Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = aviation risk assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 3290 KiB  
Article
Hydroprocessed Ester and Fatty Acids to Jet: Are We Heading in the Right Direction for Sustainable Aviation Fuel Production?
by Mathieu Pominville-Racette, Ralph Overend, Inès Esma Achouri and Nicolas Abatzoglou
Energies 2025, 18(15), 4156; https://doi.org/10.3390/en18154156 - 5 Aug 2025
Abstract
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) [...] Read more.
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) reduction potential for the HEFA-tJ pathway compared to competing markets using the same resources for road diesel production. Moderate yield variations between air and road pathways lead to several hundred thousand tons less GHG reduction per project, which is generally not evaluated thoroughly in standard environmental assessments. This work demonstrates that, although the HEFA-tJ market seems to have more attractive features than biodiesel/renewable diesel, considerable viability risks might manifest as HEFA-tJ fuel market integration rises. The need for more transparent data and effort in this regard, before envisaging making decisions regarding the volume of HEFA-tJ production, is emphasized. Overall, reducing the carbon intensity of road diesel appears to be less capital-intensive, less risky, and several times more efficient in reducing GHG emissions. Full article
(This article belongs to the Special Issue Sustainable Approaches to Energy and Environment Economics)
Show Figures

Figure 1

27 pages, 22029 KiB  
Article
Evaluating the Siphon Effect on Airport Cluster Resilience Using Accessibility and a Benchmark System for Sustainable Development
by Xinglong Wang, Weiqi Lin, Hao Yin and Fang Sun
Sustainability 2025, 17(15), 7013; https://doi.org/10.3390/su17157013 - 1 Aug 2025
Viewed by 171
Abstract
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which [...] Read more.
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which affects the overall resilience of the entire airport cluster. To address this issue, this study proposes a siphon index, expands the range of ground transportation options for passengers, and establishes a zero-siphon model to assess the impact of siphoning on the resiliency of airport clusters. Using this framework, four major airport clusters in China were selected as research subjects, with regional aviation accessibility serving as a measure of resilience. The results showed that among the four airport clusters, the siphon effect is most pronounced in the Guangzhou region. To explore the implications of this effect further, three airport disruption scenarios were simulated to assess the resilience of the Pearl River Delta airport cluster. The results indicated that the intensity and timing of disruptive events significantly affect airport cluster resilience, with hub airports being particularly sensitive. This study analyzes the risks associated with excessive route concentration, providing policymakers with critical insights to enhance the sustainability, equity, and resilience of airport clusters. The proposed strategies facilitate coordinated infrastructure development, optimized air–ground intermodal connectivity, and risk mitigation. These measures contribute to building more sustainable and adaptive aviation networks in rapidly urbanizing regions. Full article
Show Figures

Figure 1

27 pages, 565 KiB  
Review
Review of the Use of Waste Materials in Rigid Airport Pavements: Opportunities, Benefits and Implementation
by Loretta Newton-Hoare, Sean Jamieson and Greg White
Sustainability 2025, 17(15), 6959; https://doi.org/10.3390/su17156959 - 31 Jul 2025
Viewed by 171
Abstract
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies [...] Read more.
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies is the lack of guidance relating to the opportunities, potential benefits, associated risks and an implementation plan specific to airport pavements. This research reviewed opportunities to incorporate waste materials into rigid airport pavements, focusing on concrete base slabs. Commonly used supplementary cementitious materials (SCMs), such as fly ash and ground granulated blast furnace slag (GGBFS) were considered, as well as recycled aggregates, including recycled concrete aggregate (RCA), recycled crushed glass (RCG), and blast furnace slag (BFS). Environmental Product Declarations (EPDs) were also used to quantify the potential for environmental benefit associated with various concrete mixtures, with findings showing 23% to 50% reductions in embodied carbon are possible for selected theoretical concrete mixtures that incorporate waste materials. With considered evaluation and structured implementation, the integration of waste materials into rigid airport pavements offers a practical and effective route to improve environmental outcomes in aviation infrastructure. It was concluded that a Triple Bottom Line (TBL) framework—assessing financial, environmental, and social factors—guides material selection and can support sustainable decision-making, as does performance-based specifications that enable sustainable technologies to be incorporated into airport pavement. The study also proposed a consequence-based implementation hierarchy to facilitate responsible adoption of waste materials in airside pavements. The outcomes of this review will assist airport managers and pavement designers to implement practical changes to achieve more sustainable rigid airport pavements in the future. Full article
Show Figures

Figure 1

35 pages, 3537 KiB  
Review
Sustainable Aviation Fuels: A Comprehensive Review of Production Pathways, Environmental Impacts, Lifecycle Assessment, and Certification Frameworks
by Weronika Klimczyk, Remigiusz Jasiński, Jakub Niklas, Maciej Siedlecki and Andrzej Ziółkowski
Energies 2025, 18(14), 3705; https://doi.org/10.3390/en18143705 - 14 Jul 2025
Viewed by 1102
Abstract
Sustainable aviation fuels (SAFs) are currently considered a key element in the decarbonization of the aviation sector, offering a feasible solution to reduce life cycle greenhouse gas emissions without requiring fundamental changes in aircraft or infrastructure. This article provides a comprehensive overview of [...] Read more.
Sustainable aviation fuels (SAFs) are currently considered a key element in the decarbonization of the aviation sector, offering a feasible solution to reduce life cycle greenhouse gas emissions without requiring fundamental changes in aircraft or infrastructure. This article provides a comprehensive overview of the current state of SAFs, including their classification, production technologies, economic aspects, and environmental performance. The analysis covers both currently certified SAF pathways, such as HEFA and FT-SPK, and emerging technologies like alcohol-to-jet and power-to-liquid, assessing their technological maturity, feedstock availability, and scalability. Economic challenges related to high production costs, investment risks, and policy dependencies are discussed, alongside potential mechanisms to support market deployment. Furthermore, the article reviews SAFs’ emission performance, including CO2 and non-CO2 effects, based on existing life cycle assessment (LCA) studies, with an emphasis on variability caused by feedstock type and production method. The findings highlight that, while SAFs can significantly reduce aviation-related emissions compared to fossil jet fuels, the magnitude of benefits depends strongly on supply chain design and sustainability criteria. There are various certified pathways for SAF production, as well as new technologies that can further contribute to the development of the industry. Properly selected biomass sources and production technologies can reduce greenhouse gas emissions by more than 70% compared to conventional fuels. The implementation of SAFs faces obstacles related to cost, infrastructure, and regulations, which hinder its widespread adoption. The study concludes that although SAFs represent a promising pathway for aviation climate mitigation, substantial scaling efforts, regulatory support, and continued technological innovation are essential to achieve their full potential. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

30 pages, 5989 KiB  
Article
Risk Analysis Method of Aviation Critical System Based on Bayesian Networks and Empirical Information Fusion
by Xiangjun Dang, Yongxuan Shao, Haoming Liu, Zhe Yang, Mingwen Zhong, Maohua Sun and Wu Deng
Electronics 2025, 14(12), 2496; https://doi.org/10.3390/electronics14122496 - 19 Jun 2025
Viewed by 305
Abstract
The intrinsic hazards associated with high-pressure hydrogen, combined with electromechanical interactions in hybrid architectures, pose significant challenges in predicting potential system risks during the conceptual design phase. In this paper, a risk analysis methodology integrating systems theoretic process analysis (STPA), D-S evidence theory, [...] Read more.
The intrinsic hazards associated with high-pressure hydrogen, combined with electromechanical interactions in hybrid architectures, pose significant challenges in predicting potential system risks during the conceptual design phase. In this paper, a risk analysis methodology integrating systems theoretic process analysis (STPA), D-S evidence theory, and Bayesian networks (BN) is established. The approach employs STPA to identify unsafe control actions and analyze their loss scenarios. Subsequently, D-S evidence theory quantifies the likelihood of risk factors, while the BN model’s nodal uncertainties to construct a risk network identifying critical risk-inducing events. This methodology provides a comprehensive risk analysis process that identifies systemic risk elements, quantifies risk probabilities, and incorporates uncertainties for quantitative risk assessment. These insights inform risk-averse design decisions for hydrogen–electric hybrid powered aircraft. A case study demonstrates the framework’s effectiveness. The approach bridges theoretical risk analysis with early-stage engineering practice, delivering actionable guidance for advancing zero-emission aviation. Full article
Show Figures

Figure 1

17 pages, 2555 KiB  
Article
A Bibliometric Analysis of the Impact of Extreme Weather on Air Transport Operations
by Kristína Kováčiková, Andrej Novák, Martina Kováčiková and Alena Novak Sedlackova
Atmosphere 2025, 16(6), 740; https://doi.org/10.3390/atmos16060740 - 17 Jun 2025
Viewed by 467
Abstract
Extreme weather events pose increasing risks to air transport operations, affecting flight safety, scheduling, and infrastructure resilience. This paper provides a comprehensive bibliometric analysis of scientific literature addressing the impacts of extreme weather on aviation, based on 1000 documents retrieved from the Web [...] Read more.
Extreme weather events pose increasing risks to air transport operations, affecting flight safety, scheduling, and infrastructure resilience. This paper provides a comprehensive bibliometric analysis of scientific literature addressing the impacts of extreme weather on aviation, based on 1000 documents retrieved from the Web of Science Core Collection (2010–2024). Using VOSviewer software, keyword co-occurrence, overlay visualization, co-authorship networks, and citation analyses were conducted. Results revealed a clear thematic shift from environmental impact assessments toward research emphasizing operational resilience, technological adaptation, and mitigation strategies. Collaboration networks highlighted strong international cooperation, particularly among institutions in the United States, Germany, and the United Kingdom, with growing contributions from emerging research regions. Highly cited studies predominantly focused on emissions modeling and operational mitigation measures. Despite notable advances, the field remains fragmented and geographically uneven, underscoring the need for broader interdisciplinary integration and empirical validation of adaptation strategies. This paper offers a systematic overview of the evolving research landscape and identifies critical directions for future efforts to enhance the resilience and sustainability of global air transport systems under increasing climatic volatility. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 1804 KiB  
Article
Semantic Topic Modeling of Aviation Safety Reports: A Comparative Analysis Using BERTopic and PLSA
by Aziida Nanyonga, Keith Joiner, Ugur Turhan and Graham Wild
Aerospace 2025, 12(6), 551; https://doi.org/10.3390/aerospace12060551 - 16 Jun 2025
Viewed by 409
Abstract
Aviation safety analysis increasingly relies on extracting actionable insights from narrative incident reports to support risk identification and improve operational safety. Topic modeling techniques such as Probabilistic Latent Semantic Analysis (pLSA) and BERTopic offer automated methods to uncover latent themes in unstructured safety [...] Read more.
Aviation safety analysis increasingly relies on extracting actionable insights from narrative incident reports to support risk identification and improve operational safety. Topic modeling techniques such as Probabilistic Latent Semantic Analysis (pLSA) and BERTopic offer automated methods to uncover latent themes in unstructured safety narratives. This study evaluates the effectiveness of each model in generating coherent, interpretable, and semantically meaningful topics for aviation safety practitioners and researchers. We assess model performance using both quantitative metrics (topic coherence scores) and qualitative evaluations of topic relevance. The findings show that while pLSA provides a solid probabilistic framework, BERTopic leveraging transformer-based embeddings and HDBSCAN clustering produces more nuanced, context-aware topic groupings, albeit with increased computational demands and tuning complexity. These results highlight the respective strengths and trade-offs of traditional versus modern topic modeling approaches in aviation safety analysis. This work advances the application of natural language processing (NLP) in aviation by demonstrating how topic modeling can support risk assessment, inform policy, and enhance safety outcomes. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

23 pages, 1266 KiB  
Article
Research on Aircraft Control System Fault Risk Assessment Based on Composite Framework
by Tongyu Shi, Yi Gao, Long Xu and Yantao Wang
Aerospace 2025, 12(6), 532; https://doi.org/10.3390/aerospace12060532 - 12 Jun 2025
Viewed by 461
Abstract
The air transportation system is composed of multiple elements and belongs to a complex socio-technical system. It is difficult to assess the risk of an aircraft fault because it could constantly change during operation and is influenced by numerous factors. Although traditional methods [...] Read more.
The air transportation system is composed of multiple elements and belongs to a complex socio-technical system. It is difficult to assess the risk of an aircraft fault because it could constantly change during operation and is influenced by numerous factors. Although traditional methods such as Failure Mode, Effects, and Criticality Analysis (FMECA) and Fault Tree Analysis (FTA) can reflect the degree of fault risk to a certain extent, they cannot accurately quantify and evaluate the fault risk under the multiple influences of human factors, random faults, and external environment. In order to solve these problems, this article proposes a fault risk assessment method for aircraft control systems based on a fault risk composite assessment framework using the Improved Risk Priority Number (IRPN) as the basis for the fault risk assessment. Firstly, a Bayesian network (BN) and Gated Recurrent Unit (GRU) are introduced into the traditional evaluation framework, and a hybrid prediction model combining static and dynamic failure probability is constructed. Subsequently, this paper uses the functional resonance analysis method (FRAM) by introducing a risk damping coefficient to analyze the propagation and evolution of fault risks and accurately evaluate the coupling effects between different functional modules in the system. Finally, taking the fault of a jammed flap/slat drive mechanism as an example, the risk of the fault is evaluated by calculating the IRPN. The calculation results show that the comprehensive failure probability of the aircraft control system in this case is 3.503 × 10−4. Taking into account the severity, the detection, and the risk damping coefficient, the calculation result of IRPN is 158.00. According to the classification standard of the risk level, the failure risk level of the aircraft belongs to a controlled risk, and emergency measures need to be taken, which is consistent with the actual disposal decision in this case. Therefore, the evaluation framework proposed in this article not only supports a quantitative assessment of system safety and provides a new method for fault risk assessments in aviation safety management but also provides a theoretical basis and practical guidance for optimizing fault response strategies. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

16 pages, 2796 KiB  
Article
Icephobic Properties of Superhydrophobic Coatings Developed for Aeronautical Applications
by Filomena Piscitelli, Matteo Fanciullo, Antonella Sarcinella, Mario Costantini and Mariaenrica Frigione
Coatings 2025, 15(6), 621; https://doi.org/10.3390/coatings15060621 - 22 May 2025
Viewed by 487
Abstract
Ice accumulation poses a significant hazard to aviation safety, particularly in cold weather conditions, as it can compromise aerodynamic performance, increase structural weight, and diminish lift, occasionally resulting in severe stall incidents. At present, such risks are managed through the use of energy-demanding [...] Read more.
Ice accumulation poses a significant hazard to aviation safety, particularly in cold weather conditions, as it can compromise aerodynamic performance, increase structural weight, and diminish lift, occasionally resulting in severe stall incidents. At present, such risks are managed through the use of energy-demanding active ice protection systems (IPSs), which operate either by inhibiting ice formation (anti-icing) or by removing existing ice (de-icing). Nonetheless, in the context of future sustainable aviation, there is a pressing need to develop IPSs with lower energy requirements. A promising approach involves hybrid IPSs that integrate conventional active systems with passive superhydrophobic or icephobic surface treatments, which are capable of preventing, delaying, or minimizing ice buildup. These systems offer the potential to substantially decrease the energy consumption and consequently the CO2 emissions. Furthermore, in accordance with FAA regulations, active IPSs are not permitted to operate during takeoff and initial flight stages to prevent any reduction in engine thrust. These two reasons emphasize the critical importance of developing efficient coatings that, on the one hand, promote the mobility of water droplets, hereby preventing ice formation, as achieved by superhydrophobic surfaces, and on the other hand, facilitate ice detachment, as required for icephobic performance. In this context, the primary objective of the present work is to emphasize the icephobic properties of two superhydrophobic coatings. To achieve this, an extensive characterization is first conducted, including wettability, Surface Free Energy (SFE), and surface roughness, to confirm their superhydrophobic nature. This is followed by an assessment of their icephobic performance, specifically in terms of ice adhesion strength, with comparisons made against a commercial aeronautical coating. The results revealed a significant reduction in both the wettability and SFE of the developed coatings compared to the reference, along with a marked decrease in ice adhesion strength, thereby demonstrating their icephobic properties. Future activities will focus on the combination of coatings with active IPS in order to assess the energy efficiency under extensive icing conditions where both superhydrophobic and icephobic properties are required. Full article
Show Figures

Figure 1

25 pages, 2905 KiB  
Article
Does the Choice of Topic Modeling Technique Impact the Interpretation of Aviation Incident Reports? A Methodological Assessment
by Aziida Nanyonga, Keith Joiner, Ugur Turhan and Graham Wild
Technologies 2025, 13(5), 209; https://doi.org/10.3390/technologies13050209 - 19 May 2025
Cited by 3 | Viewed by 756
Abstract
This study presents a comparative analysis of four topic modeling techniques —Latent Dirichlet Allocation (LDA), Bidirectional Encoder Representations from Transformers (BERT), Probabilistic Latent Semantic Analysis (pLSA), and Non-negative Matrix Factorization (NMF)—applied to aviation safety reports from the ATSB dataset spanning 2013–2023. The evaluation [...] Read more.
This study presents a comparative analysis of four topic modeling techniques —Latent Dirichlet Allocation (LDA), Bidirectional Encoder Representations from Transformers (BERT), Probabilistic Latent Semantic Analysis (pLSA), and Non-negative Matrix Factorization (NMF)—applied to aviation safety reports from the ATSB dataset spanning 2013–2023. The evaluation focuses on coherence, interpretability, generalization, computational efficiency, and scalability. The results indicate that NMF achieves the highest coherence score (0.7987), demonstrating its effectiveness in extracting well-defined topics from structured narratives. pLSA performs competitively (coherence: 0.7634) but lacks the scalability of NMF. LDA and BERTopic, while effective in generalization (perplexity: −6.471 and −4.638, respectively), struggle with coherence due to their probabilistic nature and reliance on contextual embeddings. A preliminary expert review by two aviation safety specialists found that topics generated by the NMF model were interpretable and aligned well with domain knowledge, reinforcing its potential suitability for such aviation safety analysis. Future research should explore new hybrid modeling approaches and real-time applications to enhance aviation safety analysis further. The study contributes to advancing automated safety monitoring in the aviation industry by refining the most appropriate topic modeling techniques. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

33 pages, 4824 KiB  
Article
Risk Assessment of Hydrogen-Powered Aircraft: An Integrated HAZOP and Fuzzy Dynamic Bayesian Network Framework
by Xiangjun Dang, Yongxuan Shao, Haoming Liu, Zhe Yang, Mingwen Zhong, Huimin Zhao and Wu Deng
Sensors 2025, 25(10), 3075; https://doi.org/10.3390/s25103075 - 13 May 2025
Cited by 2 | Viewed by 669
Abstract
To advance the hydrogen energy-driven low-altitude aviation sector, it is imperative to establish sophisticated risk assessment frameworks tailored for hydrogen-powered aircraft. Such methodologies will deliver fundamental guidelines for the preliminary design phase of onboard hydrogen systems by leveraging rigorous risk quantification and scenario-based [...] Read more.
To advance the hydrogen energy-driven low-altitude aviation sector, it is imperative to establish sophisticated risk assessment frameworks tailored for hydrogen-powered aircraft. Such methodologies will deliver fundamental guidelines for the preliminary design phase of onboard hydrogen systems by leveraging rigorous risk quantification and scenario-based analytical models to ensure operational safety and regulatory compliance. In this context, this study proposes a comprehensive hazard and operability analysis-fuzzy dynamic Bayesian network (HAZOP-FDBN) framework, which quantifies risk without relying on historical data. This framework systematically maps the risk factor relationships identified in HAZOP results into a dynamic Bayesian network (DBN) graphical structure, showcasing the risk propagation paths between subsystems. Expert knowledge is processed using a similarity aggregation method to generate fuzzy probabilities, which are then integrated into the FDBN model to construct a risk factor relationship network. A case study on low-altitude aircraft hydrogen storage systems demonstrates the framework’s ability to (1) visualize time-dependent failure propagation mechanisms through bidirectional probabilistic reasoning, and (2) quantify likelihood distributions of system-level risks triggered by component failures. Results validate the predictive capability of the model in capturing emergent risk patterns arising from subsystem interactions under low-altitude operational constraints, thereby providing critical support for safety design optimization in the absence of historical failure data. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
Show Figures

Figure 1

8 pages, 4727 KiB  
Proceeding Paper
Assessing Continuous Descent Operations Using the Impact Monitor Framework
by Jordi Pons-Prats, Xavier Prats, David de la Torre, Eric Soler, Peter Hoogers, Michel van Eenige, Sreyoshi Chatterjee, Prajwal Shiva Prakasha, Patrick Ratei, Marko Alder, Thierry Lefebvre, Saskia van der Loo and Emanuela Peduzzi
Eng. Proc. 2025, 90(1), 108; https://doi.org/10.3390/engproc2025090108 - 6 May 2025
Viewed by 282
Abstract
The Impact Monitor Project is a European initiative designed to develop an impact assessment toolbox and framework, targeting the European aviation sector. The proposed framework is not only aimed at the environment, economics, and operations but also the societal impacts of new technologies [...] Read more.
The Impact Monitor Project is a European initiative designed to develop an impact assessment toolbox and framework, targeting the European aviation sector. The proposed framework is not only aimed at the environment, economics, and operations but also the societal impacts of new technologies and aircraft configurations. The toolbox works by setting out the key steps in the impact assessment cycle and presenting guidance, tips, and best practices. Led by DLR, the consortium includes research institutions and universities that have contributed their expertise and tools to develop the collaborative assessment toolbox and framework. The project defines three use cases by considering three assessment levels: aircraft, airport, and air transport system. This article focuses on Use Case 2 on continuous descent operations (CDOs) at the aircraft and airport levels. It describes the workflow proposal, along with the tools involved. The collaborative approach showcases integrating these tools and using collaborative strategies enabled by CPACS (Common Parametric Aircraft Configuration Schema) and RCE (remote component environment). The list of tools includes Scheduler (DLR; flight schedule simulation), AirTOp (NLR; TMA simulation), Dynamo/Farm (UPC; trajectory simulation and assessment), LEAS-iT (NLR; emissions simulation), Tuna (NLR; noise simulation), AECCI (ONERA; emissions simulation), TRIPAC (NLR; third-party risk simulation), and SCBA (TML; social and economic impact assessment). Interactions with other use cases of the project will be demonstrated via new aircraft configurations stemming from the use case at the aircraft level of the project. The results demonstrate the workflow’s feasibility, the cooperation among the tools to obtain and refine the outcomes, as well as the analysis of the operational scenario of a generic airport, CAEPport, which has been extensively used in previous Clean Sky 2 projects. Full article
Show Figures

Figure 1

29 pages, 18050 KiB  
Article
Simulating Oil Spill Evolution and Environmental Impact with Specialized Software: A Case Study for the Black Sea
by Dinu Atodiresei, Catalin Popa and Vasile Dobref
Sustainability 2025, 17(9), 3770; https://doi.org/10.3390/su17093770 - 22 Apr 2025
Viewed by 1222
Abstract
Oil spills represent a significant environmental hazard, particularly in marine ecosystems, where their impacts extend to coastal infrastructure, biodiversity, and economic activities. This study utilizes GNOME v.47.2 (General NOAA Operational Modeling Environment) and ADIOS2 v.2.10.2 (Automated Data Inquiry for Oil Spills) to simulate [...] Read more.
Oil spills represent a significant environmental hazard, particularly in marine ecosystems, where their impacts extend to coastal infrastructure, biodiversity, and economic activities. This study utilizes GNOME v.47.2 (General NOAA Operational Modeling Environment) and ADIOS2 v.2.10.2 (Automated Data Inquiry for Oil Spills) to simulate and analyze oil spill dynamics in the Romanian sector of the Black Sea, focusing on trajectory prediction, hydrocarbon weathering, and shoreline contamination risk assessment. The research explores multiple spill scenarios involving different hydrocarbon types (light vs. heavy oils), vessel dynamics, and real-time environmental variables (wind, currents, temperature). The findings reveal that lighter hydrocarbons (e.g., gasoline, aviation fuel) tend to evaporate quickly, while heavier fractions (e.g., crude oil, fuel oil #6) persist in the marine environment and pose a higher risk of coastal pollution. In the first case study, a spill of 10,000 metric tons of medium oil (Arabian Medium EXXON) was simulated using GNOME v.47.2, showing that after 22 h, the slick reached the shoreline. Under forecasted hydro-meteorological conditions, 27% evaporated, 1% dispersed, and 72% remained for mechanical or chemical intervention. In the second simulation, 10,000 metric tons of gasoline were released, and within 6 h, 98% evaporated, with only minor residues reaching the shore. A real-world validation case was also conducted using the December 2024 Kerch Strait oil spill incident, where the model accurately predicted the early arrival of light fractions and delayed coastal contamination by fuel oil carried by subsurface currents. These results emphasize the need for future research focused on the vertical dispersion dynamics of heavier hydrocarbon fractions. Full article
Show Figures

Figure 1

31 pages, 3781 KiB  
Review
Hydrogen Properties and Their Safety Implications for Experimental Testing of Wing Structure-Integrated Hydrogen Tanks
by Javed A. Butt and Johannes F. C. Markmiller
Energies 2025, 18(8), 1930; https://doi.org/10.3390/en18081930 - 10 Apr 2025
Viewed by 683
Abstract
Hydrogen is a promising candidate for addressing environmental challenges in aviation, yet its use in structural validation tests for Wing Structure-Integrated high-pressure Hydrogen Tanks (SWITHs) remains underexplored. To the best of the authors’ knowledge, this study represents [...] Read more.
Hydrogen is a promising candidate for addressing environmental challenges in aviation, yet its use in structural validation tests for Wing Structure-Integrated high-pressure Hydrogen Tanks (SWITHs) remains underexplored. To the best of the authors’ knowledge, this study represents the first attempt to assess the feasibility of conducting such tests with hydrogen at aircraft scales. It first introduces hydrogen’s general properties, followed by a detailed exploration of the potential hazards associated with its use, substantiated by experimental and simulation results. Key factors triggering risks, such as ignition and detonation, are identified, and methods to mitigate these risks are presented. While the findings affirm that hydrogen can be used safely in aviation if responsibly managed, they caution against immediate large-scale experimental testing of SWITHs due to current knowledge and technology limitations. To address this, a roadmap with two long-term objectives is outlined as follows: first, enabling structural validation tests at scales equivalent to large aircraft for certification; second, advancing simulation techniques to complement and eventually reduce reliance on costly experiments while ensuring sufficient accuracy for SWITH certification. This roadmap begins with smaller-scale experimental and numerical studies as an initial step. Full article
(This article belongs to the Special Issue Renewable Fuels: A Key Step Towards Global Sustainability)
Show Figures

Figure 1

19 pages, 5918 KiB  
Article
BeiDou Satellite-Based Augmentation System Algorithm Optimization and Performance Validation of Ionospheric Degradation Parameters with RTCA Protocol
by Zhaochen Li, Yueling Cao, Shanshi Zhou, Xiaogong Hu and Ran Liu
Remote Sens. 2025, 17(7), 1110; https://doi.org/10.3390/rs17071110 - 21 Mar 2025
Viewed by 686
Abstract
The BeiDou Satellite-Based Augmentation System (BDSBAS), based on the Radio Technical Commission for Aeronautics (RTCA) protocol, aims to provide high-precision, single-frequency positioning with integrity assurance for civil aviation users in China and surrounding regions. Given the anticipated high solar activity between 2023 and [...] Read more.
The BeiDou Satellite-Based Augmentation System (BDSBAS), based on the Radio Technical Commission for Aeronautics (RTCA) protocol, aims to provide high-precision, single-frequency positioning with integrity assurance for civil aviation users in China and surrounding regions. Given the anticipated high solar activity between 2023 and 2025, ionospheric anomalies may degrade positioning accuracy and significantly impact BDSBAS integrity performance. To enhance BDSBAS integrity, this study evaluates and analyzes the system’s ionospheric degradation parameters for 2023. The results indicate that during the active ionospheric period in 2023, the rate of ionospheric grid delay changes exceeding the limits of the currently broadcasted parameters increased by 0.86%, posing potential integrity risks compared to 2022. To address this issue, we propose a novel algorithm for ionospheric degradation parameters and assess its applicability, stability, and effectiveness using BDSBAS single-frequency service message data from IGS monitoring stations in China. Statistical analysis in the localization domain demonstrates that the new method reduces the rate of ionospheric degradation parameters exceeding the threshold by 1.10% in 2023–2024. This approach significantly enhances BDSBAS integrity service capabilities, supporting its performance improvement and official deployment. Full article
(This article belongs to the Special Issue Advances in Multi-GNSS Technology and Applications)
Show Figures

Figure 1

Back to TopTop