Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = automated fiber placement (AFP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4453 KiB  
Article
Nonlinear Elasticity and Damage Prediction in Automated Fiber Placement Composites via Nested Micromechanics
by Hadas Hochster, Gal Raanan, Eyal Tiosano, Yoav Harari, Golan Michaeli, Yonatan Rotbaum and Rami Haj-Ali
Materials 2025, 18(14), 3394; https://doi.org/10.3390/ma18143394 - 19 Jul 2025
Viewed by 327
Abstract
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric [...] Read more.
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric High-Fidelity Generalized Method of Cells (PHFGMC) to predict the effective elastic properties and nonlinear mechanical response of AFP composites. The PHFGMC model integrates micro- and meso-scale analyses using representative volume elements (RVEs) derived from micrographs of AFP composite laminates to capture these manufacturing-induced characteristics. Multiple RVE configurations with varied gap patterns are analyzed to quantify the influence of mesostructural features on global stress–strain response. Predictions for linear and nonlinear elastic behaviors are validated against experimental results from carbon fiber/epoxy AFP specimens, demonstrating good quantitative agreement with measured responses. A cohesive extension of the PHFGMC framework further captures damage initiation and crack propagation under transverse tensile loading, revealing failure mechanisms specifically associated with tow gaps and resin-rich areas. By systematically accounting for manufacturing-induced variability through detailed RVE modeling, the nested PHFGMC framework enables the accurate prediction of global mechanical performance and localized behavior, providing a robust computational tool for optimizing AFP composite design in aerospace and other high-performance applications. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Figure 1

15 pages, 3974 KiB  
Article
Cast Polyamide 6 Molds as a Suitable Alternative to Metallic Molds for In Situ Automated Fiber Placement
by Fynn Atzler, Ines Mössinger, Jonathan Freund, Samuel Tröger, Ashley R. Chadwick, Simon Hümbert and Lukas Raps
J. Compos. Sci. 2025, 9(7), 367; https://doi.org/10.3390/jcs9070367 - 15 Jul 2025
Viewed by 456
Abstract
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part [...] Read more.
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part can be manufactured. One approach to lowering these costs is the use of a 3D-printable thermoplastic mold. However, AFP lay-up on a 3D-printed mold differs from the usage of a traditional metallic mold in various aspects. Most notable is a reduced stiffness of the mold, a lower thermal conductivity of the mold, and the need for varied process parameters of the AFP process. This study focuses on the investigation of the difference in mechanical and morphological characteristics of laminates produced on metallic and polymeric molds. To this end, the tensile strength and the interlaminar shear strength of laminates manufactured on each substrate were measured and compared. Additionally, morphological analysis using scanning electron microscopy and differential scanning calorimetry was performed to compare the crystallinity in laminates. No statistically significant difference in mechanical or morphological properties was found. Thus, thermoplastics were shown to be a suitable material for non-heated molds to manufacture in situ AFP composites. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

9 pages, 2291 KiB  
Proceeding Paper
Influence of Automated Fiber Placement (AFP) Parameters over Permeability and Performance for Dry CF Laminates
by Elena Rodríguez Senín, Mario Román Rodríguez, Cristian Builes Cárdenas and Maria Ivette Coto Moretti
Eng. Proc. 2025, 90(1), 14; https://doi.org/10.3390/engproc2025090014 - 11 Mar 2025
Viewed by 696
Abstract
AFP process has the advantage of producing high-performance components and reducing the manufacturing time and defects introduced in the final material thanks to the highly automated process, compared with more traditional methods. Selecting inappropriate AFP process parameters can influence the permeability of the [...] Read more.
AFP process has the advantage of producing high-performance components and reducing the manufacturing time and defects introduced in the final material thanks to the highly automated process, compared with more traditional methods. Selecting inappropriate AFP process parameters can influence the permeability of the preforms being manufactured and the later mechanical performance of the final component. This paper reviews in detail the influence of the main AFP process parameters (deposition velocity, compaction force and temperature) over the adhesion properties between carbon fiber tapes. Later, three parameter combinations are selected to evaluate their influence over preform permeability and the mechanical performance of the composite after the resin injection process (RTM). Full article
Show Figures

Figure 1

13 pages, 12217 KiB  
Article
The Effect of Repass Treatment on the Mechanical Properties and Microstructure of CF/PEKK Thermoplastic Composite Laminates Manufactured Using Laser-Assisted Automated Fiber Placement
by Xi Zhang, Xiaodong He, Hualian Li and Shenglai Wang
Polymers 2025, 17(1), 73; https://doi.org/10.3390/polym17010073 - 30 Dec 2024
Viewed by 1089
Abstract
The emerging thermoplastic composite material PEKK exhibits superior thermal stability compared to PEEK. In this work, CF/PEKK laminates were fabricated using laser-assisted heating in AFP, and the effects of repass treatment on the mechanical properties and microstructure of the laminates were compared. The [...] Read more.
The emerging thermoplastic composite material PEKK exhibits superior thermal stability compared to PEEK. In this work, CF/PEKK laminates were fabricated using laser-assisted heating in AFP, and the effects of repass treatment on the mechanical properties and microstructure of the laminates were compared. The results show that after a single repass treatment, the tensile strength of the laminates increased by 28.39%, while the interlaminar shear strength increased by 11.9%, likely due to the distinct load-bearing components under the two loading conditions. Additionally, the repass treatment significantly improves the fiber/resin interface and surface roughness of the laminates. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

26 pages, 29595 KiB  
Article
Induction Heating of Laminated Composite Structures with Magnetically Responsive Nanocomposite Interlayers for Debonding-on-Demand Applications
by Eleni Gkartzou, Konstantinos Zafeiris, Christos Tsirogiannis, Alberto Pedreira, Adrián Rodríguez, Pablo Romero-Rodriguez, Giorgos P. Gakis, Tatjana Kosanovic-Milickovic, Apostolos Kyritsis and Costas A. Charitidis
Polymers 2024, 16(19), 2760; https://doi.org/10.3390/polym16192760 - 30 Sep 2024
Cited by 3 | Viewed by 2180
Abstract
In the present study, the feasibility to achieve localized induction heating and debonding of multi-material composite structures is assessed in testing coupons prepared by Automated Fiber Placement (AFP) and extrusion-based additive manufacturing (AM) technologies. Nano-compounds of Polyether-ketone-ketone (PEKK) with iron oxide nanoparticles acting [...] Read more.
In the present study, the feasibility to achieve localized induction heating and debonding of multi-material composite structures is assessed in testing coupons prepared by Automated Fiber Placement (AFP) and extrusion-based additive manufacturing (AM) technologies. Nano-compounds of Polyether-ketone-ketone (PEKK) with iron oxide nanoparticles acting as electromagnetic susceptors have been processed in a parallel co-rotating twin-screw extruder to produce filament feedstock for extrusion-based AM. The integration of nanocomposite interlayers as discrete debonding zones (DZ) by AFP-AM manufacturing has been investigated for two types of sandwich-structured laminate composites, i.e., laminate-DZ-laminate panels (Type I) and laminate-DZ-AM gyroid structures (Type II). Specimens were exposed to an alternating magnetic field generated by a radio frequency generator and a flat spiral copper induction coil, and induction heating parameters (frequency, power, heating time, sample standoff distance from coil) have been investigated in correlation with real-time thermal imaging to define the debonding process window without compromising laminate quality. For the optimized process parameters, i.e., 2–3 kW generator power and 20–25 mm standoff distance, corresponding to magnetic field intensities in the range of 3–5 kA m−1, specimens were effectively heated above PEKK melting temperature, exhibiting high heating rates within the range of 5.3–9.4 °C/s (Type I) and 8.0–17.5 °C/s (Type II). The results demonstrated that localized induction heating successfully facilitated debonding, leading to full unzipping of the debonding zones in both laminate structures. Further insight on PEKK nanocomposites debonding performance was provided by thermal, morphological characterization and non-destructive inspection via X-ray micro-computed tomography at different processing stages. The developed framework aims to contribute to the development of rapid, on-demand joining, repair and disassembly technologies for thermoplastic composites, towards more efficient maintenance, repair and overhaul operations in the aviation sector and beyond. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 5049 KiB  
Article
Compression Behavior of 3D Printed Composite Isogrid Structures
by Marina Andreozzi, Carlo Bruni, Archimede Forcellese, Serena Gentili and Alessio Vita
Polymers 2024, 16(19), 2747; https://doi.org/10.3390/polym16192747 - 28 Sep 2024
Cited by 1 | Viewed by 1673
Abstract
Composite materials, particularly carbon fiber-reinforced polymers (CFRPs), have become a cornerstone in industries requiring high-performance materials due to their exceptional mechanical properties, such as high strength-to-weight ratios, and their inherent lightweight nature. These attributes make CFRPs highly desirable in aerospace, automotive, and other [...] Read more.
Composite materials, particularly carbon fiber-reinforced polymers (CFRPs), have become a cornerstone in industries requiring high-performance materials due to their exceptional mechanical properties, such as high strength-to-weight ratios, and their inherent lightweight nature. These attributes make CFRPs highly desirable in aerospace, automotive, and other advanced engineering applications. However, the compressive behavior of CFRP structures remains a challenge, primarily due to the material sensitivity to structural instability, leading to matrix cracking and premature failure under compressive loads. Isogrid structures, characterized by their unique geometric patterns, have shown promise in enhancing the compressive behavior of CFRP panels by providing additional support that mitigates these issues. Traditionally, these structures are manufactured using automated techniques like automated fiber placement (AFP) and automated tape laying (ATL), which, despite their efficacy, are often cost-prohibitive for small-scale or custom applications. Recent advancements in 3D-printing technology, particularly those involving continuous fiber reinforcement, present a cost-effective and flexible alternative for producing complex CFRP structures. This study investigates the compressive behavior of 3D-printed isogrid structures, fabricated using continuous carbon fiber reinforcement via an Anisoprint Composer A3 printer equipped with towpreg coextrusion technology. A total of eight isogrid panels with varying infill percentages were produced and subjected to buckling tests to assess their performance. The experimental results indicate a direct correlation between infill density and buckling resistance, with higher infill densities leading to increased buckling loads. Additionally, the failure modes were observed to shift from local to global buckling as the infill density increased, suggesting a more uniform distribution of compressive stresses. Post-test analyses using optical microscopy and scanning electron microscopy (SEM) revealed the presence of voids within the 3D-printed structures, which were found to negatively impact the mechanical performance of the isogrid panels. The findings of this study demonstrate that 3D-printed isogrid CFRP structures can achieve significant buckling resistance, making them a viable option for high-performance applications. However, the presence of voids remains a critical issue, highlighting the need for process optimizations in 3D-printing techniques to enhance the overall performance and reliability of these structures. Full article
(This article belongs to the Special Issue Additive Manufacturing of Fibre Reinforced Polymer Composites)
Show Figures

Figure 1

28 pages, 11894 KiB  
Article
ANN Enhanced Hybrid Force/Position Controller of Robot Manipulators for Fiber Placement
by José Francisco Villa-Tiburcio, José Antonio Estrada-Torres, Rodrigo Hernández-Alvarado, Josue Rafael Montes-Martínez, Darío Bringas-Posadas and Edgar Adrián Franco-Urquiza
Robotics 2024, 13(7), 105; https://doi.org/10.3390/robotics13070105 - 13 Jul 2024
Cited by 3 | Viewed by 2235
Abstract
In practice, most industrial robot manipulators use PID (Proportional + Integral + Derivative) controllers, thanks to their simplicity and adequate performance under certain conditions. Normally, this type of controller has a good performance in tasks where the robot moves freely, performing movements without [...] Read more.
In practice, most industrial robot manipulators use PID (Proportional + Integral + Derivative) controllers, thanks to their simplicity and adequate performance under certain conditions. Normally, this type of controller has a good performance in tasks where the robot moves freely, performing movements without contact with its environment. However, complications arise in applications such as the AFP (Automated Fiber Placement) process, where a high degree of precision and repeatability is required in the control of parameters such as position and compression force for the production of composite parts. The control of these parameters is a major challenge in terms of quality and productivity of the final product, mainly due to the complex geometry of the part and the type of tooling with which the AFP system is equipped. In the last decades, several control system approaches have been proposed in the literature, such as classical, adaptive or sliding mode control theory based methodologies. Nevertheless, such strategies present difficulties to change their dynamics since their design consider only some set of disturbances. This article presents a novel intelligent type control algorithm based on back-propagation neural networks (BP-NNs) combined with classical PID/PI control schemes for force/position control in manipulator robots. The PID/PI controllers are responsible for the main control action, while the BP-NNs contributes with its ability to estimate and compensate online the dynamic variations of the AFP process. It is proven that the proposed control achieves both, stability in the Lyapunov sense for the desired interaction force between the end-effector and the environment, and position trajectory tracking for the robot tip in Cartesian space. The performance and efficiency of the proposed control is evaluated by numerical simulations in MATLAB-Simulink environment, obtaining as results that the errors for the desired force and the tracking of complex trajectories are reduced to a range below 5% in root mean square error (RMSE). Full article
Show Figures

Figure 1

22 pages, 13347 KiB  
Article
Research on Automated Fiber Placement Surface Defect Detection Based on Improved YOLOv7
by Liwei Wen, Shihao Li, Zhentao Dong, Haiqing Shen and Entao Xu
Appl. Sci. 2024, 14(13), 5657; https://doi.org/10.3390/app14135657 - 28 Jun 2024
Cited by 1 | Viewed by 1597
Abstract
Due to the black and glossy appearance of the carbon fiber prepreg bundle surface, the accurate identification of surface defects in automated fiber placement (AFP) presents a high level of difficulty. Currently, the enhanced YOLOv7 algorithm demonstrates certain performance advantages in this detection [...] Read more.
Due to the black and glossy appearance of the carbon fiber prepreg bundle surface, the accurate identification of surface defects in automated fiber placement (AFP) presents a high level of difficulty. Currently, the enhanced YOLOv7 algorithm demonstrates certain performance advantages in this detection task, yet issues with missed detections, false alarms, and low confidence levels persist. Therefore, this study proposes an improved YOLOv7 algorithm to further enhance the performance and generalization of surface defect detection in AFP. Firstly, to enhance the model’s feature extraction capability, the BiFormer attention mechanism is introduced to make the model pay more attention to small target defects, thereby improving feature discriminability. Next, the AFPN structure is used to replace the PAFPN at the neck layer to strengthen feature fusion, preserve semantic information to a greater extent, and finely integrate multi-scale features. Finally, WIoU is adopted to replace CIoU as the bounding box regression loss function, making it more sensitive to small targets, enabling more accurate prediction of object bounding boxes, and enhancing the model’s detection accuracy and generalization capability. Through a series of ablation experiments, the improved YOLOv7 shows a 10.5% increase in mAP and a 14 FPS increase in frame rate, with a maximum detection speed of 35 m/min during the AFP process, meeting the requirements of online detection and thus being able to be applied to surface defect detection in AFP operations. Full article
Show Figures

Figure 1

13 pages, 6356 KiB  
Article
The Effect of Resin Interleafing on the Wedge Peel Strength of CF/PEEK Manufactured by Laser-Assisted In Situ Consolidation
by Ruozhou Wang, Entao Xu and Liwei Wen
Coatings 2024, 14(5), 635; https://doi.org/10.3390/coatings14050635 - 17 May 2024
Cited by 1 | Viewed by 1712
Abstract
In this work, a novel approach involving coating fine PEEK powder on prepreg is introduced to improve wedge peel strength and reduce interlaminar voids. CF/PEEK laminates with resin interleaving are in situ consolidated by laser-assisted fiber placement. The morphology of the powdered surface [...] Read more.
In this work, a novel approach involving coating fine PEEK powder on prepreg is introduced to improve wedge peel strength and reduce interlaminar voids. CF/PEEK laminates with resin interleaving are in situ consolidated by laser-assisted fiber placement. The morphology of the powdered surface is obtained using an optical profilometer, and the surface roughness and volume of added resin are calculated accordingly. Interface and surface temperature are measured during the layup process. Thermal history indicates that very short bonding time is the dominating factor for voids and limited interlayer strength. Laminate porosity and microscopic features are characterized with an optical microscope. The porosity of resin-interleaved laminates decreases to 3.7%, while the resin content only increases by 4.5% in the meantime. This is because interlayer resin particles rapidly melt under laser heating and quickly fill the voids between layers. The wedge peel strength of resin-interleaved laminates can increase by 30.1% without a repass treatment. This could be attributed to the increase in resin intimate contact and reduction in interlayer voids. Full article
(This article belongs to the Special Issue Surface Science of Degradation and Surface Protection)
Show Figures

Figure 1

23 pages, 5182 KiB  
Review
Variable Shape Tooling for Composite Manufacturing: A Systematic Review
by Fabian Neumann
J. Compos. Sci. 2024, 8(4), 131; https://doi.org/10.3390/jcs8040131 - 3 Apr 2024
Cited by 2 | Viewed by 2904
Abstract
The choice of material, manufacturing process, and molding tool significantly affects the quality, environmental impact, and cost efficiency of composite components. Producing one-piece hollow profiles with smooth inner surfaces and undercuts presents major challenges for conventional mold concepts. There is yet no thorough [...] Read more.
The choice of material, manufacturing process, and molding tool significantly affects the quality, environmental impact, and cost efficiency of composite components. Producing one-piece hollow profiles with smooth inner surfaces and undercuts presents major challenges for conventional mold concepts. There is yet no thorough review of shape-variable mandrels in composite manufacturing to be found in the literature. This paper provides an overview of research on shape memory polymers and other shape-variable materials used in tooling applications for composite manufacturing. This work covers shape memory, heat shrink, and other deformable tooling concepts that enable the production of one-piece Type V pressure vessels, air intake ducts, or curved struts and tubes. A systematic literature review in combination with a state-of-the-art open-source active learning tool ASReview is conducted. Fifteen relevant studies were identified. Research on shape-variable tooling is mainly conducted by three research groups in the USA and the PRC. The tooling is mostly made of unreinforced thermosets, especially styrene-based ones. Thermoplastic resins are less common, and reinforcements limit the usable elongation in the temporary shape. The shape variability is either a shape memory and/or a softening process, which, in all studies, is activated by heating. Release agents are widely used to ease demolding. No ecological or economical assessment of the manufacturing methods was conducted in the reviewed studies. Three fields for further research that could be identified are as follows: (1) thorough ecological end economical assessment of shape-variable mandrels in comparison with conventional tooling; (2) thermoplastic shape memory polymer mandrels; and (3) further investigation of simulation capabilities for shape memory mandrels. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

18 pages, 5305 KiB  
Article
Modeling of Precise Tension with Passive Dancers for Automated Fiber Placement
by Yan Li, Zhe Che, Chenggan Zheng, Zhi Li, Han Wang, Liang Cheng and Junxia Jiang
Actuators 2024, 13(2), 70; https://doi.org/10.3390/act13020070 - 12 Feb 2024
Cited by 2 | Viewed by 2263
Abstract
This paper modeled the tension fluctuation during automated fiber placement (AFP), which depicted the tension variations under different operating conditions. The stability and validity of the model were demonstrated using Bode plots and experiments, respectively. According to the model, the tension fluctuations of [...] Read more.
This paper modeled the tension fluctuation during automated fiber placement (AFP), which depicted the tension variations under different operating conditions. The stability and validity of the model were demonstrated using Bode plots and experiments, respectively. According to the model, the tension fluctuations of AFP at different stages were obtained. Additionally, the passive dancer parameters with the better system performance were determined using the evaluation methodology presented in this paper. Moreover, it was discovered that the damping coefficient affects the tension variation more significantly than the elasticity coefficient. Finally, the placement experiments showed that the determined passive dancer parameters improved the laying quality significantly. Full article
(This article belongs to the Special Issue Aerospace Mechanisms and Actuation)
Show Figures

Figure 1

21 pages, 6594 KiB  
Article
Effect of Resin Bleed Out on Compaction Behavior of the Fiber Tow Gap Region during Automated Fiber Placement Manufacturing
by Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko and Oleksandr G. Kravchenko
Polymers 2024, 16(1), 31; https://doi.org/10.3390/polym16010031 - 21 Dec 2023
Cited by 11 | Viewed by 2387
Abstract
Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin [...] Read more.
Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin bleed out, combined with large non-linear deformation, lead to morphological variability. To understand these complex interacting phenomena, a coupled multiphysics finite element framework was developed to simulate the compaction behavior around fiber tow gap regions, which consists of coupled chemo-rheological and flow-compaction analysis. The compaction analysis incorporated a visco-hyperelastic constitutive model with anisotropic tensorial prepreg viscosity, which depends on the resin degree of cure and local fiber orientation and volume fraction. The proposed methodology was validated using the compaction of unidirectional tows and layup with a fiber tow gap. The proposed approach considered the effect of resin bleed out into the gap region, leading to the formation of a resin-rich pocket with a complex non-uniform morphology. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing)
Show Figures

Figure 1

16 pages, 5555 KiB  
Article
Automated Fiber Placement Path Planning and Analysis of Pressure Vessels
by Bo Wang, Lihua Wen, Jinyou Xiao, Shiyu Wang, Ping Ren, Liqiang Wang, Lei Zu and Xiao Hou
Materials 2023, 16(18), 6187; https://doi.org/10.3390/ma16186187 - 13 Sep 2023
Cited by 3 | Viewed by 3195
Abstract
The automated fiber placement (AFP) process faces a crucial challenge: the emergence of out-of-plane buckling in thermoplastic prepreg tows during steering, significantly impeding the quality of composite layup. In response, this study introduces a novel approach: the development of equations for wrinkle-free fiber [...] Read more.
The automated fiber placement (AFP) process faces a crucial challenge: the emergence of out-of-plane buckling in thermoplastic prepreg tows during steering, significantly impeding the quality of composite layup. In response, this study introduces a novel approach: the development of equations for wrinkle-free fiber placement within composite pressure vessels. The investigation encompasses a detailed analysis of prepreg trajectories in relation to shell geometry, accompanied by an in-depth understanding of the underlying causes of wrinkling on dome surfaces. Moreover, a comprehensive model for shell coverage, grounded in placement parameters, is meticulously established. To validate the approach, a simulation tool is devised to calculate press roller motions, ensuring the uniform fiber dispersion on the mandrel and achieving flawless coverage of the shell without wrinkles. This innovative strategy not only optimizes the AFP process for composite layup but also remarkably enhances the overall quality of composite shells. As such, this research carries significant implications for the advancement of composite manufacturing techniques and the concurrent improvement in material performance. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Figure 1

13 pages, 8618 KiB  
Article
Bonding of Low-Melting Polyaryletherketone onto Polyamide 6: A Concept for Molds for Automated Fiber Placement
by Fynn Atzler, Lukas Raps, Jonathan Freund, Samuel Tröger and Simon Hümbert
J. Compos. Sci. 2023, 7(9), 371; https://doi.org/10.3390/jcs7090371 - 5 Sep 2023
Cited by 3 | Viewed by 1929
Abstract
Automated fiber placement (AFP) is a method to manufacture complex composite parts in an automatable and scalable process. Thermoplastic in situ AFP has received more attention in recent years for its use in high-performance, aerospace applications that use low-melting polyaryletherketone (LM-PAEK) composites. Although [...] Read more.
Automated fiber placement (AFP) is a method to manufacture complex composite parts in an automatable and scalable process. Thermoplastic in situ AFP has received more attention in recent years for its use in high-performance, aerospace applications that use low-melting polyaryletherketone (LM-PAEK) composites. Although in situ AFP is a promising technology for the automated and economical manufacturing of composites, the production of a mold is still a considerable expense. Using large-scale additive manufacturing, molds can be manufactured in a short time frame for a fraction of the cost of traditional molds. By using polyamide 6 (PA6), a polymer incompatible with LM-PAEK, a bond can be created, which holds a laminate in the desired form during production and allows for demolding. Due to the thermoplastic nature of PA6, a mold can be manufactured using large-scale, extrusion-based additive manufacturing. This study investigates the suitability of 3D-printed molds composed of PA6 for the AFP of CF/LM-PAEK laminates. To this end, peel tests and shear tests were conducted to investigate the influence of the process temperature, the area of heating and the consolidation pressure on the bond of these incompatible polymers. A shear strength of up to 2.83 MPa and a peel strength of up to 0.173 N·mm−1 were achievable. The principal suitability of PA6 as a mold material for the AFP of CF/LM-PAEK was demonstrated. Full article
(This article belongs to the Topic Advanced Carbon Fiber Reinforced Composite Materials)
Show Figures

Graphical abstract

19 pages, 10683 KiB  
Article
Effect of Roller Pressure and Base Prepreg Layer on Tensile and Flexural Properties of CFRP Laminates Fabricated Using Automated Fiber Placement
by Eldho Mathew and Sunil Chandrakant Joshi
J. Compos. Sci. 2023, 7(3), 101; https://doi.org/10.3390/jcs7030101 - 7 Mar 2023
Cited by 1 | Viewed by 2823
Abstract
Composites can be manufactured in numerous ways. Among the available methods, Automated Fiber Placement (AFP) is the most advanced and latest technology utilized by companies for aerospace and other projects. Although it offers many benefits, it has unique manufacturing challenges and quality issues. [...] Read more.
Composites can be manufactured in numerous ways. Among the available methods, Automated Fiber Placement (AFP) is the most advanced and latest technology utilized by companies for aerospace and other projects. Although it offers many benefits, it has unique manufacturing challenges and quality issues. The presence of tow placement defects such as tow gaps, tow overlaps, twisted tows, incomplete tows, and missing tows in the AFP process are causes for concern as these lead to a decrease in the mechanical performance of the fabricated parts. Although it is not possible to completely avoid the occurrence of defects, optimizing key process parameters is a possible way to minimize them. Roller pressure is one such parameter. If it is too high, it can lead to wider and thinner tows and if it is too low, the towpreg may not stick properly to the substrate and hence, not conform to curvatures. In this work, test layups of different configurations using carbon (T700SC-24K-50C) towpreg with epoxy (UF 3376-100) as the matrix system were prepared at different compaction roller pressures (2 bar, 3.5 bar, and 5 bar), with and without the presence of base prepreg layers. Tensile and bending tests were respectively carried out according to ASTM D3039 and ASTM D7264 to study the effects of these process parameters on the layup defects. From the test results, it is found that using a compaction roller pressure of 3.5 bar and a base prepreg layer of the same material as the towpreg, leads to minimum defects, and hence, to the best tensile and bending properties. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2023)
Show Figures

Figure 1

Back to TopTop