Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = azithromycin formulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5213 KiB  
Article
Lung Delivery of Lactose-Free Microparticles Loaded with Azithromycin for the Treatment of Bacterial Infections
by Gracia Molina, Dolores R. Serrano, María Auxiliadora Dea-Ayuela, Carmina Rodriguez, Elena González-Burgos and Brayan J. Anaya
Pharmaceutics 2025, 17(6), 770; https://doi.org/10.3390/pharmaceutics17060770 - 11 Jun 2025
Viewed by 560
Abstract
Background/Objectives: Respiratory bacterial infections remain a significant global health challenge, with effective drug delivery to the lungs being crucial for successful treatment. This study aimed to develop a lactose-free dry powder inhaler (DPI) formulation containing azithromycin (AZM) microparticles for enhanced pulmonary delivery. Methods: [...] Read more.
Background/Objectives: Respiratory bacterial infections remain a significant global health challenge, with effective drug delivery to the lungs being crucial for successful treatment. This study aimed to develop a lactose-free dry powder inhaler (DPI) formulation containing azithromycin (AZM) microparticles for enhanced pulmonary delivery. Methods: Using a quality-by-design approach, an optimized formulation (4% AZM, 20% leucine, and 76% mannitol) was achieved. Results: The formulation demonstrated excellent aerodynamic properties with a mass median aerodynamic diameter (MMAD) of 2.72 μm ± 0.01 μm and fine particle fraction (FPF) (<5 μm) of 65.42% ± 5.12%. AZM-loaded microparticles exhibited enhanced efficacy against Pseudomonas aeruginosa with a two-fold reduction in the minimum bactericidal concentration (7.81 μg/mL vs. 15.62 μg/mL) compared to unprocessed AZM, while maintaining activity against Streptococcus pneumoniae. AZM microparticles demonstrated good biocompatibility with red blood cells and bronchial epithelial cells at therapeutic concentrations. Conclusions: These findings establish a promising lactose-free antibiotic formulation for targeted pulmonary delivery with enhanced antimicrobial efficacy. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections, 2nd Edition)
Show Figures

Figure 1

26 pages, 19631 KiB  
Article
Design of a Foam-Actuated Nano-Emulgel for Perioceutic Drug Delivery: Formulation, Characterization, and Antimicrobial Efficacy
by Theresa P. K. Varughese, Poornima Ramburrun, Nnamdi I. Okafor, Sandy van Vuuren and Yahya E. Choonara
Gels 2025, 11(5), 373; https://doi.org/10.3390/gels11050373 - 20 May 2025
Viewed by 672
Abstract
Periodontitis is a prevalent oral condition worldwide. Azithromycin, a conventional lipophilic drug for periodontal treatment, often causes systemic side effects when administered orally. To address this, azithromycin-loaded nano-emulgels were developed using olive oil as a carrier within a xanthan gum aqueous gel phase. [...] Read more.
Periodontitis is a prevalent oral condition worldwide. Azithromycin, a conventional lipophilic drug for periodontal treatment, often causes systemic side effects when administered orally. To address this, azithromycin-loaded nano-emulgels were developed using olive oil as a carrier within a xanthan gum aqueous gel phase. This oil-in-aqueous gel emulsion was actuated into a foam for localized drug delivery in gingival and periodontal disease. The solubility of azithromycin in various vehicles was tested, with olive oil showing the best solubility (0.347 mg/mL). Thermodynamic stability testing identified viable nano-formulations, with encapsulation efficiencies ranging from 98 to 100%. These formulations exhibited rapid drug release within 2–8 h. Muco-adhesion studies and ex vivo permeability tests on porcine buccal mucosa highlighted the beneficial properties of xanthan gum for local drug retention within the oral cavity. Antimicrobial efficiency was assessed using minimum inhibitory concentrations against various oral pathogens, where the formulation with equal surfactant and co-surfactant ratios showed the most potent antibacterial activity, ranging from 0.390 to 1.56 µg/mL. This was supported by the shear-thinning, muco-adhesive, and drug-retentive properties of the xanthan gel base. The study also examined the influence of the oil phase with xanthan gum gel on foam texture, rheology, and stability, demonstrating a promising prototype for periodontitis treatment. Full article
(This article belongs to the Special Issue Hydrogels, Oleogels and Bigels Used for Drug Delivery)
Show Figures

Graphical abstract

25 pages, 1830 KiB  
Article
Development and Evaluation of Azithromycin-Loaded Transethosomes for Enhanced Dermal Delivery and Antibacterial Efficacy
by Meriem Rezigue, Hadeia Mashaqbeh, Alaa A. A. Aljabali, Randa SH. Mansour and Iyad Hamzeh
Pharmaceutics 2025, 17(4), 400; https://doi.org/10.3390/pharmaceutics17040400 - 21 Mar 2025
Viewed by 764
Abstract
Background/Objectives: The topical delivery of antibiotics through transethosomes shows promise for enhancing its dermal delivery for the treatment of skin infections. This study aimed to develop and characterize azithromycin-loaded transethosomes to enhance topical drug delivery and improve the antibacterial activity of azithromycin. [...] Read more.
Background/Objectives: The topical delivery of antibiotics through transethosomes shows promise for enhancing its dermal delivery for the treatment of skin infections. This study aimed to develop and characterize azithromycin-loaded transethosomes to enhance topical drug delivery and improve the antibacterial activity of azithromycin. Methods: The prepared azithromycin formulations underwent assessment for various characteristics, including their vesicle dimensions, size distribution, zeta potential, encapsulation efficiency, and morphological features (via TEM analysis). Additionally, their thermal properties were examined through DSC analysis, and their stability was monitored over six months under refrigerated storage conditions. The sequential tape-stripping technique was employed to conduct ex vivo penetration studies on human skin. Interactions between transethosomes and stratum corneum lipids were examined using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Additionally, the formulations were tested for their in vitro antibacterial efficacy against Staphylococcus aureus. Results: The findings revealed that AZ 1 and AZ 2 had vesicle sizes of 108.44 ± 5.72 nm and 70.42 ± 6.02 nm, zeta potential measurements of −11.897 ± 1.820 mV and −34.575 ± 4.535 mV, and high entrapment efficiencies of 99.259 ± 0.086% and 99.560 ± 0.014%, respectively. Transmission electron microscopy (TEM) analysis confirmed the spherical nature of the vesicles, whereas differential scanning calorimetry (DSC) confirmed the successful encapsulation of azithromycin in transethosomes. The formulations exhibited acceptable physical stability at 4 °C for six months. Ex vivo studies revealed a significantly higher deposition of azithromycin in the skin by both transethosome formulations than by the drug solution (p < 0.05), with low systemic absorption. Among the formulations, AZ 2 resulted in much deeper skin penetration, with deeper dermal and epidermal layer deposition (1.388 ± 0.242 µg/cm2) compared to AZ 1 (four-fold higher, p < 0.05) and to the control drug solution (12 times more, p < 0.05). Analysis using ATR-FTIR suggested that azithromycin-loaded transethosomes improve the drug penetration by increasing the lipid fluidity and extracting lipids from the stratum corneum. Moreover, the transethosomes loaded with azithromycin demonstrated enhanced antibacterial efficacy against Staphylococcus aureus, with minimum inhibitory concentration (MIC) values that were lower than those of the free drug solution. Conclusion: The results highlight the promising potential of transethosomes as a novel topical drug delivery system for azithromycin that offers improved therapeutic effects against skin infections Full article
Show Figures

Graphical abstract

20 pages, 4203 KiB  
Article
Azithromycin-Loaded Nanoparticles Incorporated in Chitosan-Based Soft Hydrogels: A Novel Approach for Dental Drug Delivery
by Jakub Kwiatek, Magdalena Paczkowska-Walendowska, Anna Rył, Tomasz M. Karpiński, Andrzej Miklaszewski, Ewelina Swora-Cwynar, Marta Leśna and Judyta Cielecka-Piontek
Pharmaceutics 2025, 17(3), 304; https://doi.org/10.3390/pharmaceutics17030304 - 26 Feb 2025
Cited by 1 | Viewed by 1128
Abstract
Background: Azithromycin (AZC), a BCS class II/IV antibiotic with broad-spectrum antimicrobial activity, has poor water solubility, limiting its formulation potential. This study aimed to develop and optimize AZC-based soft hydrogels for the first time for improved solubility, local controlled drug release, and local [...] Read more.
Background: Azithromycin (AZC), a BCS class II/IV antibiotic with broad-spectrum antimicrobial activity, has poor water solubility, limiting its formulation potential. This study aimed to develop and optimize AZC-based soft hydrogels for the first time for improved solubility, local controlled drug release, and local dental applications. Methods: AZC nanoparticles (based on polyvinylpyrrolidone) were synthesized via electrospinning enhanced solubility 40-fold. These were incorporated into chitosan (CS) hydrogels with varying concentrations and degrees of deacetylation (DDA), optimized using a factorial design. Hydrogels were characterized for drug release, mucoadhesion, antioxidant, anti-inflammatory, and antimicrobial properties, with Principal Component Analysis (PCA) assessing correlations. Results: Soft hydrogels with 3% CS and 80% DDA achieved sustained drug release (62.9–94.7% over 48 h), strong mucoadhesion, and enhanced biological activity. Higher CS and DDA improved antioxidant and anti-inflammatory effects due to increased free amino groups. Antimicrobial tests showed efficacy against Streptococcus mutans and Staphylococcus aureus. PCA revealed an inverse correlation between AZC release and mucoadhesion and positive correlations between release and anti-inflammatory activity. Conclusions: AZC-based soft hydrogels significantly improved solubility, controlled release, and biological activity, showing strong potential for dental drug delivery. Further clinical validation and optimization are recommended. Full article
(This article belongs to the Special Issue Application of Marine-Derived Polymers in Drug Dosage Forms)
Show Figures

Graphical abstract

20 pages, 2734 KiB  
Article
Formulation of Thermo-Sensitive In Situ Gels Loaded with Dual Spectrum Antibiotics of Azithromycin and Ofloxacin
by Raghad Alsheikh, Ádám Haimhoffer, Dániel Nemes, Zoltán Ujhelyi, Pálma Fehér, Liza Józsa, Gábor Vasvári, Ágota Pető, Dóra Kósa, Lajos Nagy, László Horváth, Bence Balázs and Ildikó Bácskay
Polymers 2024, 16(21), 2954; https://doi.org/10.3390/polym16212954 - 22 Oct 2024
Cited by 4 | Viewed by 3190
Abstract
In situ gels have been developed as an innovative strategy to prolong corneal residence time and enhance drug absorption compared to traditional eye drops. Our study aimed to formulate an ophthalmic in situ gel with a combination of two thermosensitive poloxamers, P407 and [...] Read more.
In situ gels have been developed as an innovative strategy to prolong corneal residence time and enhance drug absorption compared to traditional eye drops. Our study aimed to formulate an ophthalmic in situ gel with a combination of two thermosensitive poloxamers, P407 and P188, in an optimal ratio not only to increase the time of action but also to increase the solubility of selected antibiotics for the treatment of ophthalmic infections. Two BSC II class substances, Azithromycin and Ofloxacin, with different mechanisms of action, have been incorporated into the in situ gel system after determining their solubility. The antibiotics-loaded in situ gel formulation was evaluated for its clarity, pH, rheological properties, and gel characteristics of gelling time, temperature, and capacity. The formulation demonstrated satisfactory clarity, appropriate pH, effective gelation properties in simulated tear fluid, and suitable rheological characteristics. In addition, APIs release insight has been studied through a dissolution test, and the effectivity against sensitive and resistant bacterial strains has been proved through the antimicrobial study. Therefore, our in situ gel system based on thermosensitive poloxamers, with two hydrophobic antibiotics, AZM and OFX, can be considered a valuable approach for ophthalmic drug delivery with an enhancement of the antibiotics bioavailability through increasing the contact time with the ocular surface and enhancing patient compliance. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

15 pages, 1304 KiB  
Article
Longitudinal Trends in In-Patient Antibiotic Consumption According to the WHO Access, Watch, Reserve (AWaRe) Antibiotic Groups and Cost: An Analysis of Data at a National Antimicrobial Consumption Network (NAC-NET) Site in North India over 7 Years (2017–2023)
by Niti Mittal, Ashish Tayal, Suneel Kumar, Reevanshi Dhawan, Nidhi Goel and Rakesh Mittal
Antibiotics 2024, 13(7), 673; https://doi.org/10.3390/antibiotics13070673 - 19 Jul 2024
Viewed by 3586
Abstract
(1) Background: Antibiotic surveillance data are crucial to map out strategies to promote their optimal use at hospital and community levels. We conducted a comprehensive analysis of longitudinal trends in antibiotic consumption over 7 years at a core “National Antimicrobial Consumption Network” site [...] Read more.
(1) Background: Antibiotic surveillance data are crucial to map out strategies to promote their optimal use at hospital and community levels. We conducted a comprehensive analysis of longitudinal trends in antibiotic consumption over 7 years at a core “National Antimicrobial Consumption Network” site in North India. (2) Methods: In-patient antibiotic consumption data (2017–2023) were obtained from the hospital’s central drug store and organised as follows: defined daily dose per 100 bed-days; antibiotic consumption as per the WHO access, watch and reserve classification; trends in overall and different antibiotic classes’ consumption; paediatric formulations of antibiotics; and hospital’s annual expenditure on antibiotics. (3) Results: During the 7-year study period, no significant trend could be observed in the overall antibiotic consumption (average annual percent change, AAPC: 9.22; 95% CI: −16.46, 34.9) and cost (AAPC: 13.55; −13.2, 40.3). There was a higher proportion of the consumption of antibiotics in the “reserve” group from 2021 onwards compared to previous years, but the overall trend over 7 years was not significant (AAPC: 319.75; −137.6, 777.1). Antibiotic combinations, classified under the WHO “not recommended” category, comprised a significant proportion of antibiotics consumed. A remarkably increased consumption of azithromycin and doxycycline was recorded during 2020 and 2021, coinciding with the COVID-19 pandemic. (4) Conclusions: Some recommendations to optimise antibiotic use are promoting the use of narrow spectrum “access” group agents; linking antimicrobial resistance and consumption data to formulate effective therapeutic and prophylactic antibiotic use guidelines; and the adoption of restrictive antibiotic policy. Full article
Show Figures

Figure 1

19 pages, 4454 KiB  
Article
Robust CA-GO-TiO2/PTFE Photocatalytic Membranes for the Degradation of the Azithromycin Formulation from Wastewaters
by Veronica Satulu, Andreea Madalina Pandele, Giovanina-Iuliana Ionica, Liliana Bobirică, Anca Florina Bonciu, Alexandra Scarlatescu, Constantin Bobirică, Cristina Orbeci, Stefan Ioan Voicu, Bogdana Mitu and Gheorghe Dinescu
Polymers 2024, 16(10), 1368; https://doi.org/10.3390/polym16101368 - 10 May 2024
Cited by 8 | Viewed by 2028
Abstract
We have developed an innovative thin-film nanocomposite membrane that contains cellulose acetate (CA) with small amounts of TiO2-decorated graphene oxide (GO) (ranging from 0.5 wt.% to 2 wt.%) sandwiched between two polytetrafluoroethylene (PTFE)-like thin films. The PTFE-like films succeeded in maintaining [...] Read more.
We have developed an innovative thin-film nanocomposite membrane that contains cellulose acetate (CA) with small amounts of TiO2-decorated graphene oxide (GO) (ranging from 0.5 wt.% to 2 wt.%) sandwiched between two polytetrafluoroethylene (PTFE)-like thin films. The PTFE-like films succeeded in maintaining the bulk porosity of the support while increasing the thermal and chemical robustness of the membrane and boosting the catalytic activity of TiO2 nanoparticles. The membranes exhibited a specific chemical composition and bonding, with predominant carbon–oxygen bonds from CA and GO in the bulk, and carbon–fluorine bonds on their PTFE-like coated sides. We have also tested the membranes’ photocatalytic activities on azithromycin-containing wastewaters, demonstrating excellent efficiency with more than 80% degradation for 2 wt.% TiO2-decorated GO in the CA-GO-TiO2/PTFE-like membranes. The degradation of the azithromycin formulation occurs in two steps, with reaction rates being correlated to the amount of GO-TiO2 in the membranes. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites)
Show Figures

Graphical abstract

15 pages, 1994 KiB  
Article
PBPK Modeling of Azithromycin Systemic Exposure in a Roux-en-Y Gastric Bypass Surgery Patient Population
by Suvarchala Kiranmai Avvari, Jaclyn A. Cusumano, Vamshi Krishna Jogiraju, Pooja Manchandani and David R. Taft
Pharmaceutics 2023, 15(11), 2520; https://doi.org/10.3390/pharmaceutics15112520 - 24 Oct 2023
Cited by 2 | Viewed by 2596
Abstract
In this investigation, PBPK modeling using the Simcyp® Simulator was performed to evaluate whether Roux-en-Y gastric bypass (RYGB) surgery impacts the oral absorption and bioavailability of azithromycin. An RYGB surgery patient population was adapted from the published literature and verified using the [...] Read more.
In this investigation, PBPK modeling using the Simcyp® Simulator was performed to evaluate whether Roux-en-Y gastric bypass (RYGB) surgery impacts the oral absorption and bioavailability of azithromycin. An RYGB surgery patient population was adapted from the published literature and verified using the same probe medications, atorvastatin and midazolam. Next, a PBPK model of azithromycin was constructed to simulate changes in systemic drug exposure after the administration of different oral formulations (tablet, suspension) to patients pre- and post-RYGB surgery using the developed and verified population model. Clinically observed changes in azithromycin systemic exposure post-surgery following oral administration (single-dose tablet formulation) were captured using PBPK modeling based on the comparison of model-predicted exposure metrics (Cmax, AUC) to published clinical data. Model simulations predicted a 30% reduction in steady-state AUC after surgery for three- and five-day multiple dose regimens of an azithromycin tablet formulation. The relative bioavailability of a suspension formulation was 1.5-fold higher than the tablet formulation after multiple dosing. The changes in systemic exposure observed after surgery were used to evaluate the clinical efficacy of azithromycin against two of the most common pathogens causing community acquired pneumonia based on the corresponding AUC24/MIC pharmacodynamic endpoint. The results suggest lower bioavailability of the tablet formulation post-surgery may impact clinical efficacy. Overall, the research demonstrates the potential of a PBPK modeling approach as a framework to optimize oral drug therapy in patients post-RYGB surgery. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

13 pages, 2672 KiB  
Article
Development of Tea Tree Oil Based Nanoemulgel Loaded with Azithromycin for Enhancing the Antibacterial Activity
by Nasrin E. Khalifa, Marwa H. Abdallah, Hanaa A. Elghamry, Weam M. A. Khojali, El-Sayed Khafagy, Hemat El-Sayed El-Horany and Seham Shawky
Processes 2023, 11(6), 1836; https://doi.org/10.3390/pr11061836 - 17 Jun 2023
Cited by 8 | Viewed by 2653
Abstract
Azithromycin (AZ) is an azalide macrolide antibiotic that is frequently employed for treating bacterial skin infections. It suffers from limited oral bioavailability, which results from incomplete absorption or extensive first-pass metabolism. Therefore, preparing azithromycin formulations for topical administration is highly recommended to avoid [...] Read more.
Azithromycin (AZ) is an azalide macrolide antibiotic that is frequently employed for treating bacterial skin infections. It suffers from limited oral bioavailability, which results from incomplete absorption or extensive first-pass metabolism. Therefore, preparing azithromycin formulations for topical administration is highly recommended to avoid first-pass metabolism and to boost the concentration of the drug on the skin. The objective of our investigation was to formulate and evaluate the efficacy of AZ-loaded nanoemulgel as an antimicrobial drug. The physical appearance, spreadability, viscosity, particle size, in vitro drug release, ex vivo permeation investigations, and antimicrobial efficiency of the prepared formulations were evaluated. The prepared formulation loaded with AZ exhibited good physical quality. AZ-loaded nanoemulgel had a greater ex vivo drug permeation across rabbit skin than other formulations (AZ-loaded gel and AZ-loaded emulgel), revealing improved drug permeation and greater transdermal flux in addition to enhanced antibacterial efficacy (p < 0.05). Overall, our findings imply that tea-tree-oil-based nanoemulgel would be a promising delivery system for enhancing the antimicrobial efficiency of azithromycin. Full article
(This article belongs to the Special Issue Drug Carriers Production Processes for Innovative Human Applications)
Show Figures

Figure 1

17 pages, 3020 KiB  
Article
A Novel Approach for the Treatment of Aerobic Vaginitis: Azithromycin Liposomes-in-Chitosan Hydrogel
by Ana Čačić, Daniela Amidžić Klarić, Sabina Keser, Maja Radiković, Zora Rukavina, May Wenche Jøraholmen, Lidija Uzelac, Marijeta Kralj, Nataša Škalko-Basnet, Maja Šegvić Klarić and Željka Vanić
Pharmaceutics 2023, 15(5), 1356; https://doi.org/10.3390/pharmaceutics15051356 - 28 Apr 2023
Cited by 15 | Viewed by 3887
Abstract
Biocompatible mucoadhesive formulations that enable a sustained drug delivery at the site of action, while exhibiting inherent antimicrobial activity, are of great importance for improved local therapy of vaginal infections. The aim of this research was to prepare and evaluate the potential of [...] Read more.
Biocompatible mucoadhesive formulations that enable a sustained drug delivery at the site of action, while exhibiting inherent antimicrobial activity, are of great importance for improved local therapy of vaginal infections. The aim of this research was to prepare and evaluate the potential of the several types of azithromycin (AZM)-liposomes (180–250 nm) incorporated into chitosan hydrogel (AZM-liposomal hydrogels) for the treatment of aerobic vaginitis. AZM-liposomal hydrogels were characterized for in vitro release, and rheological, texture, and mucoadhesive properties under conditions simulating the vaginal site of application. The role of chitosan as a hydrogel-forming polymer with intrinsic antimicrobial properties was explored against several bacterial strains typical for aerobic vaginitis as well as its potential effect on the anti-staphylococcal activity of AZM-liposomes. Chitosan hydrogel prolonged the release of the liposomal drug and exhibited inherent antimicrobial activity. Additionally, it boosted the antibacterial effect of all tested AZM-liposomes. All AZM-liposomal hydrogels were biocompatible with the HeLa cells and demonstrated mechanical properties suitable for vaginal application, thus confirming their potential for enhanced local therapy of aerobic vaginitis. Full article
(This article belongs to the Special Issue Advances in Vaginal Drug Delivery)
Show Figures

Graphical abstract

12 pages, 846 KiB  
Article
Antimicrobial Consumption from 2017 to 2021 in East Trinidad and Tobago: A Study in the English-Speaking Caribbean
by Rajeev P. Nagassar, Narin Jalim, Arianne Mitchell, Ashley Harrinanan, Anisa Mohammed, Darren K. Dookeeram, Danini Marin, Lucia Giangreco, Paola Lichtenberger and Gustavo H. Marin
Antibiotics 2023, 12(3), 466; https://doi.org/10.3390/antibiotics12030466 - 25 Feb 2023
Cited by 3 | Viewed by 2897
Abstract
An antimicrobial consumption (AMC) study was performed in Trinidad and Tobago at the Eastern Regional Health Authority (ERHA). A retrospective, cross-sectional survey was conducted from 1 November 2021 to 30 March 2022. Dosage and package types of amoxicillin, azithromycin, co-amoxiclav, cefuroxime, ciprofloxacin, levofloxacin, [...] Read more.
An antimicrobial consumption (AMC) study was performed in Trinidad and Tobago at the Eastern Regional Health Authority (ERHA). A retrospective, cross-sectional survey was conducted from 1 November 2021 to 30 March 2022. Dosage and package types of amoxicillin, azithromycin, co-amoxiclav, cefuroxime, ciprofloxacin, levofloxacin, moxifloxacin, nitrofurantoin and co-trimoxazole were investigated. Consumption was measured using the World Health Organization’s Antimicrobial Resistance and Consumption Surveillance System methodology version 1.0, as defined daily doses (DDD) per 1000 population per day (DID). They were also analyzed using the ‘Access’, ‘Watch’ and ‘Reserve’ classifications. In the ERHA, AMC ranged from 6.9 DID to 4.6 DID. With regards to intravenous formulations, the ‘Watch’ group displayed increased consumption, from 0.160 DID in 2017 to 0.238 DID in 2019, followed by a subsequent drop in consumption with the onset of the COVID-19 pandemic. Oral co-amoxiclav, oral cefuroxime, oral azithromycin and oral co-trimoxazole were the most highly consumed antibiotics. The hospital started off as the higher consumer of antibiotics, but this changed to the community. The consumption of ‘Watch’ group antibiotics increased from 2017 to 2021, with a drop in consumption of ‘Access’ antibiotics and at the onset of COVID-19. Consumption of oral azithromycin was higher in 2021 than 2020. Full article
(This article belongs to the Special Issue Antibiotic Treatment on Surgical Infections)
Show Figures

Figure 1

16 pages, 4335 KiB  
Article
Local Delivery of Azithromycin Nanoformulation Attenuated Acute Lung Injury in Mice
by Mohsen G. Alrashedi, Ahmed Shaker Ali, Osama Abdelhakim Ahmed and Ibrahim M. Ibrahim
Molecules 2022, 27(23), 8293; https://doi.org/10.3390/molecules27238293 - 28 Nov 2022
Cited by 6 | Viewed by 3169
Abstract
Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome [...] Read more.
Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification–ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of −30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety. Full article
Show Figures

Figure 1

18 pages, 1545 KiB  
Article
Thermoresponsive Azithromycin-Loaded Niosome Gel Based on Poloxamer 407 and Hyaluronic Interactions for Periodontitis Treatment
by Kunchorn Kerdmanee, Thawatchai Phaechamud and Sucharat Limsitthichaikoon
Pharmaceutics 2022, 14(10), 2032; https://doi.org/10.3390/pharmaceutics14102032 - 24 Sep 2022
Cited by 24 | Viewed by 3439
Abstract
Azithromycin (AZM) is a potential antimicrobial drug for periodontitis treatment. However, a potential sustained-release system is needed for intra-periodontal pocket delivery. This study focused on the development and evaluation of a thermoresponsive azithromycin-loaded niosome gel (AZG) to search for a desirable formulation for [...] Read more.
Azithromycin (AZM) is a potential antimicrobial drug for periodontitis treatment. However, a potential sustained-release system is needed for intra-periodontal pocket delivery. This study focused on the development and evaluation of a thermoresponsive azithromycin-loaded niosome gel (AZG) to search for a desirable formulation for periodontitis treatment. AZG was further developed from an AZM-loaded niosomal formulation by exploiting the advantages of poloxamer 407 (P407) and hyaluronic acid (HA) interactions. The results showed that the addition of HA decreased the gelation temperature and gelation time of AZG. HA was found to increase the viscosity as well as mucoadhesive and tooth-root surface adhesive properties. The AZG solution state was injectable and exhibited pseudoplastic shear-thinning behavior. P407–HA interactions in AZG could contribute to gel strength. AZG showed 72 h of continuous drug release following the Korsmeyer–Peppas model and potentially enhanced drug permeation. The formulations apparently presented more efficient antibacterial activity against major periodontal pathogens than the standard AZM solution. AZM intra-periodontal pocket formulation and the remarkable properties of niosomes exhibited potential characteristics, including ease of administration, bioadhesion to the anatomical structure of the periodontal pocket, and sustained drug release with competent antimicrobial activity, which could be beneficial for periodontitis treatment. Full article
(This article belongs to the Special Issue Dosage Form Formulation Technologies for Improving Bioavailability)
Show Figures

Figure 1

13 pages, 252 KiB  
Article
Antimicrobial Dispensing Practice in Community Pharmacies in Russia during the COVID-19 Pandemic
by Svetlana Rachina, Roman Kozlov, Anastasiya Kurkova, Ulyana Portnyagina, Shamil Palyutin, Aleksandr Khokhlov, Olga Reshetko, Marina Zhuravleva, Ivan Palagin and on behalf of Russian Working Group of the Project
Antibiotics 2022, 11(5), 586; https://doi.org/10.3390/antibiotics11050586 - 27 Apr 2022
Cited by 10 | Viewed by 2928
Abstract
COVID-19 has had a significant impact on health care systems, including drug use. The present study aimed to evaluate the patterns of community supply of antimicrobials from community pharmacies during the COVID-19 pandemic in five cities of Russia. In a cross-sectional study, a [...] Read more.
COVID-19 has had a significant impact on health care systems, including drug use. The present study aimed to evaluate the patterns of community supply of antimicrobials from community pharmacies during the COVID-19 pandemic in five cities of Russia. In a cross-sectional study, a random sample of pharmacies reported all episodes of antimicrobials supply during a one-week period. Patterns of supply (age and gender of customer, drug name and formulation, prescription availability, indication, etc.) were analyzed. Altogether, 71 pharmacies took part in the study and 5270 encounters were recorded. In total, 4.2% of visits resulted in supply of more than one antimicrobial agent and 5.2% were for parenteral formulations. The rate of prescription-based purchase in participated cities varied from 40.5 to 99.1%. Systemic antibiotics and antivirals accounted for the majority of supplies (60.5 and 26.3%, respectively). Upper respiratory tract infections were reported as the indication for antimicrobials usage in 36.9% of cases, followed by skin and soft tissue infections (12.1%) and urinary tract infections (8.7%); COVID-19 accounted for 8.4% of all supplies. Amoxicillin with clavulanic acid, azithromycin and amoxicillin were indicated as the top three antimicrobials purchased for upper respiratory tract infections, and azithromycin, umifenovir and levofloxacin were the top three for COVID-19. In general, a high rate of drugs dispensing without prescription was revealed. Antibiotics for systemic use remained the most common antimicrobials, whereas presumably viral upper respiratory tract infections were the main reason for their purchase. COVID-19 infection itself was responsible for a small proportion of the supply of antimicrobial agents, but systemic antibiotics accounted for more than a half of supplies. Full article
18 pages, 4216 KiB  
Article
Formulation and Evaluation of Nano Lipid Carrier-Based Ocular Gel System: Optimization to Antibacterial Activity
by Sadaf Jamal Gilani, May Nasser bin Jumah, Ameeduzzafar Zafar, Syed Sarim Imam, Mohd Yasir, Mohammad Khalid, Sultan Alshehri, Mohammed M. Ghuneim and Fatima M. Albohairy
Gels 2022, 8(5), 255; https://doi.org/10.3390/gels8050255 - 21 Apr 2022
Cited by 24 | Viewed by 4703
Abstract
The present research work was designed to prepare Azithromycin (AM)-loaded nano lipid carriers (NLs) for ocular delivery. NLs were prepared by the emulsification–homogenization method and further optimized by the Box Behnken design. AM-NLs were optimized using the independent constraints of homogenization speed (A), [...] Read more.
The present research work was designed to prepare Azithromycin (AM)-loaded nano lipid carriers (NLs) for ocular delivery. NLs were prepared by the emulsification–homogenization method and further optimized by the Box Behnken design. AM-NLs were optimized using the independent constraints of homogenization speed (A), surfactant concentration (B), and lipid concentration (C) to obtain optimal NLs (AM-NLop). The selected AM-NLop was further converted into a sol-gel system using a mucoadhesive polymer blend of sodium alginate and hydroxyl propyl methyl cellulose (AM-NLopIG). The sol-gel system was further characterized for drug release, permeation, hydration, irritation, histopathology, and antibacterial activity. The prepared NLs showed nano-metric size particles (154.7 ± 7.3 to 352.2 ± 15.8 nm) with high encapsulation efficiency (48.8 ± 1.1 to 80.9 ± 2.9%). AM-NLopIG showed a more prolonged drug release (98.6 ± 4.6% in 24 h) than the eye drop (99.4 ± 5.3% in 3 h). The ex vivo permeation result depicted AM-NLopIG, AM-IG, and eye drop. AM-NLopIG exhibited significant higher AM permeation (60.7 ± 4.1%) than AM-IG (33.46 ± 3.04%) and eye drop (23.3 ± 3.7%). The corneal hydration was found to be 76.45%, which is within the standard limit. The histopathology and HET-CAM results revealed that the prepared formulation is safe for ocular use. The antibacterial study revealed enhanced activity from the AM-NLopIG. Full article
(This article belongs to the Special Issue Liposomal and Ethosomal Gels: From Design to Application)
Show Figures

Figure 1

Back to TopTop