Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,387)

Search Parameters:
Keywords = attribute networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3080 KiB  
Article
Unsupervised Multimodal Community Detection Algorithm in Complex Network Based on Fractal Iteration
by Hui Deng, Yanchao Huang, Jian Wang, Yanmei Hu and Biao Cai
Fractal Fract. 2025, 9(8), 507; https://doi.org/10.3390/fractalfract9080507 (registering DOI) - 2 Aug 2025
Abstract
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. [...] Read more.
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. This paper proposes a novel unsupervised multimodal community detection algorithm (UMM) based on fractal iteration. The core idea is to design a dual-channel encoder that comprehensively considers node semantic features and network topological structures. Initially, node representation vectors are derived from structural information (using feature vectors when available, or singular value decomposition to obtain feature vectors for nodes without attributes). Subsequently, a parameter-free graph convolutional encoder (PFGC) is developed based on fractal iteration principles to extract high-order semantic representations from structural encodings without requiring any training process. Furthermore, a semantic–structural dual-channel encoder (DC-SSE) is designed, which integrates semantic encodings—reduced in dimensionality via UMAP—with structural features extracted by PFGC to obtain the final node embeddings. These embeddings are then clustered using the K-means algorithm to achieve community partitioning. Experimental results demonstrate that the UMM outperforms existing methods on multiple real-world network datasets. Full article
14 pages, 5954 KiB  
Article
Mapping Wet Areas and Drainage Networks of Data-Scarce Catchments Using Topographic Attributes
by Henrique Marinho Leite Chaves, Maria Tereza Leite Montalvão and Maria Rita Souza Fonseca
Water 2025, 17(15), 2298; https://doi.org/10.3390/w17152298 (registering DOI) - 2 Aug 2025
Abstract
Wet areas, which are locations in the landscape that consistently retain moisture, and channel networks are important landscape compartments, with key hydrological and ecological functions. Hence, defining their spatial boundaries is an important step towards sustainable watershed management. In catchments of developing countries, [...] Read more.
Wet areas, which are locations in the landscape that consistently retain moisture, and channel networks are important landscape compartments, with key hydrological and ecological functions. Hence, defining their spatial boundaries is an important step towards sustainable watershed management. In catchments of developing countries, wet areas and small order channels of river networks are rarely mapped, although they represent a crucial component of local livelihoods and ecosystems. In this study, topographic attributes generated with a 30 m SRTM DEM were used to map wet areas and stream networks of two tropical catchments in Central Brazil. The topographic attributes for wet areas were the local slope and the slope curvature, and the Topographic Wetness Index (TWI) was used to delineate the stream networks. Threshold values of the selected topographic attributes were calibrated in the Santa Maria catchment, comparing the synthetically generated wet areas and drainage networks with corresponding reference (map) features, and validated in the nearby Santa Maria basin. Drainage network and wet area delineation accuracies were estimated using random basin transects and multi-criteria and confusion matrix methods. The drainage network accuracies were 67.2% and 70.7%, and wet area accuracies were 72.7% and 73.8%, for the Santa Maria and Gama catchments, respectively, being equivalent or higher than previous studies. The mapping errors resulted from model incompleteness, DEM vertical inaccuracy, and cartographic misrepresentation of the reference topographic maps. The study’s novelty is the use of readily available information to map, with simplicity and robustness, wet areas and channel initiation in data-scarce, tropical environments. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 2223 KiB  
Article
Category Attribute-Oriented Heterogeneous Resource Allocation and Task Offloading for SAGIN Edge Computing
by Yuan Qiu, Xiang Luo, Jianwei Niu, Xinzhong Zhu and Yiming Yao
J. Sens. Actuator Netw. 2025, 14(4), 81; https://doi.org/10.3390/jsan14040081 (registering DOI) - 1 Aug 2025
Abstract
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task [...] Read more.
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task execution and undesirable network performance. As a consequence, we formulate a category attribute-oriented resource allocation and task offloading optimization problem with the aim of minimizing the overall scheduling cost. We first introduce a task–resource matching matrix to facilitate optimal task offloading policies with computation resources. In addition, virtual queues are constructed to take the impacts of randomized task arrival into account. To solve the optimization objective which jointly considers bandwidth allocation, transmission power control and task offloading decision effectively, we proposed a deep reinforcement learning (DRL) algorithm framework considering type matching. Simulation experiments demonstrate the effectiveness of our proposed algorithm as well as superior performance compared to others. Full article
(This article belongs to the Section Communications and Networking)
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

18 pages, 1988 KiB  
Article
Computational Design of Potentially Multifunctional Antimicrobial Peptide Candidates via a Hybrid Generative Model
by Fangli Ying, Wilten Go, Zilong Li, Chaoqian Ouyang, Aniwat Phaphuangwittayakul and Riyad Dhuny
Int. J. Mol. Sci. 2025, 26(15), 7387; https://doi.org/10.3390/ijms26157387 (registering DOI) - 30 Jul 2025
Viewed by 166
Abstract
Antimicrobial peptides (AMPs) provide a robust alternative to conventional antibiotics, combating escalating microbial resistance through their diverse functions and broad pathogen-targeting abilities. While current deep learning technologies enhance AMP generation, they face challenges in developing multifunctional AMPs due to intricate amino acid interdependencies [...] Read more.
Antimicrobial peptides (AMPs) provide a robust alternative to conventional antibiotics, combating escalating microbial resistance through their diverse functions and broad pathogen-targeting abilities. While current deep learning technologies enhance AMP generation, they face challenges in developing multifunctional AMPs due to intricate amino acid interdependencies and limited consideration of diverse functional activities. To overcome this challenge, we introduce a novel de novo multifunctional AMP design framework that enhances a Feedback Generative Adversarial Network (FBGAN) by integrating a global quantitative AMP activity regression module and a multifunctional-attribute integrated prediction module. This integrated approach not only facilitates the automated generation of potential AMP candidates, but also optimizes the network’s ability to assess their multifunctionality. Initially, by integrating an effective pre-trained regression and classification model with feedback-loop mechanisms, our model can not only identify potential valid AMP candidates, but also optimizes computational predictions of Minimum Inhibitory Concentration (MIC) values. Subsequently, we employ a combinatorial predictor to simultaneously identify and predict five multifunctional AMP bioactivities, enabling the generation of multifunctional AMPs. The experimental results demonstrate the efficiency of generating AMPs with multiple enhanced antimicrobial properties, indicating that our work can provide a valuable reference for combating multi-drug-resistant infections. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Molecular Sciences)
Show Figures

Figure 1

26 pages, 2653 KiB  
Article
Attacker Attribution in Multi-Step and Multi-Adversarial Network Attacks Using Transformer-Based Approach
by Romina Torres and Ana García
Appl. Sci. 2025, 15(15), 8476; https://doi.org/10.3390/app15158476 - 30 Jul 2025
Viewed by 112
Abstract
Recent studies on network intrusion detection using deep learning primarily focus on detecting attacks or classifying attack types, but they often overlook the challenge of attributing each attack to its specific source among many potential adversaries (multi-adversary attribution). This is a critical and [...] Read more.
Recent studies on network intrusion detection using deep learning primarily focus on detecting attacks or classifying attack types, but they often overlook the challenge of attributing each attack to its specific source among many potential adversaries (multi-adversary attribution). This is a critical and underexplored issue in cybersecurity. In this study, we address the problem of attacker attribution in complex, multi-step network attack (MSNA) environments, aiming to identify the responsible attacker (e.g., IP address) for each sequence of security alerts, rather than merely detecting the presence or type of attack. We propose a deep learning approach based on Transformer encoders to classify sequences of network alerts and attribute them to specific attackers among many candidates. Our pipeline includes data preprocessing, exploratory analysis, and robust training/validation using stratified splits and 5-fold cross-validation, all applied to real-world multi-step attack datasets from capture-the-flag (CTF) competitions. We compare the Transformer-based approach with a multilayer perceptron (MLP) baseline to quantify the benefits of advanced architectures. Experiments on this challenging dataset demonstrate that our Transformer model achieves near-perfect accuracy (99.98%) and F1-scores (macro and weighted ≈ 99%) in attack attribution, significantly outperforming the MLP baseline (accuracy 80.62%, macro F1 65.05% and weighted F1 80.48%). The Transformer generalizes robustly across all attacker classes, including those with few samples, as evidenced by per-class metrics and confusion matrices. Our results show that Transformer-based models are highly effective for multi-adversary attack attribution in MSNA, a scenario not or under-addressed in the previous intrusion detection systems (IDS) literature. The adoption of advanced architectures and rigorous validation strategies is essential for reliable attribution in complex and imbalanced environments. Full article
(This article belongs to the Special Issue Application of Deep Learning for Cybersecurity)
Show Figures

Figure 1

14 pages, 1161 KiB  
Article
Multipath Interference Impact Due to Fiber Mode Coupling in C+L+S Multiband Transmission Reach
by Luís Cancela and João Pires
Photonics 2025, 12(8), 770; https://doi.org/10.3390/photonics12080770 - 30 Jul 2025
Viewed by 75
Abstract
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can [...] Read more.
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can also increase network capacity and can also be used for multiband (MB) transmission. Nevertheless, in MB transmission, power mode coupling arises when bands with wavelengths below the cut-off wavelength are used, inducing multipath interference (MPI). This work investigates the impact of the MPI, due to mode coupling from G.654E SMF, in the transmission reach of a C+L+S band transmission system. Our results indicate that for the S-band scenario, the band below the wavelength cut-off, an approximately 25% reach decrease is observed when the MPI/span increases to −26 dB/span, considering quadrature phase-shift keying (QPSK) signals with a 64 GBaud symbol rate. We also concluded that if the L-band were not above the wavelength cut-off, it would be much more affected than the S-band, with an approximately 52% reach decrease due to MPI impact. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

21 pages, 1574 KiB  
Article
Reevaluating Wildlife–Vehicle Collision Risk During COVID-19: A Simulation-Based Perspective on the ‘Fewer Vehicles–Fewer Casualties’ Assumption
by Andreas Y. Troumbis and Yiannis G. Zevgolis
Diversity 2025, 17(8), 531; https://doi.org/10.3390/d17080531 - 29 Jul 2025
Viewed by 91
Abstract
Wildlife–vehicle collisions (WVCs) remain a significant cause of animal mortality worldwide, particularly in regions experiencing rapid road network expansion. During the COVID-19 pandemic, a number of studies reported decreased WVC rates, attributing this trend to reduced traffic volumes. However, the validity of the [...] Read more.
Wildlife–vehicle collisions (WVCs) remain a significant cause of animal mortality worldwide, particularly in regions experiencing rapid road network expansion. During the COVID-19 pandemic, a number of studies reported decreased WVC rates, attributing this trend to reduced traffic volumes. However, the validity of the simplified assumption that “fewer vehicles means fewer collisions” remains underexplored from a mechanistic perspective. This study aims to reevaluate that assumption using two simulation-based models that incorporate both the physics of vehicle movement and behavioral parameters of road-crossing animals. Employing an inverse modeling approach with quasi-realistic traffic scenarios, we quantify how vehicle speed, spacing, and animal hesitation affect collision likelihood. The results indicate that approximately 10% of modeled cases contradict the prevailing assumption, with collision risk peaking at intermediate traffic densities. These findings challenge common interpretations of WVC dynamics and underscore the need for more refined, behaviorally informed mitigation strategies. We suggest that integrating such approaches into road planning and conservation policy—particularly under the European Union’s ‘Vision Zero’ framework—could help reduce wildlife mortality more effectively in future scenarios, including potential pandemics or mobility disruptions. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

36 pages, 27306 KiB  
Article
Integrating Social Network and Space Syntax: A Multi-Scale Diagnostic–Optimization Framework for Public Space Optimization in Nomadic Heritage Villages of Xinjiang
by Hao Liu, Rouziahong Paerhati, Nurimaimaiti Tuluxun, Saierjiang Halike, Cong Wang and Huandi Yan
Buildings 2025, 15(15), 2670; https://doi.org/10.3390/buildings15152670 - 28 Jul 2025
Viewed by 162
Abstract
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) [...] Read more.
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) overlooks physical interfaces—hindering the development of holistic solutions for socio-spatial resilience. This study proposes a multi-scale integrated assessment framework combining social network analysis (SNA) and space syntax to systematically evaluate public space structures in traditional nomadic villages of Xinjiang. The framework provides scientific evidence for optimizing public space design in these villages, facilitating harmonious coexistence between spatial functionality and cultural values. Focusing on three heritage villages—representing compact, linear, and dispersed morphologies—the research employs a hierarchical “village-street-node” analytical model to dissect spatial configurations and their socio-functional dynamics. Key findings include the following: Compact villages exhibit high central clustering but excessive concentration, necessitating strategies to enhance network resilience and peripheral connectivity. Linear villages demonstrate weak systemic linkages, requiring “segment-connection point supplementation” interventions to mitigate structural elongation. Dispersed villages maintain moderate network density but face challenges in visual integration and centrality, demanding targeted activation of key intersections to improve regional cohesion. By merging SNA’s social attributes with space syntax’s geometric precision, this framework bridges a methodological gap, offering comprehensive spatial optimization solutions. Practical recommendations include culturally embedded placemaking, adaptive reuse of transitional spaces, and thematic zoning to balance heritage conservation with tourism needs. Analyzing Xinjiang’s unique spatial–social interactions provides innovative insights for sustainable heritage village planning and replicable solutions for comparable global cases. Full article
Show Figures

Figure 1

25 pages, 2281 KiB  
Article
Life Cycle Cost Modeling and Multi-Dimensional Decision-Making of Multi-Energy Storage System in Different Source-Grid-Load Scenarios
by Huijuan Huo, Peidong Li, Cheng Xin, Yudong Wang, Yuan Zhou, Weiwei Li, Yanchao Lu, Tianqiong Chen and Jiangjiang Wang
Processes 2025, 13(8), 2400; https://doi.org/10.3390/pr13082400 - 28 Jul 2025
Viewed by 280
Abstract
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance [...] Read more.
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance for the construction of new power systems. From the perspective of life cycle cost analysis, this paper conducts an economic evaluation of four mainstream energy storage technologies: lithium iron phosphate battery, pumped storage, compressed air energy storage, and hydrogen energy storage, and quantifies and compares the life cycle cost of multiple energy storage technologies. On this basis, a three-dimensional multi-energy storage comprehensive evaluation indicator system covering economy, technology, and environment is constructed. The improved grade one method and entropy weight method are used to determine the comprehensive performance, and the fuzzy comprehensive evaluation method is used to carry out multi-attribute decision-making on the multi-energy storage technology in the source, network, and load scenarios. The results show that pumped storage and compressed air energy storage have significant economic advantages in long-term and large-scale application scenarios. With its fast response ability and excellent economic and technical characteristics, the lithium iron phosphate battery has the smallest score change rate (15.2%) in various scenarios, showing high adaptability. However, hydrogen energy storage technology still lacks economic and technological maturity, and breakthrough progress is still needed for its wide application in various application scenarios in the future. Full article
Show Figures

Figure 1

11 pages, 1539 KiB  
Article
An Optimum Prediction Model for the Strength Index of Unclassified Tailings Filling Body
by Jian Yao, Shenghua Yin, Dongmei Tian, Chen Yi, Jinglin Xu and Leiming Wang
Processes 2025, 13(8), 2395; https://doi.org/10.3390/pr13082395 - 28 Jul 2025
Viewed by 212
Abstract
In order to improve the poor prediction effect of current filling body strength design, a support vector machine (SVM) and Lib Toolbox were used to build an optimal match model or strength index of unclassified tailings filling body. Eight main factors were analyzed [...] Read more.
In order to improve the poor prediction effect of current filling body strength design, a support vector machine (SVM) and Lib Toolbox were used to build an optimal match model or strength index of unclassified tailings filling body. Eight main factors were analyzed and screened as condition attributes, and backfill strength as a decision attribute. Next, we selected 72 groups of training samples and 6 groups of calibration samples. Our model adopts a radial basis function (RBF) as the kernel function and uses a grid search method to optimize parameters; it then tests the combination of optimal parameters by cross-validation. Results show that the mean error of regression prediction and verified predictions made by the SVM match model were 1.01%, which were more accurate than the BP neural network model’s predictions. On the premise that stope stability is ensured, the SVM match model may decrease cement consumption and the cost of backfill more effectively, and improve economic efficiency. Full article
Show Figures

Figure 1

19 pages, 3238 KiB  
Article
Influences of pH on Gelling and Digestion–Fermentation Properties of Fish Gelatin–Polysaccharide Hydrogels
by Wanyi Sun, Qiuyu Lu, Jiajing Chen, Xinxin Fan, Shengnan Zhan, Wenge Yang, Tao Huang and Fulai Li
Foods 2025, 14(15), 2631; https://doi.org/10.3390/foods14152631 - 26 Jul 2025
Viewed by 374
Abstract
This study systematically evaluated the effects of pH (4–10) on the gelation properties, structural characteristics, and in vitro digestion–fermentation behavior of fish gelatin (FG, 6% (w/v)) hydrogels combined with either xanthan gum (XG, 0.07% (w/v)) [...] Read more.
This study systematically evaluated the effects of pH (4–10) on the gelation properties, structural characteristics, and in vitro digestion–fermentation behavior of fish gelatin (FG, 6% (w/v)) hydrogels combined with either xanthan gum (XG, 0.07% (w/v)) or κ-carrageenan (κC, 0.07% (w/v)). The results revealed that the gel strength, hardness, and chewiness of the composite gels initially increased (pH 4–6) and subsequently decreased with rising pH levels. This trend correlated with the formation of a dense gel network structure. Furthermore, as pH increased, in vitro digestibility showed a similar pH-dependent trend, with FG–XG demonstrating superior enhancement compared to FG–κC. The addition of XG and κC resulted in increased gas production and a decreased pH during fermentation. Intestinal microbiota analysis revealed that both FG–XG and FG–κC improved the abundances of Proteobacteria and Bacteroidete while reducing Firmicutes. Compared to FG–XG and FG, FG–κC promoted higher levels of the genera Lachnospiraceae and Bacteroides, suggesting a more favorable impact on intestinal health. These findings provide valuable insights into the pH-responsive functional properties of FG-based hydrogels and their potential applications in designing novel food matrices with enhanced nutritional and probiotic attributes. Full article
Show Figures

Figure 1

30 pages, 92065 KiB  
Article
A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies
by Jin Lu, Zhongji Cao, Jin Wang, Zhao Wang, Jia Zhao and Minjie Zhang
Agriculture 2025, 15(15), 1622; https://doi.org/10.3390/agriculture15151622 - 26 Jul 2025
Viewed by 252
Abstract
During the automated picking of table grapes, the automatic recognition and segmentation of grape pedicels, along with the positioning of picking points, are vital components for all the following operations of the harvesting robot. In the actual scene of a grape plantation, however, [...] Read more.
During the automated picking of table grapes, the automatic recognition and segmentation of grape pedicels, along with the positioning of picking points, are vital components for all the following operations of the harvesting robot. In the actual scene of a grape plantation, however, it is extremely difficult to accurately and efficiently identify and segment grape pedicels and then reliably locate the picking points. This is attributable to the low distinguishability between grape pedicels and the surrounding environment such as branches, as well as the impacts of other conditions like weather, lighting, and occlusion, which are coupled with the requirements for model deployment on edge devices with limited computing resources. To address these issues, this study proposes a novel picking point localization method for table grapes based on an instance segmentation network called Progressive Global-Local Structure-Sensitive Segmentation (PGSS-YOLOv11s) and a simple combination strategy of morphological operators. More specifically, the network PGSS-YOLOv11s is composed of an original backbone of the YOLOv11s-seg, a spatial feature aggregation module (SFAM), an adaptive feature fusion module (AFFM), and a detail-enhanced convolutional shared detection head (DE-SCSH). And the PGSS-YOLOv11s have been trained with a new grape segmentation dataset called Grape-⊥, which includes 4455 grape pixel-level instances with the annotation of ⊥-shaped regions. After the PGSS-YOLOv11s segments the ⊥-shaped regions of grapes, some morphological operations such as erosion, dilation, and skeletonization are combined to effectively extract grape pedicels and locate picking points. Finally, several experiments have been conducted to confirm the validity, effectiveness, and superiority of the proposed method. Compared with the other state-of-the-art models, the main metrics F1 score and mask mAP@0.5 of the PGSS-YOLOv11s reached 94.6% and 95.2% on the Grape-⊥ dataset, as well as 85.4% and 90.0% on the Winegrape dataset. Multi-scenario tests indicated that the success rate of positioning the picking points reached up to 89.44%. In orchards, real-time tests on the edge device demonstrated the practical performance of our method. Nevertheless, for grapes with short pedicels or occluded pedicels, the designed morphological algorithm exhibited the loss of picking point calculations. In future work, we will enrich the grape dataset by collecting images under different lighting conditions, from various shooting angles, and including more grape varieties to improve the method’s generalization performance. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 4369 KiB  
Article
Breast Cancer Classification via a High-Precision Hybrid IGWO–SOA Optimized Deep Learning Framework
by Aniruddha Deka, Debashis Dev Misra, Anindita Das and Manob Jyoti Saikia
AI 2025, 6(8), 167; https://doi.org/10.3390/ai6080167 - 24 Jul 2025
Viewed by 447
Abstract
Breast cancer (BRCA) remains a significant cause of mortality among women, particularly in developing and underdeveloped regions, where early detection is crucial for effective treatment. This research introduces an innovative hybrid model that combines Improved Grey Wolf Optimizer (IGWO) with the Seagull Optimization [...] Read more.
Breast cancer (BRCA) remains a significant cause of mortality among women, particularly in developing and underdeveloped regions, where early detection is crucial for effective treatment. This research introduces an innovative hybrid model that combines Improved Grey Wolf Optimizer (IGWO) with the Seagull Optimization Algorithm (SOA), forming the IGWO–SOA technique to enhance BRCA detection accuracy. The hybrid model draws inspiration from the adaptive and strategic behaviors of seagulls, especially their ability to dynamically change attack angles in order to effectively tackle complex global optimization challenges. A deep neural network (DNN) is fine-tuned using this hybrid optimization method to address the challenges of hyperparameter selection and overfitting, which are common in DL approaches for BRCA classification. The proposed IGWO–SOA model demonstrates optimal performance in identifying key attributes that contribute to accurate cancer detection using the CBIS-DDSM dataset. Its effectiveness is validated using performance metrics such as loss, F1-score, precision, accuracy, and recall. Notably, the model achieved an impressive accuracy of 99.4%, outperforming existing methods in the domain. By optimizing both the learning parameters and model structure, this research establishes an advanced deep learning framework built upon the IGWO–SOA approach, presenting a robust and reliable method for early BRCA detection with significant potential to improve diagnostic precision. Full article
(This article belongs to the Section Medical & Healthcare AI)
Show Figures

Figure 1

24 pages, 5021 KiB  
Article
Enhanced Mechanical and Electromagnetic Shielding Properties of Mg Matrix Layered Composites Reinforced with Hybrid Graphene Nanosheet (GNS)–Carbon Nanotube (CNT) Networks
by Hailong Shi, Jiancheng Zhao, Zhenming Sun, Xiaojun Wang, Xiaoshi Hu, Xuejian Li, Chao Xu, Weimin Gan and Chao Ding
Materials 2025, 18(15), 3455; https://doi.org/10.3390/ma18153455 - 23 Jul 2025
Viewed by 283
Abstract
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of [...] Read more.
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of magnesium (Mg) matrix composites. Specifically, the GNS-CNT hybrid, which forms a three-dimensional interconnected network structure, was analyzed and compared to composites reinforced with only GNSs or CNTs. The objective was to determine the benefits of hybrid reinforcements on the mechanical strength and EMI shielding capability of the composites. The results indicated that the GNS-CNT/Mg composite, at a nanocarbon content of 0.5 wt.% and a GNS-CNT ratio of 1:2, achieved optimal performance, with a 55% increase in tensile strength and an EMI shielding effectiveness of 70 dB. The observed enhancements can be attributed to several key mechanisms: effective load transfer, which promotes tensile twinning, along with improved impedance matching and multiple internal reflections within the GNS-CNT network, which enhance absorption loss. These significant improvements position the composite as a promising candidate for advanced applications requiring high strength, toughness, and efficient electromagnetic shielding, providing valuable insights into the design of high-performance lightweight materials. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop