A Bibliometric Analysis of the Impact of Extreme Weather on Air Transport Operations
Abstract
:1. Introduction
1.1. Effects of Extreme Weather on Air Transport Operations
1.2. Research Trends and Developments
1.3. Research Gaps
1.4. Objectives of This Research
- Visualize the co-occurrence of key concepts and themes within the research domain;
- Map collaboration networks among authors, institutions, and countries;
- Identify the most influential publications, authors, and journals;
- Detect emerging trends and potential research gaps;
- Provide a comprehensive overview of the intellectual structure of the field.
2. Materials and Methods
2.1. Data Source and Collection
2.2. Data Processing and Software Tools
2.3. Analytical Approach
- Keyword Co-occurrence Analysis: To identify major research themes and thematic clusters.
- Overlay Visualization: To reveal the temporal evolution of research topics.
- Co-authorship Analysis: To map collaboration networks among authors and countries.
- Citation Analysis: To identify highly influential publications and research directions.
3. Results
3.1. Keyword Co-Occurrence Analysis
3.2. Overlay Visualization of Research Trends
3.3. Co-Authorship Analysis
3.4. Country-Level Collaboration
3.5. Highly Cited Publications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Volume 2391. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Miller, K.; Mearns, L.; Rhodes, S. Effects of Changing Climate on Weather and Human Activities; University Corporation for Atmospheric Research: Sausalito, CA, USA, 2002; Volume 50, ISBN 1-891389-14-9. [Google Scholar]
- Rubinato, M.; Luo, M.; Zheng, X.; Pu, J.H.; Shao, S. Advances in modelling and prediction on the impact of human activities and extreme events on environments. Water 2020, 12, 1768. [Google Scholar] [CrossRef]
- Edo, G.I.; Itoje-akpokiniovo, L.O.; Obasohan, P.; Ikpekoro, V.O.; Samuel, P.O.; Jikah, A.N.; Agbo, J.J. Impact of environmental pollution from human activities on water, air quality and climate change. Ecol. Front. 2024, 44, 874–889. [Google Scholar] [CrossRef]
- Rodríguez-Sanz, Á.; Cano, J.; Rubio Fernandez, B. Impact of weather conditions on airport arrival delay and throughput. Aircr. Eng. Aerosp. Technol. 2022, 94, 60–78. [Google Scholar] [CrossRef]
- Kim, S.; Park, E. Prediction of flight departure delays caused by weather conditions adopting data-driven approaches. J. Big Data 2024, 11, 11. [Google Scholar] [CrossRef]
- Materia, S.; García, L.P.; van Straaten, C.; O, S.; Mamalakis, A.; Cavicchia, L.; Coumou, D.; de Luca, P.; Kretschmer, M.; Donat, M. Artificial intelligence for climate prediction of extremes: State of the art, challenges, and future perspectives. Clim. Change 2024, 15, 914. [Google Scholar] [CrossRef]
- Domeisen, D.I.; Eltahir, E.A.; Fischer, E.M.; Knutti, R.; Perkins-Kirkpatrick, S.E.; Schär, C.; Wernli, H. Prediction and projection of heatwaves. Nat. Rev. Earth Environ. 2023, 4, 36–50. [Google Scholar] [CrossRef]
- Barriopedro, D.; García-Herrera, R.; Ordóñez, C.; Miralles, D.G.; Salcedo-Sanz, S. Heat waves: Physical understanding and scientific challenges. Rev. Geophys. 2023, 61, e2022RG000780. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Li, K. Quantifying the Resilience Performance of Airport Flight Operation to Severe Weather. Aerospace 2022, 9, 344. [Google Scholar] [CrossRef]
- Paraschi, E.P. Aviation and Climate Change: Challenges and the Way Forward. J. Airl. Oper. Aviat. Manag. 2023, 2, 86–95. [Google Scholar] [CrossRef]
- Zhang, F.; Graham, D.J. Air transport and economic growth: A review of the impact mechanism and causal relationships. Transp. Rev. 2020, 40, 506–528. [Google Scholar] [CrossRef]
- IATA. Annual Review 2022. 2022. Available online: https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/annual-review-2022.pdf (accessed on 10 March 2025).
- Voltes-Dorta, A.; Martín, J.C. The measurement of accessibility and connectivity in air transport networks. In The Air Transportation Industry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 295–314. [Google Scholar] [CrossRef]
- Khanal, A.; Rahman, M.M.; Khanam, R.; Velayutham, E. Exploring the impact of Air transport on economic growth: New evidence from Australia. Sustainability 2022, 14, 11351. [Google Scholar] [CrossRef]
- Yu, C.; Zou, L. Air trade, air cargo demand, and network analysis: Case of the United States. Int. Air Cargo Ind. Modal Anal. 2022, 9, 207–239. [Google Scholar] [CrossRef]
- Pradhan, R.P.; Arvin, M.B.; Nair, M. Urbanization, transportation infrastructure, ICT, and economic growth: A temporal causal analysis. Cities 2021, 115, 103213. [Google Scholar] [CrossRef]
- Janić, M. System Analysis and Modelling in Air Transport: Demand, Capacity, Quality of Services, Economic, and Sustainability; CRC Press: Boca Raton, FL, USA, 2021; 390p. [Google Scholar] [CrossRef]
- Bartle, J.R.; Lutte, R.K.; Leuenberger, D.Z. Sustainability and air freight transportation: Lessons from the global pandemic. Sustainability 2021, 13, 3738. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, W.; Wang, L. Resilience assessment of airport aircraft area network operations under thunderstorm weather. J. Air Transp. Manag. 2024, 119, 102656. [Google Scholar] [CrossRef]
- Gu, Y.; Wiedemann, M.; Freestone, R.; Rothe, H.; Stevens, N. The impacts of shock events on airport management and operations: A systematic literature review. Transp. Res. Interdiscip. Perspect. 2024, 27, 101182. [Google Scholar] [CrossRef]
- Shvetsov, A.V. Analysis of accidents resulting from the interaction of air and ground vehicles at airports. Transp. Res. Procedia 2021, 59, 21–28. [Google Scholar] [CrossRef]
- Morss, R.E.; Lazrus, H.; Demuth, J.L.; Henderson, J. Improving Probabilistic Weather Forecasts for Decision Making: A Multi-Method Study of the Use of Forecast Information in Snow and Ice Management at a Major US Airport; NCAR Technical Note 573; NCAR: Boulder, CO, USA, 2022. [Google Scholar] [CrossRef]
- Pohl, M.; Kolisch, R.; Schiffer, M. Runway scheduling during winter operations. Omega 2021, 102, 102325. [Google Scholar] [CrossRef]
- Deng, Z.; Li, W.; Dong, W.; Sun, Z.; Kodikara, J.; Sheng, D. Multifunctional asphalt concrete pavement toward smart transport infrastructure: Design, performance and perspective. Compos. Part B Eng. 2023, 265, 110937. [Google Scholar] [CrossRef]
- Burbidge, R.; Paling, C.; Dunk, R.M. A systematic review of adaption to climate change impacts in the aviation sector. Transp. Rev. 2024, 44, 8–33. [Google Scholar] [CrossRef]
- Williams, J.; Williams, P.D.; Guerrini, F.; Venturini, M. Quantifying the effects of climate change on aircraft take-off performance at European airports. Aerospace 2025, 12, 165. [Google Scholar] [CrossRef]
- Khattak, A.; Chan, P.W.; Chen, F.; Peng, H.; Mongina Matara, C. Missed Approach, a Safety-Critical Go-Around Procedure in Aviation: Prediction Based on Machine Learning-Ensemble Imbalance Learning. Adv. Meteorol. 2023, 1, 9119521. [Google Scholar] [CrossRef]
- Materna, M.; Maternová, A.; Kamenická, D.; Chodelka, F. The Influence of Human Factor on Aviation Accidents in Slovakia through HFACS Framework: A Comprehensive Study. Transp. Res. Procedia 2023, 75, 173–182. [Google Scholar] [CrossRef]
- Habler, E.; Bitton, R.; Shabtai, A. Assessing aircraft security: A comprehensive survey and methodology for evaluation. ACM Comput. Surv. 2023, 56, 1–40. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Papadakis, N.; Ntintakis, I. A comprehensive analysis of wind turbine blade damage. Energies 2021, 14, 5974. [Google Scholar] [CrossRef]
- Celestin, M. How Predictive Maintenance In Logistics Fleets Is Reducing Equipment Downtime And Operational Losses. Brainae J. Bus. Sci. Technol. 2023, 7, 1023–1033. [Google Scholar] [CrossRef]
- Lemetti, A. Impact of Weather on Air Traffic Control; Linkopings Universitet: Linköping, Sweden, 2023. [Google Scholar] [CrossRef]
- Enea, G.; Reynolds, T.; Weber, M.; Codina, R.D.; Schaefer, D.; Hub, E.I.; Analysis of Weather-Driven Air Traffic Management Challenges for Major US and European Airports. Sesar Innovation Days 2024. Available online: https://www.sesarju.eu/sites/default/files/documents/sid/2024/papers/SIDs_2024_paper_106%20final.pdf (accessed on 10 March 2025).
- Arbuckle, G. Fundamentals of Global Air Transport Geography; Taylor & Francis: Abingdon, UK, 2025. [Google Scholar] [CrossRef]
- Xue, Y.; Le, Y.; Zhang, X.; Jiang, K. Exploring schedule risks in large airport operational readiness: Risk identification and the systematic model. J. Constr. Eng. Manag. 2023, 149, 04023123. [Google Scholar] [CrossRef]
- Škvareková, I.; Pecho, P.; Kandera, B. Analysis of The Most Critical Phase of the Flight Based on HRV Measurements of Pilots Workload. In Proceedings of the 2022 New Trends in Aviation Development, Novy Smokovec, Slovakia, 24–25 November 2022; pp. 194–200. [Google Scholar] [CrossRef]
- Materna, M.; Galieriková, A. A new approach to classification of air navigation service providers in the context of commercialization. Transp. Res. Procedia 2019, 43, 139–146. [Google Scholar] [CrossRef]
- Gultepe, I.; Sharman, R.; Williams, P.D.; Zhou, B.; Ellrod, G.; Minnis, P.; Neto, F.A. A review of high impact weather for aviation meteorology. Pure Appl. Geophys. 2019, 176, 1869–1921. [Google Scholar] [CrossRef]
- Jarošová, M.; Janošková, A. Meteorological causes of air accidents. Transp. Res. Procedia 2023, 75, 183–188. [Google Scholar] [CrossRef]
- Liu, H.; Xie, R.; Qin, H.; Li, Y. Research on dangerous flight weather prediction based on machine learning. J. Phys. Conf. Ser. 2024, 2870, 012020. [Google Scholar] [CrossRef]
- Li, Q.; Ng, K.K.; Yiu, C.Y.; Yuan, X.; So, C.K.; Ho, C.C. Securing air transportation safety through identifying pilot’s risky VFR flying behaviours: An EEG-based neurophysiological modelling using machine learning algorithms. Reliab. Eng. Syst. Saf. 2023, 238, 109449. [Google Scholar] [CrossRef]
- Jarosova, M. Role of meteorology in logistics planning. Transport 2023, 10, 11. [Google Scholar] [CrossRef]
- Chen, C.; Wang, S.; Zhang, J.; Gu, X. Modeling the vulnerability and resilience of interdependent transportation networks under multiple disruptions. J. Infrastruct. Syst. 2023, 29, 04022043. [Google Scholar] [CrossRef]
- Kazda, A.; Sedláčková, A.N.; Bračić, M. Airport planning: Approaches to determining the planning horizon. Transport 2023, 38, 139–151. [Google Scholar] [CrossRef]
- Melgar, S.; Polo, M.T.; Perilla, S.M.T. Airport infrastructure development: A comprehensive impact review. Int. J. Prof. Bus. Rev. 2024, 9, 12. [Google Scholar] [CrossRef]
- Gale, J.; Der Westhuizen, D.P.V. The future of airport infrastructure resilience. J. Airpt. Manag. 2023, 18, 6–17. [Google Scholar] [CrossRef]
- Oo, K.T.; Jonah, K.; Oo, K.L. A Systematic Climatology Report of Aviation Weather Hazards on Yangon Airport Region. J. Multidiscip. Res. Adv. 2023, 1, 89–103. [Google Scholar] [CrossRef]
- Guinn, T.A.; Halperin, D.J.; Strazzo, S. Application of Density Altitude Climatology to General Aviation Impacts. J. Aviat. Aerosp. Educ. Res. 2024, 33, 8. [Google Scholar] [CrossRef]
- Kauristie, K.; Andries, J.; Beck, P.; Berdermann, J.; Berghmans, D.; Cesaroni, C.; Österberg, K. Space weather services for civil aviation—Challenges and solutions. Remote Sens. 2021, 13, 3685. [Google Scholar] [CrossRef]
- Owen, B.; Anet, J.G.; Bertier, N.; Christie, S.; Cremaschi, M.; Dellaert, S.; Terrenoire, E. Particulate matter emissions from aircraft. Atmosphere 2022, 13, 1230. [Google Scholar] [CrossRef]
- Baughcum, S.L.; Begin, J.J.; Franco, F.; Greene, D.L.; Lee, D.S.; McLaren, M.L.; Sutkus, D. Aircraft Emissions: Current Inventories and Future Scenarios; Scholarship at Penn Libraries; University of Pennsylvania: Philadelphia, PA, USA, 1999; No. 59. [Google Scholar]
- Kováčiková, K.; Novák, A.; Sedláčková, A.N.; Kováčiková, M. The Environmental Consequences of Engine Emissions in Air and Road Transport. Atmosphere 2024, 15, 903. [Google Scholar] [CrossRef]
- Sikirda, Y.; Shmelova, T.; Kharchenko, V.; Kasatkin, M. Intelligent System for Supporting Collaborative Decision Making by the Pilot/Air Traffic Controller in Flight Emergencies. In Proceedings of the IntelITSIS, 2nd International Workshop on Intelligent Information Technologies and Systems of Information Security, Khmelnytskyi, Ukraine, 24–26 March 2021; pp. 127–141. [Google Scholar]
- Tornatore, M.; André, J.; Babarczi, P.; Braun, T.; Følstad, E.; Heegaard, P.; Voyiatzis, A. A survey on network resiliency methodologies against weather-based disruptions. In Proceedings of the 2016 8th International Workshop on Resilient Networks Design and Modeling, Halmstad, Sweden, 13–15 September 2016; pp. 23–34. [Google Scholar] [CrossRef]
- Lee, W.K. Risk assessment modeling in aviation safety management. J. Air Transp. Manag. 2006, 12, 267–273. [Google Scholar] [CrossRef]
- Baláž, M.; Kováčiková, K.; Vaculík, J.; Kováčiková, M. A smart airport mobile application concept and possibilities of its use for predictive modeling and analysis. Aerospace 2023, 10, 588. [Google Scholar] [CrossRef]
- Remencová, T.; Novák, A.; Sedláčková, A.N.; Kováčiková, K. Digital maturity of selected regional airports in the Slovak and Czech Republic. In Proceedings of the 2022 New Trends in Civil Aviation, Prague, Czech Republic, 26–27 October 2022; pp. 43–49. [Google Scholar] [CrossRef]
- Halpern, N.; Budd, T.; Suau-Sanchez, P.; Bråthen, S.; Mwesiumo, D. Conceptualising airport digital maturity and dimensions of technological and organisational transformation. J. Airpt. Manag. 2021, 15, 182–203. [Google Scholar] [CrossRef]
- Oladimeji, D.; Gupta, K.; Kose, N.A.; Gundogan, K.; Ge, L.; Liang, F. Smart transportation: An overview of technologies and applications. Sensors 2023, 23, 3880. [Google Scholar] [CrossRef]
- Lingrui, L.; Xin, W. Towards smart aviation with sustainable development: Artificial intelligence insights into the airline and advanced air mobility industries. In Decision Support Systems for Sustainable Computing; Academic Press: Cambridge, MA, USA, 2024; pp. 187–204. [Google Scholar] [CrossRef]
- Bukar, U.A.; Sayeed, M.S.; Razak, S.F.A.; Yogarayan, S.; Amodu, O.A.; Mahmood, R.A.R. A method for analyzing text using VOSviewer. MethodsX 2023, 11, 102339. [Google Scholar] [CrossRef]
- Kumar, R.; Saxena, S.; Kumar, V.; Prabha, V.; Kumar, R.; Kukreti, A. Service innovation research: A bibliometric analysis using VOSviewer. Compet. Rev. Int. Bus. J. 2024, 34, 736–760. [Google Scholar] [CrossRef]
- Lee, D.S.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.E.; Petzold, A.; Sausen, R. Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 2010, 44, 4678–4734. [Google Scholar] [CrossRef]
- Wilkerson, J.T.; Jacobson, M.Z.; Malwitz, A.; Balasubramanian, S.; Wayson, R.; Fleming, G.; Lele, S.K. Analysis of emission data from global commercial aviation: 2004 and 2006. Atmos. Chem. Phys. 2010, 10, 6391–6408. [Google Scholar] [CrossRef]
- Moore, R.H.; Thornhill, K.L.; Weinzierl, B.; Sauer, D.; D’Ascoli, E.; Kim, J.; Anderson, B.E. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 2017, 543, 411–415. [Google Scholar] [CrossRef]
Authors | Year | Key Focus Area | Contribution |
---|---|---|---|
Zhang et al. [20] | 2024 | Airport operations under thunderstorms | Assesses resilience of aircraft area networks during severe weather using simulation. |
Morss et al. [23] | 2022 | Weather forecast use in snow/ice management | Demonstrates improved decision-making from probabilistic forecasts at a major US airport. |
Pohl et al. [24] | 2021 | Runway scheduling in winter | Presents optimization models for runway use during snow events to reduce events. |
Lemetti [33] | 2023 | Weather impact on ATC operations | Analyzes degradation of air traffic control performance in adverse weather. |
Arbuckle [35] | 2025 | Flood impact on airport infrastructure | Highlights vulnerabilities in airport systems due to flooding and adverse events |
Authors | Year | Key Focus Area | Contribution |
---|---|---|---|
Jarošová & Janošková [40] | 2023 | Meteorological causes of accidents. | Examines link between weather phenomena and aviation accidents. |
Liu et al. [41] | 2024 | Weather prediction using ML | Applies machine learning to forecast dangerous flight weather. |
Li et al. [42] | 2023 | Pilot behavior under risky weather | Uses EEG and ML to identify risky pilot actions during VFR conditions. |
Chen et al. [44] | 2023 | Transport network resilience | Models vulnerabilities in interdependent transportation networks under weather stress. |
Kazda et al. [45] | 2023 | Airport planning under climate stress | Discusses planning horizons and infrastructure design in changing climate conditions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kováčiková, K.; Novák, A.; Kováčiková, M.; Novak Sedlackova, A. A Bibliometric Analysis of the Impact of Extreme Weather on Air Transport Operations. Atmosphere 2025, 16, 740. https://doi.org/10.3390/atmos16060740
Kováčiková K, Novák A, Kováčiková M, Novak Sedlackova A. A Bibliometric Analysis of the Impact of Extreme Weather on Air Transport Operations. Atmosphere. 2025; 16(6):740. https://doi.org/10.3390/atmos16060740
Chicago/Turabian StyleKováčiková, Kristína, Andrej Novák, Martina Kováčiková, and Alena Novak Sedlackova. 2025. "A Bibliometric Analysis of the Impact of Extreme Weather on Air Transport Operations" Atmosphere 16, no. 6: 740. https://doi.org/10.3390/atmos16060740
APA StyleKováčiková, K., Novák, A., Kováčiková, M., & Novak Sedlackova, A. (2025). A Bibliometric Analysis of the Impact of Extreme Weather on Air Transport Operations. Atmosphere, 16(6), 740. https://doi.org/10.3390/atmos16060740