Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (375)

Search Parameters:
Keywords = attribution tendency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 637 KB  
Article
A Comprehensive Evaluation of Consumer Trends and the Bioactive Content of Extra Virgin Olive Oil: Comparative Insights into Trademarked and Local Products
by Senem Suna and Burcu Erdal
Foods 2025, 14(19), 3384; https://doi.org/10.3390/foods14193384 - 30 Sep 2025
Abstract
This multidisciplinary comparative study investigates consumption patterns, health-related properties, and quality attributes of trademarked and local extra virgin olive oil (EVOO) samples. It highlights the importance of localization in promoting agricultural sustainability, strengthening regional economies, and enhancing socio-economic impacts within EVOO production and [...] Read more.
This multidisciplinary comparative study investigates consumption patterns, health-related properties, and quality attributes of trademarked and local extra virgin olive oil (EVOO) samples. It highlights the importance of localization in promoting agricultural sustainability, strengthening regional economies, and enhancing socio-economic impacts within EVOO production and consumption systems. In terms of quality characteristics, significant differences were observed in color parameters (L*, a*, b*, Chroma, Hue angle) among EVOO samples (p < 0.05). Regarding nutritional and functional properties, total phenolic content (TPC) measured with the Folin–Ciocalteu method ranged from 58.15 to 176.29 mg of gallic acid equivalents/kg of oil, while total antioxidant capacity (TAC) measured by CUPRAC and DPPH assays varied between 3.42 and 6.54 and 8.56–10.71 µmol of Trolox equivalents/g of oil, respectively. TPC and TAC were also evaluated for their stability during in vitro gastro-intestinal digestion, demonstrating that EVOO’s bioactive potential remains stable under gastric and intestinal conditions. Local samples exhibited significantly higher TACs than trademarked products across undigested, gastric, and intestinal phases (p < 0.05). Concurrently, a face-to-face consumer survey assessed purchasing behaviors and preferences, revealing that 71.3% of consumers preferred local EVOO and showed a low tendency to purchase commercial brands (p < 0.05). Cooperatives were identified as the main distribution channel, playing a crucial role in sustaining local production systems. This study offers valuable insights into EVOO’s bioactive content and consumer behavior, providing a foundation for developing both localized and commercial products that support health outcomes. Additionally, the findings contribute to policy development concerning sustainable food systems and geographical indications. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

17 pages, 546 KB  
Article
When Peers Drive Impulsive Buying: How Social Capital Reshapes Motivational Mechanisms in Chinese Social Commerce
by Haiqin Xu
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 252; https://doi.org/10.3390/jtaer20030252 - 22 Sep 2025
Viewed by 354
Abstract
Evidence from practice and academic literature indicates that, compared with traditional e-commerce, consumers in social commerce are more prone to impulsive purchasing. This heightened tendency can be attributed to the robust interaction among users in social commerce. Peer intrinsic and extrinsic motivations represent [...] Read more.
Evidence from practice and academic literature indicates that, compared with traditional e-commerce, consumers in social commerce are more prone to impulsive purchasing. This heightened tendency can be attributed to the robust interaction among users in social commerce. Peer intrinsic and extrinsic motivations represent two distinct mechanisms that stimulate impulsive purchasing under the influence of others. Given the diversity in types and strengths of social capital and their varying impacts on peer motivation, this study endeavors to broaden the understanding of impulsive buying in social commerce. It examines how peer intrinsic and extrinsic motivations influence purchasing behavior and explores how these motivations interact with three dimensions of social capital. Within a specific type of social capital context, the objective of this study is to uncover which type of peer motivation predominantly drives impulsive purchasing. To empirically test the research model, an online survey was conducted targeting social commerce users in China. The findings offer empirical support for retailers in implementing appropriate social media initiatives and managing consumer relationships in social commerce. By integrating peer motivation and group-level social capital into the social commerce framework, this research offers novel insights into retailers’ social media strategies and contributes to existing literature. Full article
Show Figures

Figure 1

13 pages, 6851 KB  
Article
Innovative Application of Standard Sand as a Functional Carrier for Nano-Silica in Cement
by Meytal Shalit, Yaniv Knop, Maya Radune and Yitzhak Mastai
Materials 2025, 18(18), 4277; https://doi.org/10.3390/ma18184277 - 12 Sep 2025
Viewed by 350
Abstract
Nano-silica (NS) is used to enhance the mechanical and durability properties of cementitious materials; however, its frequent tendency to agglomerate limits its effectiveness and uniform distribution within the cement matrix. The main goal of this study was to improve NS dispersion and therefore [...] Read more.
Nano-silica (NS) is used to enhance the mechanical and durability properties of cementitious materials; however, its frequent tendency to agglomerate limits its effectiveness and uniform distribution within the cement matrix. The main goal of this study was to improve NS dispersion and therefore to improve the properties of the concrete by coating NS onto standard sand particles (sand@NS) using the Stöber method, creating a composite material that acts as a filler, nucleation site, and highly reactive pozzolanic agent. The resulting sand@NS was incorporated into cement mixtures, and its compressive strength was measured after 3, 7, and 28 days of curing. In addition, water absorption and microstructural density were also evaluated. Comparative results showed that sand@NS significantly enhanced early-age hydration and initial strength, with a 145% increase in compressive strength at 28 days compared to the reference, whereas free NS resulted in a 120% increase. The early-age strength improvement was mainly due to the increased number of nucleation centers, while later strength gains were attributed to pozzolanic activity of the immobilized NS. Additionally, sand@NS reduced water absorption and increased microstructural density, even with reduced cement content, supporting more sustainable and eco-efficient concrete production. This work shows a promising, scalable, and cost-effective strategy to maximize the performance of NS in cementitious systems and supports its broader adoption in advanced construction materials. Full article
Show Figures

Figure 1

38 pages, 20491 KB  
Article
Analysis of Nitric Oxide and Nitrogen Dioxide Variability at a Central Mediterranean WMO/GAW Station
by Francesco D’Amico, Teresa Lo Feudo, Ivano Ammoscato, Giorgia De Benedetto, Salvatore Sinopoli, Luana Malacaria, Maurizio Busetto, Davide Putero and Claudia Roberta Calidonna
Nitrogen 2025, 6(3), 84; https://doi.org/10.3390/nitrogen6030084 - 10 Sep 2025
Viewed by 387
Abstract
The World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) observation site of Lamezia Terme (code: LMT) in Calabria, Italy, has been measuring nitric oxide (NO) and nitrogen dioxide (NO2) (together referred to as NOx) for a decade; however, only a limited [...] Read more.
The World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) observation site of Lamezia Terme (code: LMT) in Calabria, Italy, has been measuring nitric oxide (NO) and nitrogen dioxide (NO2) (together referred to as NOx) for a decade; however, only a limited number of studies have evaluated their variability at the site, accounting for short measurement periods. In this work, nine continuous years (2015–2023) of measurements are analyzed to assess daily, weekly, seasonal, and multi-year tendencies, also accounting for local wind circulation, which is known to have a relevant impact on LMT’s measurements. For the first time, a multi-year evaluation of LMT data also considers the local wind lidar record to integrate conventional measurements with additional information on the transport of NOx at low altitudes. The study also considers data on local tourism and vehicular traffic to assess correlations with LMT’s measurements, thus providing new insights on NOx variability at the site. The analysis showed peaks in early morning NOx concentrations attributable to rush hour traffic, while in the evening NO2 peaks are present with minor NO counterparts. Weekly cycles have yielded the most statistically significant results of any other similar evaluation at the sites, with all combinations of parameters, seasons, and wind corridors indicating tangible differences between weekday (WD, Monday to Friday) and weekend (WE, Saturday and Sunday) concentrations. The analysis of multi-year variability has shown a slightly declining tendency; however, sporadic bursts in concentrations limit the statistical significance of downward trends. Full article
Show Figures

Figure 1

11 pages, 5875 KB  
Article
Preferential Adsorption of Single-Stranded DNA on Graphene Oxide with Hydroxyl and Epoxy Groups
by Huishu Ma, Xiaodan Huang, Shijun Wang, Mei Wu, Hanbing Wang, Guowei Shao, Liang Zhao and Xiaoling Lei
Crystals 2025, 15(9), 800; https://doi.org/10.3390/cryst15090800 - 10 Sep 2025
Viewed by 355
Abstract
The interaction between DNA and two-dimensional materials, such as graphene oxide (GO), has aroused significant research interest due to its potential applications, including biosensors, drug delivery, and gene therapy. However, the difference in interaction between DNA and oxygen functional groups on GO remains [...] Read more.
The interaction between DNA and two-dimensional materials, such as graphene oxide (GO), has aroused significant research interest due to its potential applications, including biosensors, drug delivery, and gene therapy. However, the difference in interaction between DNA and oxygen functional groups on GO remains unclear, and direct observation at the experimental level is still challenging. In this work, we investigated the adsorption process of a single-stranded DNA (ssDNA) onto GO exhibiting a series of oxidation degrees by molecular dynamics simulations. We found that the ssDNA preferentially binds to hydroxyl groups (-OH) over epoxy groups (-O-) on the GO surface. This preferential adsorption feature may be attributed to the stronger tendency of ssDNA to form hydrogen bonds (HBs) with hydroxyl groups compared to epoxy groups in aqueous solutions. Further analysis indicates that the affinity interaction between ssDNA and hydroxyl groups presumably increases the oxidation degree of GO, thus suggesting a better binding between ssDNA and GO. This work is not only expected to provide the underlying mechanism of ssDNA onto graphene-based interfaces but also offers a deeper understanding of the structures of DNA-two-dimensional complexes, which may potentially contribute to designing new molecular structures for bio-sensing-related nano-devices and nanostructures. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

19 pages, 1408 KB  
Article
Yellow Pea Flour Fermented with Kefir as a Valuable Ingredient for the Techno-Functional and Sensory Improvement of Gluten-Free Bread
by Débora N. López, Pamela S. Forastieri, Natalia L. Calvo, María Belén Cossia, Camila Tedaldi, Emilce E. Llopart, María Eugenia Steffolani and Valeria Boeris
Fermentation 2025, 11(9), 521; https://doi.org/10.3390/fermentation11090521 - 4 Sep 2025
Cited by 1 | Viewed by 659
Abstract
This work studies yellow pea flour (YPF) fermentation with kefir (1:1.5 mass ratio, incubated 30 h at 25 °C) for gluten-free breadmaking. Three samples were evaluated: untreated YPF, YPF mixed with kefir (UF), and fermented YPF (FF). Structural changes were minimal, but fermentation [...] Read more.
This work studies yellow pea flour (YPF) fermentation with kefir (1:1.5 mass ratio, incubated 30 h at 25 °C) for gluten-free breadmaking. Three samples were evaluated: untreated YPF, YPF mixed with kefir (UF), and fermented YPF (FF). Structural changes were minimal, but fermentation improved the flour functionality. Bulk density (g/mL) decreased from 0.54 ± 0.02 in YPF and 0.47 ± 0.01 in UF to 0.43 ± 0.01 in FF, while the water absorption capacity (g/g) increased from 1.20 ± 0.01 in YPF and 1.50 ± 0.05 in UF to 1.92 ± 0.02 in FF. YPF showed the lowest oil absorption capacity (0.90 ± 0.02 g/g), while higher values were obtained for FF and UF (averaging 1.54 g/g). The yellowness index showed a clear tendency: higher in UF (34.9 ± 0.2), intermediate in FF (32.869 ± 0.008), and lower in YPF (22.4 ± 0.1). In gluten-free bread, baking loss did not show significant differences between FF-B and UF-B (averaging 15.65%) but they were significantly lower than that of YPF-B (18.5 ± 0.5%). The highest specific volume (mL/g) was observed in FF-B (1.96 ± 0.02), followed by UF-B (1.33 ± 0.02) and YPF-B (1.08 ± 0.02). Significantly reduced “pea” sensory attributes were perceived in FF-B, while acidity perception increased. Hardness was similar among breads, although chewiness was higher in FF-B. These results suggest that kefir fermentation enhances YPF functionality in gluten-free breadmaking. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Graphical abstract

25 pages, 3590 KB  
Article
Spatio-Temporal Trends of Monthly and Annual Precipitation in Guanajuato, Mexico
by Jorge Luis Morales Martínez, Victor Manuel Ortega Chávez, Gilberto Carreño Aguilera, Tame González Cruz, Xitlali Virginia Delgado Galvan and Juan Manuel Navarro Céspedes
Water 2025, 17(17), 2597; https://doi.org/10.3390/w17172597 - 2 Sep 2025
Viewed by 1107
Abstract
This study examines the spatio-temporal evolution of precipitation in the State of Guanajuato, Mexico, from 1981 to 2016 by analyzing monthly series from 65 meteorological stations. A rigorous data quality protocol was implemented, selecting stations with more than 30 years of continuous data [...] Read more.
This study examines the spatio-temporal evolution of precipitation in the State of Guanajuato, Mexico, from 1981 to 2016 by analyzing monthly series from 65 meteorological stations. A rigorous data quality protocol was implemented, selecting stations with more than 30 years of continuous data and less than 10% missing values. Multiple Imputation by Chained Equations (MICE) with Predictive Mean Matching was applied to handle missing data, preserving the statistical properties of the time series as validated by Kolmogorov–Smirnov tests (p=1.000 for all stations). Homogeneity was assessed using Pettitt, SNHT, Buishand, and von Neumann tests, classifying 60 stations (93.8%) as useful, 3 (4.7%) as doubtful, and 2 (3.1%) as suspicious for monthly analysis. Breakpoints were predominantly clustered around periods of instrumental changes (2000–2003 and 2011–2014), underscoring the necessity of homogenization prior to trend analysis. The Trend-Free Pre-Whitening Mann–Kendall (TFPW-MK) test was applied to account for significant first-order autocorrelation (ρ1 > 0.3) present in all series. The analysis revealed no statistically significant monotonic trends in monthly precipitation at any of the 65 stations (α=0.05). While 75.4% of the stations showed slight non-significant increasing tendencies (Kendall’s τ range: 0.0016 to 0.0520) and 24.6% showed non-significant decreasing tendencies (τ range: −0.0377 to −0.0008), Sen’s slope estimates were negligible (range: −0.0029 to 0.0111 mm/year) and statistically indistinguishable from zero. No discernible spatial patterns or correlation between trend magnitude and altitude (ρ=0.022, p>0.05) were found, indicating region-wide precipitation stability during the study period. The integration of advanced imputation, multi-test homogenization, and robust trend detection provides a comprehensive framework for hydroclimatic analysis in semi-arid regions. These findings suggest that Guanajuato’s severe water crisis cannot be attributed to declining precipitation but rather to anthropogenic factors, primarily unsustainable groundwater extraction for agriculture. Full article
Show Figures

Figure 1

22 pages, 2438 KB  
Article
Assessment of Soil Microplastics and Their Relation to Soil and Terrain Attributes Under Different Land Uses
by John Jairo Arévalo-Hernández, Eduardo Medeiros Severo, Angela Dayana Barrera de Brito, Diego Tassinari and Marx Leandro Naves Silva
AgriEngineering 2025, 7(9), 281; https://doi.org/10.3390/agriengineering7090281 - 31 Aug 2025
Viewed by 609
Abstract
The assessment of microplastics (MPs) in terrestrial ecosystems has garnered increasing global attention due to their accumulation and migration in soils, which may have potential impacts on soil health, biodiversity, and agricultural productivity. However, research on their distribution and interactions in soil remains [...] Read more.
The assessment of microplastics (MPs) in terrestrial ecosystems has garnered increasing global attention due to their accumulation and migration in soils, which may have potential impacts on soil health, biodiversity, and agricultural productivity. However, research on their distribution and interactions in soil remains limited, especially in tropical regions. This study aimed to characterize MPs extracted from tropical soil samples and relate their abundance to soil and terrain attributes under different land uses (forest, grassland, and agriculture). Soil samples were collected from an experimental farm in Lavras, Minas Gerais, Southeastern Brazil, to determine soil physical and chemical attributes and MP abundance in a micro-watershed. These locations were also used to obtain terrain attributes from a digital elevation model and the normalized difference vegetation index (NDVI). The majority of microplastics found in all samples were identified as polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and vinyl polychloride (PVC). The spatial distribution of MP was rather heterogeneous, with average abundances of 3826, 2553, and 3406 pieces kg−1 under forest, grassland, and agriculture, respectively. MP abundance was positively related to macroporosity and sand content and negatively related to clay content and most chemical attributes. Regarding terrain attributes, MP abundance was negatively correlated with plan curvature, convergence index, and vertical distance to channel network, and positively related to topographic wetness index. These findings indicate that continuous water fluxes at both the landscape and soil surface scales play a key role, suggesting a tendency for higher MP accumulation in lower-lying areas and soils with greater porosity. These conditions promote MP transport and accumulation through surface runoff and facilitate their entry into the soil. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Graphical abstract

21 pages, 11477 KB  
Article
Effect of Ultrasonic Treatment on Chemical Stripping Behavior of Aluminum Coating on K6509 Co-Based Superalloy
by Yuanyuan Jin, Cheng Xie, Ke Sun, Zehuan Li, Xin Wang, Xin Ma, Hui Wang, Rongrong Shang, Xuxian Zhou, Yidi Li and Yunping Li
Materials 2025, 18(17), 3979; https://doi.org/10.3390/ma18173979 - 25 Aug 2025
Viewed by 654
Abstract
In this study, 10% nitric acid was employed to remove the aluminum coating on the cobalt-based superalloy K6509, with a focus on elucidating the corrosion mechanism and evaluating the effect of ultrasonic on the removal process. The results shows that ultrasonic treatment (40 [...] Read more.
In this study, 10% nitric acid was employed to remove the aluminum coating on the cobalt-based superalloy K6509, with a focus on elucidating the corrosion mechanism and evaluating the effect of ultrasonic on the removal process. The results shows that ultrasonic treatment (40 kHz) significantly improves coating removal efficiency, increasing the maximum corrosion rate by 46.49% from 2.5413 × 10−7 g·s−1·mm−2 to 4.7488 × 10−7 g·s−1·mm−2 and reducing removal time from 10 min to 6 min. This enhancement is attributed to cavitation effect of ultrasonic bubbles and the shockwave-accelerated ion diffusion, which together facilitate more efficient coating degradation and results in a smoother surface. In terms of corrosion behavior, the difference in phase composition between the outer layer and the interdiffusion zone (IDZ) plays a decisive role. The outer layer is primarily composed of β-(Co,Ni)Al phase, which is thermodynamically less stable in acidic environments and thus readily dissolves in 10% HNO3. In contrast, the IDZ mainly consists of Cr23C6, which exhibit high chemical stability and a strong tendency to passivate. These characteristics render the IDZ highly resistant to nitric acid attack, thereby forming a protective barrier that limits acid penetration and helps maintain the integrity of the substrate. Full article
Show Figures

Figure 1

47 pages, 10040 KB  
Article
Analysis of Urban-Level Greenhouse Gas and Aerosol Variability at a Southern Italian WMO/GAW Observation Site: New Insights from Air Mass Aging Indicators Applied to Nine Years of Continuous Measurements
by Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 275; https://doi.org/10.3390/environments12080275 - 10 Aug 2025
Viewed by 741
Abstract
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NO [...] Read more.
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NOx (ozone to nitrogen oxides) ratio has been used at the Lamezia Terme (code: LMT) World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) regional station in Italy to determine the variability of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), SO2 (sulfur dioxide), and eBC (equivalent black carbon), thus allowing the differentiation between local and remote sources of emission. Prior to this work, all O3/NOx ratios lower than 10 were grouped under the LOC (local) proximity category, thus including very low ratios (≤1), which are generally attributed by the literature to “urban” air masses, particularly enriched in anthropogenic emissions. This study, aimed at nine continuous years of measurements (2015–2023), introduces the URB category in the assessment of CO, CO2, CH4, SO2, and eBC variability at the LMT site, highlighting patterns and peaks in concentrations that were previously neglected. The daily cycle, which is locally influenced by wind circulation and Planetary Boundary Layer (PBL) dynamics, is particularly susceptible to urban-scale emissions and its analysis has allowed the highlighting of notable peaks in concentrations that were previously neglected. Correlations with wind corridors and speeds indicate that most evaluated parameters are linked to northeastern winds at LMT and wind speeds under 5.5 m/s. Weekly cycle analyses, i.e., differences between weekdays (MON-FRI) and weekends (SAT-SUN), have also highlighted tendencies driven by seasonality and wind corridors. The results highlight the potential of the URB category as a tool necessary to access a given area’s anthropogenic output and its impact on air quality and the environment. Full article
Show Figures

Figure 1

17 pages, 2533 KB  
Article
Novel Coating Approaches for Polyethylene Biliary Stents to Reduce Microbial Adhesion, Prevent Biofilm Formation, and Prolong Stent Patency
by Laura Wagner, Philipp Stolte, Stephan Heller, Dina Schippers, Dominik Pförringer, Jutta Tübel, Roland M. Schmid, Rainer Burgkart, Jochen Schneider and Andreas Karl-Werner Obermeier
Biomedicines 2025, 13(8), 1950; https://doi.org/10.3390/biomedicines13081950 - 9 Aug 2025
Viewed by 760
Abstract
Background: Occlusion of plastic biliary stents is a common complication in biliary drainage, often requiring exchange procedures every 2–4 months due to microbial colonization and sludge formation. This study aimed to evaluate diamond-like carbon (DLC) coatings, with and without silver nanoparticle additives, [...] Read more.
Background: Occlusion of plastic biliary stents is a common complication in biliary drainage, often requiring exchange procedures every 2–4 months due to microbial colonization and sludge formation. This study aimed to evaluate diamond-like carbon (DLC) coatings, with and without silver nanoparticle additives, for preventing stent occlusion. Methods: Polyethylene (PE) stents were coated with DLC using PlasmaImpax for DLC-1 and pulsed laser deposition for DLC-2. Silver ions (Ag) were incorporated into the DLC-2 coatings. To simulate in vivo conditions, a co-culture of Enterococcus faecalis (E. faecalis), Escherichia coli (E. coli), and Candida albicans (C. albicans) was used for microbial colonization. Standardized human bile simulated physiological conditions. Adhesion tests, weight measurements, and scanning electron microscopy (SEM) quantified bacterial adherence to stents. Results: DLC-1 coatings demonstrated higher bacterial growth than uncoated PE stents with E. faecalis (adhesion assay difference: 0.6 log [p = 0.19] and 0.1 log [p = 0.75] in rounds 1 and 2, respectively). In the bile incubation model, DLC-1 did not significantly reduce bacterial counts at 5 days (0.4 log [p = 0.06]) or 14 days (0.2 log [p = 0.44]). DLC-2 showed no significant reduction either. DLC-2-Ag significantly reduced bacterial adhesion (5 days: −0.3 log [p = 0.00]; 14 days: −0.4 log [p = 0.16]) and exhibited inhibition zones against E. faecalis (2.3 mm), E. coli (2.1 mm), and C. albicans (0.6 mm). SEM revealed cracks and flaking in the coating. Conclusions: DLC coatings alone did not prevent microbial adhesion. Tendencies of anti-adhesive properties were seen with Ag-doped DLC coatings, which were attributed to the antibacterial effects of Ag. Optimization of the DLC-coating process is needed to improve stent performance. Future studies with larger samples sizes are needed to confirm the observed trends. Full article
(This article belongs to the Special Issue State-of-the-Art Hepatic and Gastrointestinal Diseases in Germany)
Show Figures

Figure 1

34 pages, 23162 KB  
Article
Analysis and Evaluation of Sulfur Dioxide and Equivalent Black Carbon at a Southern Italian WMO/GAW Station Using the Ozone to Nitrogen Oxides Ratio Methodology as Proximity Indicator
by Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 273; https://doi.org/10.3390/environments12080273 - 9 Aug 2025
Cited by 1 | Viewed by 648
Abstract
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT) [...] Read more.
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT) World Meteorological Organization–Global Atmosphere Watch (WMO/GAW) observation site located in the south Italian region of Calabria, the “Proximity” methodology based on photochemical processes, i.e., the ratio of tropospheric ozone (O3) to nitrogen oxides (NOx) has been used to discriminate the local and remote atmospheric concentrations of GHGs. Local air masses are heavily affected by anthropogenic emissions while remote air masses are more representative of atmospheric background conditions. This study applies, to eight continuous years of measurements (2016–2023), the Proximity methodology to sulfur dioxide (SO2) for the first time, and also extends it to equivalent black carbon (eBC) to assess whether the methodology can be applied to aerosols. The results indicate that SO2 follows a peculiar pattern, with LOC (local) and BKG (background) levels being generally lower than their N–SRC (near source) and R–SRC (remote source), thus corroborating previous hypotheses on SO2 variability at LMT by which the Aeolian Arc of volcanoes and maritime traffic could be responsible for these concentration levels. The anomalous behavior of SO2 was assessed using the Proximity Progression Factor (PPF) introduced in this study, which provides a value representative of changes from local to background concentrations. This finding, combined with an evaluation of known sources on a regional scale, has been used to provide an estimate on the spatial resolution of proximity categories, which is one of the known limitations of this methodology. Furthermore, the results confirm the potential of using the Proximity methodology for aerosols, as eBC shows a pattern consistent with local sources of emissions, such as wildfires and other forms of biomass burning, being responsible for the observed peaks. Full article
Show Figures

Figure 1

16 pages, 9914 KB  
Article
Phase Equilibria of Si-C-Cu System at 700 °C and 810 °C and Implications for Composite Processing
by Kun Liu, Zhenxiang Wu, Dong Luo, Xiaozhong Huang, Wei Yang and Peisheng Wang
Materials 2025, 18(15), 3689; https://doi.org/10.3390/ma18153689 - 6 Aug 2025
Viewed by 394
Abstract
The phase equilibria of the Si-C-Cu ternary system at 700 °C and 810 °C were experimentally investigated for the first time. Fifteen key alloys were prepared via powder metallurgy and analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis [...] Read more.
The phase equilibria of the Si-C-Cu ternary system at 700 °C and 810 °C were experimentally investigated for the first time. Fifteen key alloys were prepared via powder metallurgy and analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Isothermal sections were constructed based on the identified equilibrium phases. At 700 °C, eight single-phase regions and six three-phase regions—(C)+(Cu)+hcp, (C)+hcp+γ-Cu33Si7, (C)+γ-Cu33Si7+SiC, γ-Cu33Si7+SiC+ε-Cu15Si4, SiC+ε-Cu15Si4+η-Cu3Si(ht), and SiC+(Si)+η-Cu3Si(ht)—were determined. At 810 °C, nine single-phase regions and seven three-phase regions were identified. The solubility of C and Si/Cu in the various phases was quantified and found to be significantly higher at 810 °C compared to 700 °C. Key differences include the presence of the bcc (β) and liquid phases at 810 °C. The results demonstrate that higher temperatures promote increased mutual solubility and reaction tendencies among Cu, C, and Si. Motivated by these findings, the influence of vacuum hot pressing parameters on SiC-fiber-reinforced Cu composites (SiCf/Cu) was investigated. The optimal processing condition (1050 °C, 60 MPa, 90 min) yielded a high bending strength of 998.61 MPa, attributed to enhanced diffusion and interfacial bonding facilitated by the high-temperature phase equilibria. This work provides essential fundamental data for understanding interactions and guiding processing in SiC-reinforced Cu composites. Full article
Show Figures

Figure 1

14 pages, 1959 KB  
Article
Influence of Molecular Weight of Anthraquinone Acid Dyes on Color Strength, Migration, and UV Protection of Polyamide 6 Fabrics
by Nawshin Farzana, Abu Naser Md Ahsanul Haque, Shamima Akter Smriti, Abu Sadat Muhammad Sayem, Fahmida Siddiqa, Md Azharul Islam, Md Nasim and S M Kamrul Hasan
Physchem 2025, 5(3), 31; https://doi.org/10.3390/physchem5030031 - 4 Aug 2025
Viewed by 641
Abstract
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers [...] Read more.
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers comparative insight into how the Mw of structurally similar anthraquinone acid dyes impacts their diffusion, fixation, and functional outcomes (e.g., UV protection) on polyamide 6 fabric, using Acid Blue 260 (Mw~564) and Acid Blue 127:1 (Mw~845) as representative low- and high-Mw dyes. The effects of dye concentration, pH, and temperature on color strength (K/S) were evaluated, migration index and zeta potential were measured, and UV protection factor (UPF) and FTIR analyses were used to assess fabric functionality. Results showed that the lower-Mw dye exhibited higher migration tendency, particularly at increased dye concentrations, while the higher-Mw dye demonstrated greater color strength and superior wash fastness. Additionally, improved UPF ratings were associated with higher-Mw dye due to enhanced light absorption. These findings offer practical insights for optimizing acid dye selection in polyamide coloration to balance color performance and functional attributes. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

16 pages, 4672 KB  
Article
Corrosion Behavior and Mechanism of Mg-1Bi and Mg-1Sn Extruded Alloys
by Hao Dong, Yongqiang Zhao, Yuying He, Shujuan Liu and Jinghuai Zhang
Metals 2025, 15(8), 871; https://doi.org/10.3390/met15080871 - 4 Aug 2025
Viewed by 358
Abstract
Improving the corrosion resistance of magnesium (Mg) alloys is a long-term challenge, especially when cost-effectiveness is taken into account. In this work, Mg-1Bi and Mg-1Sn extruded alloys are prepared, and the effects of cost-effective Bi and Sn on the corrosion behavior of Mg [...] Read more.
Improving the corrosion resistance of magnesium (Mg) alloys is a long-term challenge, especially when cost-effectiveness is taken into account. In this work, Mg-1Bi and Mg-1Sn extruded alloys are prepared, and the effects of cost-effective Bi and Sn on the corrosion behavior of Mg alloys are comparatively studied. The corrosion resistance of the Mg-1Sn alloy (PH: 2.83 ± 0.19 mm y−1) is better than that of the Mg-1Bi alloy (PH: 13.75 ± 1.12 mm y−1), being about five times greater. In addition to the relatively low dislocation density in Mg-1Sn alloy, the difference in corrosion resistance is mainly attributed to two aspects of influence brought about by the addition of Sn and Bi. The Mg2Sn phase introduced by the addition of Sn has a potential difference (PD) of ~30 mV, which is significantly lower than that (~90 mV) of the Mg3Bi2 phase introduced by adding Bi, thereby weakening the micro-couple corrosion tendency of the Mg-1Sn alloy. The addition of Bi has little effect on the corrosion film, while the addition of Sn makes the corrosion film on the Mg-1Sn alloy contain SnO2, improving the compactness of the corrosion film and thereby enhancing the corrosion protection effect. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Graphical abstract

Back to TopTop