nitrate ions and azo dyes are a significant source of water pollution due to their high toxicity, persistence, and potential to be carcinogenic. Both contaminants are the result of anthropogenic sources, such as sewage or industrial wastewater discharge; the first one results [...] Read more.
Nowadays, nitrate ions and azo dyes are a significant source of water pollution due to their high toxicity, persistence, and potential to be carcinogenic. Both contaminants are the result of anthropogenic sources, such as sewage or industrial wastewater discharge; the first one results also as a consequence of the intensive use of fertilizers. In this work we report the use of a new quaternized pentablock copolymer (PTBr) for the removal of nitrate ions and methyl orange (MO) dye from water by adsorption processes. Morphological, chemical, and thermal properties of the pentablock copolymer were investigated, respectively, by scanning electron microscopy (SEM), Attenuated Total Reflectance Infrared Spectroscopy (ATR-FTIR) (FT-IR), and X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC) analyses. Anionic removal ability and adsorption rate in water solutions containing either a single contaminant species or a mix of the two contaminants were studied by UV–VIS absorbance spectroscopy as a function of time and initial concentration. The presence of imidazole groups confers on PTBr a positive charge and a hydrophilic character that are responsible for an effective removal of anions from water. PTBr film reports an adsorption efficiency of 10.15 mg/g for nitrate removal and this value is in line with others reported in the literature. In the case of the simultaneous presence of nitrate and MO, it is found that nitrate ions removal is slightly affected by the presence of the dye, since both contaminants compete for electrostatic interaction with imidazole groups. On the contrary, the dye removal does not show significant change with or without the presence of nitrate ions, probably due to other kinds of interaction that it can establish with the polymer surface (π-π interaction). The adsorption process and the related mechanisms are described using kinetic and isothermal models. Despite a certain reduction in the adsorption efficiency for one of the investigated contaminants, the results confirm the possibility of using the quaternized pentablock copolymer for the co-adsorption of both inorganic and organic anions. Full article
Show Figures

Figure 1

29 pages, 11366 KB  
Article
Unraveling the Multi-Omic Landscape of Extracellular Vesicles in Human Seminal Plasma
by Laura Governini, Alesandro Haxhiu, Enxhi Shaba, Lorenza Vantaggiato, Alessia Mori, Marco Bruttini, Francesca Loria, Natasa Zarovni, Paola Piomboni, Claudia Landi and Alice Luddi
Biomolecules 2025, 15(6), 836; https://doi.org/10.3390/biom15060836 - 7 Jun 2025
Cited by 4 | Viewed by 2309
Abstract
Extracellular Vesicles (EVs) from seminal plasma have achieved attention due to their potential physiopathological role in male reproductive systems. This study employed a comprehensive proteomic and transcriptomic approach to investigate the composition and molecular signatures of EVs isolated from human seminal plasma. EVs [...] Read more.
Extracellular Vesicles (EVs) from seminal plasma have achieved attention due to their potential physiopathological role in male reproductive systems. This study employed a comprehensive proteomic and transcriptomic approach to investigate the composition and molecular signatures of EVs isolated from human seminal plasma. EVs from Normozoospermic (NORMO), OligoAsthenoTeratozoospermic (OAT), and Azoospermic (AZO) subjects were isolated using a modified polymer precipitation-based protocol and characterized for size and morphology. Comprehensive proteomic analysis, using both gel-free and gel-based approaches, revealed distinct protein profiles in each group (p<0.01), highlighting potential molecules and pathways involved in sperm function and fertility. The data are available via ProteomeXchange with identifiers PXD051361 and PXD051390, respectively. Transcriptomic analysis confirmed the trend of a general downregulation of AZO and OAT compared to NORMO shedding light on regulatory mechanisms of sperm development. Bioinformatic tools were applied for functional omics analysis; the integration of proteomic and transcriptomic data provided a comprehensive understanding of the cargo content and regulatory networks present in EVs. This study contributes to elucidating the key role of EVs in the paracrine communication regulating spermatogenesis. A full understanding of these pathways not only suggests potential mechanisms regulating male fertility but also offers new insights into the development of diagnostic tools targeting male reproductive disorders. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanism of Spermatogenesis)
Show Figures

Graphical abstract

19 pages, 6145 KB  
Article
Study on Photodeformation of Solvent Resistance in Hydrogen-Bonded Cross-Linked Main-Chain Azobenzene Films
by Zhaoyang Zhang, Shengkui Ma and Jianfeng Gao
Molecules 2025, 30(10), 2106; https://doi.org/10.3390/molecules30102106 - 9 May 2025
Viewed by 1297
Abstract
Hydrogen-bonded cross-linked main chain azobenzene (azo) photoactive polymers have broad application prospects in flexible actuators, optical actuators, and other fields. Most of the research on this kind of photoresponsive material is mainly focused on air, and exploration in solvents remains underexplored. In this [...] Read more.
Hydrogen-bonded cross-linked main chain azobenzene (azo) photoactive polymers have broad application prospects in flexible actuators, optical actuators, and other fields. Most of the research on this kind of photoresponsive material is mainly focused on air, and exploration in solvents remains underexplored. In this paper, azobenzene polyamide ester semicrystalline polymer (PEA-6T) with hydrogen-bond cross-linking was synthesized by Michael addition polymerization. The uniaxially oriented polymer film with high orientation (48.85%) and fast response (5 s under UV light and 55 s under visible light) was obtained by a simple solution casting/mechanical stretching method. Compared with PEA-2T and PEA-4T, PEA-6T exhibits enhanced mechanical properties (elastic modulus increased by 17.4%; yield strength increased by 34.1%; breaking strength increased by 75.4%; elongation at break increased by 33.8%; toughness increased by 101.3%; photoinduced stress increased by 43.5%) and reduced light response time (decreased by 58.3% in ultraviolet light and 50% in visible light) due to the elongation of the compliant chain length. The thin PEA-6T film exhibited light-induced deformation not only in air but also in polar solvents such as water, methanol, ethanol, butanol, and saline solutions (e.g., normal saline, 0.9 wt% NaCl, and simulated seawater, 3.5 wt% NaCl). In addition, polarizing optical microscope (POM) observations showed that the brightness and texture direction of the films remained stable (ΔBrightness < 5%), the light response time was consistent (6 s under UV light, 65 s under visible light), the light-induced stress retention rate was 95%, and the films exhibited good solvent resistance. This study bridges the research gap in azobenzene photoresponsive materials in solvent environments, and the material shows potential for applications in marine equipment coatings or biomedical actuators. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

22 pages, 5685 KB  
Article
Toxic Anionic Azo Dye Removal from Artificial Wastewater by Using Polyaniline/Clay Nanocomposite Adsorbent: Isotherm, Kinetics and Thermodynamic Study
by Mohammad Ilyas Khan, Saif Ahmed Yahya, Abubakr ElKhaleefa, Ihab Shigidi, Ismat Hassan Ali, Mohammad Rehan and Abdul Majeed Pirzada
Processes 2025, 13(3), 827; https://doi.org/10.3390/pr13030827 - 12 Mar 2025
Cited by 4 | Viewed by 1546
Abstract
This study presents the synthesis and utilization of a conductive polymer/clay nanocomposite for the adsorptive removal of an azo dye, methyl orange (MO), from artificial wastewater. The PANI-CLAY nanocomposites were synthesized by means of the oxidative polymerization route and characterized using the Brunauer, [...] Read more.
This study presents the synthesis and utilization of a conductive polymer/clay nanocomposite for the adsorptive removal of an azo dye, methyl orange (MO), from artificial wastewater. The PANI-CLAY nanocomposites were synthesized by means of the oxidative polymerization route and characterized using the Brunauer, Emmett and Teller thermogravimetric analysis, Fourier-Transform Infrared spectra and Scanning Electron Microscopy. The surface area of the clay mineral decreased from 37.38 to 13.44 m2/g for 10 g of PANI/CLAY when made into a composite with PANI. Such behavior is most likely due to the possible coverage of the clay surface by a layer of PANI. Further, TGA revealed that incorporating CLAY significantly improved the thermal stability of PANI. The effects of adsorption process parameters such as adsorbent dosage (0.006–0.4 g), solution pH (1, 3, 5, 7, 9, 11 and 13), initial dye concentration (50–300 ppm), contact time (1–80 min) and temperature (25 °C, 30 °C, 35 °C and 40 °C) on the % removal efficiency were investigated. The experimental data were well fitted by the pseudo-second-order kinetic model. The maximum uptake capacity (qmax) values increased from 42.017 mg/g (PANI/CLAY 10 g) to 55.87 mg/g for PANI alone. The uptake capacity implies that the prepared adsorbents possess excellent adsorption characteristics with high affinity towards organic dye removal. Full article
(This article belongs to the Special Issue Advances in Adsorption of Wastewater Pollutants)
Show Figures

Figure 1

31 pages, 15017 KB  
Article
Green Synthesized Composite AB-Polybenzimidazole/TiO2 Membranes with Photocatalytic and Antibacterial Activity
by Hristo Penchev, Katerina Zaharieva, Silvia Dimova, Ivelina Tsacheva, Rumyana Eneva, Stephan Engibarov, Irina Lazarkevich, Tsvetelina Paunova-Krasteva, Maria Shipochka, Ralitsa Mladenova, Ognian Dimitrov, Daniela Stoyanova and Irina Stambolova
Crystals 2024, 14(12), 1081; https://doi.org/10.3390/cryst14121081 - 16 Dec 2024
Cited by 2 | Viewed by 1910
Abstract
Novel AB-Polybenzimidazole (AB-PBI)/TiO2 nanocomposite membranes have been prepared using a synthetic green chemistry approach. Modified Eaton’s reagent (methansulfonic acid/P2O5) was used as both reaction media for microwave-assisted synthesis of AB-PBI and as an efficient dispersant of partially agglomerated [...] Read more.
Novel AB-Polybenzimidazole (AB-PBI)/TiO2 nanocomposite membranes have been prepared using a synthetic green chemistry approach. Modified Eaton’s reagent (methansulfonic acid/P2O5) was used as both reaction media for microwave-assisted synthesis of AB-PBI and as an efficient dispersant of partially agglomerated titanium dioxide powders. Composite membranes of 80 µm thickness have been prepared by a film casting approach involving subsequent anti-solvent inversion in order to obtain porous composite membranes possessing high sorption capacity. The maximal TiO2 filler content achieved was 20 wt.% TiO2 nanoparticles (NPs). Titania particles were green synthesized (using a different content of Mentha Spicata (MS) aqueous extract) by hydrothermal activation (150 °C), followed by thermal treatment at 400 °C. The various methods such as powder X-ray diffraction and Thermogravimetric analyses, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Energy-dispersive X-ray spectroscopy, Electronic paramagnetic resonance, Scanning Electron Microscopy and Transmission Electron Microscopy have been used to study the phase and surface composition, structure, morphology, and thermal behavior of the synthesized nanocomposite membranes. The photocatalytic ability of the so-prepared AB-Polybenzimidazole/bio-TiO2 membranes was studied for decolorization of Reactive Black 5 (RB5) as a model azo dye pollutant under UV light illumination. The polymer membrane in basic form, containing TiO2 particles, was obtained with a 40 mL quantity of the MS extract, exhibiting the highest decolorization rate (96%) after 180 min of UV irradiation. The so-prepared AB-Polybenzimidazole/TiO2 samples have a powerful antibacterial effect on E. coli when irradiated by UV light. Full article
Show Figures

Figure 1

12 pages, 3700 KB  
Article
Improvement of Dye-Sensitized Solar Cell Performance via Addition of Azopyridine Derivative in Polymer Gel Electrolytes
by Muhammad Faisal Amin, Paweł Gnida, Jolanta Konieczkowska, Magdalena Szubka and Ewa Schab-Balcerzak
Materials 2024, 17(24), 6107; https://doi.org/10.3390/ma17246107 - 13 Dec 2024
Cited by 1 | Viewed by 1099
Abstract
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied. When [...] Read more.
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied. When irradiated with a UV light of 365 nm, the AZO dye underwent photoisomerization, which allowed the gel electrolyte to absorb heat from the UV irradiation and increase its ionic conductivity. It was found that by the addition of azopyridine into the polymer electrolyte, there was an improvement in the photovoltaic parameters of cells. By increasing the dye content from 1% to 10% by weight in the electrolyte, an 11% growth in short current density was observed, resulting in about a 10% rise in cell efficiency. Full article
Show Figures

Figure 1

32 pages, 16379 KB  
Review
Electrochemical Sensing Strategies for Synthetic Orange Dyes
by Dihua Wu, Jiangwei Zhu, Yuhong Zheng and Li Fu
Molecules 2024, 29(21), 5026; https://doi.org/10.3390/molecules29215026 - 24 Oct 2024
Cited by 9 | Viewed by 22278
Abstract
This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with [...] Read more.
This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with electrode surfaces. The review covers a range of sensor designs, from unmodified electrodes to advanced nanomaterial-based platforms. Chemically modified electrodes incorporating polymers and molecularly imprinted polymers are discussed for their enhanced selectivity. Particular attention is given to nanomaterial-based sensors, including those utilizing carbon nanotubes, graphene derivatives, and metal nanoparticles, which have demonstrated exceptional sensitivity and wide linear ranges. The potential of biological-based approaches, such as DNA interaction sensors and immunosensors, is also evaluated. Current challenges in the field are addressed, including matrix effects in complex samples and long-term stability issues. Emerging trends are highlighted, including the development of multi-modal sensing platforms and the integration of artificial intelligence for data analysis. The review concludes by discussing the commercial potential of these sensors in food safety, environmental monitoring, and smart packaging applications, emphasizing their importance in ensuring the safe use of synthetic orange dyes across industries. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications—2nd Edition)
Show Figures

Figure 1

11 pages, 4738 KB  
Article
Assessing the Effect of Twisting and Twisting Fatigue on ZnO:Al Thin Film Performance on PEN and PET Substrates
by Dilveen W. Mohammed, Rayan M. Ameen, Rob Waddingham, Andrew J. Flewitt, James Bowen and Stephen N. Kukureka
Micromachines 2024, 15(7), 853; https://doi.org/10.3390/mi15070853 - 29 Jun 2024
Cited by 3 | Viewed by 1612
Abstract
This study examines the electromechanical characteristics of aluminium-doped zinc oxide (AZO) films. The films were produced using the RF magnetron sputtering process with a consistent thickness of 150 nm on various polymer substrates. The study focuses on assessing the electro-mechanical failure processes of [...] Read more.
This study examines the electromechanical characteristics of aluminium-doped zinc oxide (AZO) films. The films were produced using the RF magnetron sputtering process with a consistent thickness of 150 nm on various polymer substrates. The study focuses on assessing the electro-mechanical failure processes of coated segments using flexible substrates, namely polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), with a specific emphasis on typical cracking and delamination occurrences. This examination involves conducting twisting deformation together with using standardised electrical resistance measurements and optical microscope monitoring instruments. It was found that the crack initiation angle is mostly dependent on the mechanical mismatch between the coating and substrate. Higher critical twisting angle values are observed for the AZO/PEN film during twisting testing. Relative to the perpendicular plane of the untwisted sample, it was found that cracks initiated at a twist angle equal to 42° ± 2.1° and 38° ± 1.7° for AZO/PEN and AZO/PET, respectively, and propagated along the sample length. SEM images indicate that the twisting motion results in deformation in the thin film material, leading to the presence of both types of stress in the film structure. These discoveries emphasise the significance of studying the mechanical properties of thin films under different stress conditions, as it can impact their performance and reliability in real-world applications. The electromechanical stability of AZO was found to be similar on both substrates during fatigue testing. Studying the electromechanical properties of various material combinations is important for selecting polymer substrates and predicting the durability of flexible electronic devices made from polyester. Full article
Show Figures

Figure 1

23 pages, 5148 KB  
Review
Research Progress of TiO2 Modification and Photodegradation of Organic Pollutants
by Tan Mao, Junyan Zha, Ying Hu, Qian Chen, Jiaming Zhang and Xueke Luo
Inorganics 2024, 12(7), 178; https://doi.org/10.3390/inorganics12070178 - 26 Jun 2024
Cited by 31 | Viewed by 9130
Abstract
Titanium dioxide (TiO2) photocatalysts, characterized by exceptional photocatalytic activity, high photoelectric conversion efficiency, and economic viability, have found widespread application in recent years for azo dye degradation. However, inherent constraints, such as the material’s limited visible light absorption stemming from its [...] Read more.
Titanium dioxide (TiO2) photocatalysts, characterized by exceptional photocatalytic activity, high photoelectric conversion efficiency, and economic viability, have found widespread application in recent years for azo dye degradation. However, inherent constraints, such as the material’s limited visible light absorption stemming from its bandgap and the swift recombination of charge carriers, have impeded its broader application potential. Encouragingly, these barriers can be mitigated through the modification of TiO2. In this review, the common synthesis methods of TiO2 are reviewed, and the research progress of TiO2 modification technology at home and abroad is discussed in detail, including precious metal deposition, transition metal doping, rare earth metal doping, composite semiconductors, and composite polymers. These modification techniques effectively enhance the absorption capacity of TiO2 in the visible region and reduce the recombination rate of carriers and electrons, thus significantly improving its photocatalytic performance. Finally, this paper looks forward to the future development direction of TiO2 photocatalytic materials, including the exploration of new modified materials, in-depth mechanism research, and performance optimization in practical applications, to provide useful references for further research and application of TiO2 photocatalytic materials. Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 2019 KB  
Article
Molecularly Imprinted Polymer-Based Electrochemical Sensor for the Detection of Azoxystrobin in Aqueous Media
by Vu Bao Chau Nguyen, Jekaterina Reut, Jörg Rappich, Karsten Hinrichs and Vitali Syritski
Polymers 2024, 16(10), 1394; https://doi.org/10.3390/polym16101394 - 14 May 2024
Cited by 3 | Viewed by 2571
Abstract
This work presents an electrochemical sensor detecting a fungicide-azoxystrobin (AZO) in aqueous environments. This AZO sensor utilizes a thin-film metal electrode (TFME) combined with an AZO-selective molecularly imprinted polymer (AZO–MIP). The AZO–MIP was directly generated on TFME through electrochemical polymerization from the solution [...] Read more.
This work presents an electrochemical sensor detecting a fungicide-azoxystrobin (AZO) in aqueous environments. This AZO sensor utilizes a thin-film metal electrode (TFME) combined with an AZO-selective molecularly imprinted polymer (AZO–MIP). The AZO–MIP was directly generated on TFME through electrochemical polymerization from the solution containing two functional monomers: aniline (Ani) and m-phenylenediamine (mPD), and the template: AZO, which was afterwards removed to form AZO-selective cavities in the polymer matrix. The AZO–MIP preparation was characterized by electrochemical and ellipsometry measurements. Optimization of the synthesis parameters, including the charge density applied during electrodeposition, the monomer-to-template ratio, was performed to enhance the sensor’s performance. The results demonstrated that the AZO sensor achieved a low limit of detection (LOD) of 3.6 nM and a limit of quantification (LOQ) of 11.8 nM in tap water, indicating its sensitivity in a complex aqueous environment. The sensor also exhibited satisfactory selectivity for AZO in both ultrapure and tap-water samples and achieved a good recovery (94–119%) for the target analyte. This study highlights the potential of MIP-based electrochemical sensors for the rapid and accurate detection of fungicide contaminants in water, contributing to the advancement of analytical tools for water-quality monitoring and risk assessment. Full article
Show Figures

Figure 1

13 pages, 2791 KB  
Article
Verification of the Inverse Scale Effect Hypothesis on Viscosity and Diffusion by Azo-Amino Acid Schiff Base Copper Complexes
by Yoshitora Wadayama, Ai Kaneda, Taiga Imae, Daisuke Nakane and Takashiro Akitsu
J. Compos. Sci. 2024, 8(5), 177; https://doi.org/10.3390/jcs8050177 - 10 May 2024
Cited by 1 | Viewed by 1599
Abstract
Microdroplets generated in microfluidic devices are attracting attention as a new chemical reaction field and are expected to improve reactivity. One of the effects of microscaling is that the ratio of the force that acts on the diffusion and movement of substances to [...] Read more.
Microdroplets generated in microfluidic devices are attracting attention as a new chemical reaction field and are expected to improve reactivity. One of the effects of microscaling is that the ratio of the force that acts on the diffusion and movement of substances to gravity is different from that of ordinary solvents. Recently, we proposed a hypothesis for determining reaction acceleration through micro-miniaturization: If a reaction is inhibited by setting the volume and viscosity of the solution to conditions that are unfavorable to the reaction on a normal scale, that reaction can be promoted in microfluidics. Therefore, for the purpose of this verification, (1) we used an amino acid Schiff base copper(II) complex with an azobenzene group to demonstrate the polarization-induced orientation in a polymer film (the redirection that is mechanically maintained in a soft matter matrix). Numerical data on optical anisotropy parameters were reported. (2) When the reaction is confirmed to be promoted in laminar flow in a microfluidic device and its azo derivative, a copper(II) complex is used to increase the solvent viscosity or diffusion during synthesis on a normally large scale. We will obtain and discuss data on the investigation of changing the solvent volume as a region. The range of experimental conditions for volume and viscosity did not lead to an improvement in synthetic yield, nor did (3) the comparison of solvents and viscosity for single-crystal growth of amino acid Schiff base copper(II) complexes having azobenzene groups. A solvent whose viscosity was measured was used, but microcrystals were obtained using the diffusion method. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

Back to TopTop