Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (150)

Search Parameters:
Keywords = attentional resources depletion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 952 KB  
Review
Potential Financing Mechanisms for Green Hydrogen Development in Sub-Saharan Africa
by Katundu Imasiku, Abdoulaye Ballo, Kouakou Valentin Koffi, Fortunate Farirai, Solomon Nwabueze Agbo, Jane Olwoch, Bruno Korgo, Kehinde O. Ogunjobi, Daouda Koné, Moumini Savadogo and Tacheba Budzanani
Hydrogen 2025, 6(3), 59; https://doi.org/10.3390/hydrogen6030059 - 21 Aug 2025
Viewed by 352
Abstract
Green hydrogen is gaining global attention as a zero-carbon energy carrier with the potential to drive sustainable energy transitions, particularly in regions facing rising fossil fuel costs and resource depletion. In sub-Saharan Africa, financing mechanisms and structured off-take agreements are critical to attracting [...] Read more.
Green hydrogen is gaining global attention as a zero-carbon energy carrier with the potential to drive sustainable energy transitions, particularly in regions facing rising fossil fuel costs and resource depletion. In sub-Saharan Africa, financing mechanisms and structured off-take agreements are critical to attracting investment across the green hydrogen value chain, from advisory and pilot stages to full-scale deployment. While substantial funding is required to support a green economic transition, success will depend on the effective mobilization of capital through smart public policies and innovative financial instruments. This review evaluates financing mechanisms relevant to sub-Saharan Africa, including green bonds, public–private partnerships, foreign direct investment, venture capital, grants and loans, multilateral and bilateral funding, and government subsidies. Despite their potential, current capital flows remain insufficient and must be significantly scaled up to meet green energy transition targets. This study employs a mixed-methods approach, drawing on primary data from utility firms under the H2Atlas-Africa project and secondary data from international organizations and the peer-reviewed literature. The analysis identifies that transitioning toward Net-Zero emissions economies through hydrogen development in sub-Saharan Africa presents both significant opportunities and measurable risks. Specifically, the results indicate an estimated investment risk factor of 35%, reflecting potential challenges such as financing, infrastructure, and policy readiness. Nevertheless, the findings underscore that green hydrogen is a viable alternative to fossil fuels in sub-Saharan Africa, particularly if supported by targeted financing strategies and robust policy frameworks. This study offers practical insights for policymakers, financial institutions, and development partners seeking to structure bankable projects and accelerate green hydrogen adoption across the region. Full article
Show Figures

Figure 1

22 pages, 3744 KB  
Article
Improved DeepLabV3+ for UAV-Based Highway Lane Line Segmentation
by Yueze Wang, Dudu Guo, Yang Wang, Hongbo Shuai, Zhuzhou Li and Jin Ran
Sustainability 2025, 17(16), 7317; https://doi.org/10.3390/su17167317 - 13 Aug 2025
Viewed by 296
Abstract
Sustainable highway infrastructure maintenance critically depends on precise lane line detection, yet conventional inspection approaches remain resource-depleting, carbon-intensive, and hazardous to personnel. To mitigate these constraints and address the low accuracy and high parameterization of existing models, this study utilizes unmanned aerial vehicle [...] Read more.
Sustainable highway infrastructure maintenance critically depends on precise lane line detection, yet conventional inspection approaches remain resource-depleting, carbon-intensive, and hazardous to personnel. To mitigate these constraints and address the low accuracy and high parameterization of existing models, this study utilizes unmanned aerial vehicle (UAV) imagery and proposes a UAV-based highway lane line segmentation method using an improved DeepLabV3+ model that resolves multi-scale lane line segmentation challenges in UAV imagery. MobileNetV2 is used as the backbone network to significantly reduce the number of model parameters. The Squeeze-and-Excitation (SE) attention mechanism is integrated to enhance feature extraction capabilities, particularly at lane line edges. A Feature Pyramid Network (FPN) is incorporated to improve multi-scale lane line feature extraction. We introduce a novel Waterfall Atrous Spatial Pyramid Pooling (WASPP) module, utilizing cascaded atrous convolutions with strategic dilation rate adjustments to progressively expand the receptive field and aggregate contextual information across scales. The improved model outperforms the original DeepLabV3+ by 5.04% mIoU (85.30% vs. 80.26%) and 3.35% F1-Score (91.74% vs. 88.39%) while cutting parameters by 85% (8.03 M vs. 54.8 M) and reducing training time by 2 h 50 min, thereby enhancing the model’s accuracy in lane line segmentation, reducing the number of parameters, and lowering the carbon footprint. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

20 pages, 772 KB  
Review
Treatment of Refractory Oxidized Nickel Ores (ONOs) from the Shevchenkovskoye Ore Deposit
by Chingis A. Tauakelov, Berik S. Rakhimbayev, Aliya Yskak, Khusain Kh. Valiev, Yerbulat A. Tastanov, Marat K. Ibrayev, Alexander G. Bulaev, Sevara A. Daribayeva, Karina A. Kazbekova and Aidos A. Joldassov
Metals 2025, 15(8), 876; https://doi.org/10.3390/met15080876 - 6 Aug 2025
Viewed by 424
Abstract
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from [...] Read more.
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from the Shevchenkovskoye cobalt–nickel ore deposit and other Kazakhstan deposits, highlighting the challenges they pose for conventional beneficiation and metallurgical processing. Current industrial practices are analyzed, including pyrometallurgical, hydrometallurgical, and pyro-hydrometallurgical methods, with an emphasis on their efficiency, environmental impact, and economic feasibility. Special attention is given to the potential of hydro-catalytic leaching as a flexible, energy-efficient alternative for treating low-grade ONOs under atmospheric conditions. The results underscore the necessity of developing cost-effective and sustainable technologies tailored to the unique composition of Kazakhstani ONOs, particularly those rich in iron and magnesium. This work provides a strategic framework for future research and the industrial application of advanced leaching techniques to unlock the full potential of Kazakhstan’s nickel resources. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

24 pages, 2152 KB  
Review
A Concise Overview of the Use of Low-Dimensional Molybdenum Disulfide as an Electrode Material for Li-Ion Batteries and Beyond
by Mattia Bartoli, Meltem Babayiğit Cinali, Özlem Duyar Coşkun, Silvia Porporato, Diego Pugliese, Erik Piatti, Francesco Geobaldo, Giuseppe A. Elia, Claudio Gerbaldi, Giuseppina Meligrana and Alessandro Piovano
Batteries 2025, 11(7), 269; https://doi.org/10.3390/batteries11070269 - 16 Jul 2025
Viewed by 597
Abstract
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and [...] Read more.
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and grid-scale storage systems, are continually evolving to meet the growing performance requirements. In this dynamic context, two-dimensional (2D) materials have emerged as highly promising candidates for use in electrodes due to their layered structure, tunable electronic properties, and high theoretical capacity. Among 2D materials, molybdenum disulfide (MoS2) has gained increasing attention as a promising low-dimensional candidate for LIB anode applications. This review provides a comprehensive yet concise overview of recent advances in the application of MoS2 in LIB electrodes, with particular attention to its unique electrochemical behavior at the nanoscale. We critically examine the interplay between structural features, charge-storage mechanisms, and performance metrics—chiefly the specific capacity, rate capability, and cycling stability. Furthermore, we discuss current challenges, primarily poor intrinsic conductivity and volume fluctuations, and highlight innovative strategies aimed at overcoming these limitations, such as through nanostructuring, composite formation, and surface engineering. By shedding light on the opportunities and hurdles in this rapidly progressing field, this work offers a forward-looking perspective on the role of MoS2 in the next generation of high-performance LIBs. Full article
(This article belongs to the Section Battery Mechanisms and Fundamental Electrochemistry Aspects)
Show Figures

Figure 1

17 pages, 1156 KB  
Article
An Integrated Biorefinery Process to Revalorize Marine Biomass from the Microalga Nannochloropsis gaditana Using Pressurized Green Solvents
by Cristina Blanco-Llamero, Paz García-García and Francisco Javier Señoráns
Mar. Drugs 2025, 23(7), 263; https://doi.org/10.3390/md23070263 - 23 Jun 2025
Viewed by 725
Abstract
Biorefinery is gaining attention as a promising approach to valorize natural resources and promote a circular bioeconomy. This study aimed to recover high-value molecules, such as xanthophylls and polar lipids with nutraceutical applications, through enzymatic pretreatment and sequential pressurized liquid extraction (PLEseq), by [...] Read more.
Biorefinery is gaining attention as a promising approach to valorize natural resources and promote a circular bioeconomy. This study aimed to recover high-value molecules, such as xanthophylls and polar lipids with nutraceutical applications, through enzymatic pretreatment and sequential pressurized liquid extraction (PLEseq), by reusing the residual biomass of Nannochloropsis gaditana after each processing step. Remarkably, pure glycolipids (102.95 ± 1.10 mg g−1 dry weight) were obtained immediately after enzymatic pretreatment, facilitating their easy recovery. Furthermore, two alternative sequential extraction processes were successfully developed, using ethanol and water as green solvents at varying temperatures and in different orders. The most effective PLEseq conditions yielded up to 48 mg mL−1 of carbohydrates using water at 50 °C, and up to 44 mg mL−1 of proteins via subcritical water extraction at 100 °C, prior to conventional lipid extraction with ethanol to produce various concentrated extracts. In the inverted PLEseq process—starting with ethanol extraction followed by successive water washes—isolated and purified fractions of lutein and astaxanthin were obtained, contributing to the complete depletion of the residual biomass. Overall, the development of an integrated and sequential biorefinery protocol that enables the extraction of multiple high-value compounds holds significant potential for application in the food industry. Full article
(This article belongs to the Special Issue Marine Biorefinery for Bioactive Compounds Production)
Show Figures

Graphical abstract

25 pages, 4066 KB  
Article
Evaluating the Energy Resources and Environmental Impacts for Blueberry Packaging Materials with a Focus on End-of-Life Scenarios
by Viktoria Mannheim, Ulvi Moor, Liina Laumets and Klára Tóthné Szita
Energies 2025, 18(13), 3232; https://doi.org/10.3390/en18133232 - 20 Jun 2025
Viewed by 480
Abstract
Because of their many health benefits, blueberries are highly sought after as superfoods. There are also ongoing initiatives to enhance sustainability in blueberry packaging by selecting appropriate materials. Ideal packaging should ensure the safe delivery of the fruit to consumers while maintaining product [...] Read more.
Because of their many health benefits, blueberries are highly sought after as superfoods. There are also ongoing initiatives to enhance sustainability in blueberry packaging by selecting appropriate materials. Ideal packaging should ensure the safe delivery of the fruit to consumers while maintaining product quality, addressing environmental concerns, and promoting circularity. The environmental impact of four different packaging materials was assessed using a comparative cradle-to-grave life cycle assessment. The materials evaluated included a cardboard package (CB), a cardboard package with a cellulose lid (CBC), a polypropylene (PP) as a control, and a punnet made from rice straw topped with polylactic acid (RPLA), a bio-based plastic. The evaluation considered all environmental impact categories, utilizing Sphera GaBi software and the CML 2016 method. Special attention was given to various end-of-life scenarios, determining energy resources and fossil abiotic depletions. The results indicate that RPLA is the most eco-friendly option, with the lowest carbon footprint and energy resources. CB has a larger carbon footprint but less overall impact than traditional incineration, while CBC has the highest impact during recycling, mainly due to marine ecotoxicity. PP has a relatively low impact on energy resources and fossil abiotic depletion compared to CB and CBC packaging materials. Full article
Show Figures

Figure 1

25 pages, 2020 KB  
Article
Boron-Based Compounds for Solid-State Hydrogen Storage: A Review
by Yernat Kozhakhmetov, Sherzod Kurbanbekov, Nurya Mukhamedova, Azamat Urkunbay, Aibar Kizatov, Leila Bayatanova, Raushan Nurdillayeva and Dilnoza Baltabayeva
Crystals 2025, 15(6), 536; https://doi.org/10.3390/cryst15060536 - 3 Jun 2025
Viewed by 883
Abstract
Due to the depletion of hydrocarbon resources worldwide, intensive research is being conducted to identify alternative energy carriers. Hydrogen has emerged as a promising candidate due to its high energy density and environmentally friendly nature. However, large-scale implementation of hydrogen energy is hindered [...] Read more.
Due to the depletion of hydrocarbon resources worldwide, intensive research is being conducted to identify alternative energy carriers. Hydrogen has emerged as a promising candidate due to its high energy density and environmentally friendly nature. However, large-scale implementation of hydrogen energy is hindered by the lack of safe, efficient, and cost-effective storage methods. Among the various materials studied for solid-state hydrogen storage, boron nitride (BN)-based compounds have attracted significant attention owing to their high thermal stability, tunable morphology, and potential for physisorption-based storage. This review focuses on recent advances in the synthesis, functionalization, and structural optimization of BN-based materials, including nanotubes, nanosheets, porous frameworks, and chemically modified BN. Although other boron-containing hydrides such as LiBH4, Mg(BH4)2, and closo-borates are briefly mentioned for comparison, the primary emphasis is placed on BN-related systems. This paper discusses various modification strategies aimed at enhancing hydrogen uptake and reversibility, offering insights into the future potential of BN-based materials in hydrogen storage technologies. Full article
Show Figures

Figure 1

32 pages, 16038 KB  
Article
An Ensemble Machine Learning Approach for High-Resolution Estimation of Groundwater Storage Anomalies
by Yanbin Yuan, Dongyang Shen, Yang Cao, Xiang Wang, Bo Zhang and Heng Dong
Water 2025, 17(10), 1445; https://doi.org/10.3390/w17101445 - 11 May 2025
Viewed by 1003
Abstract
Groundwater depletion has emerged as a pressing global challenge, yet the low spatial resolution (0.25°) of Gravity Recovery and Climate Experiment (GRACE) satellite data limits its application in regional groundwater monitoring. In this study, based on 0.25° spatial resolution groundwater storage anomalies (GWSAs) [...] Read more.
Groundwater depletion has emerged as a pressing global challenge, yet the low spatial resolution (0.25°) of Gravity Recovery and Climate Experiment (GRACE) satellite data limits its application in regional groundwater monitoring. In this study, based on 0.25° spatial resolution groundwater storage anomalies (GWSAs) data derived from GRACE satellite observations and GLDAS hydrological model outputs, supplemented with hydrological data, humanities data, and other geographic parameters, we constructed a Stacking-based ensemble machine learning model that achieved a 1 km spatial resolution of GWSAs distribution data across the contiguous United States (CONUS) from 2010 to 2020. The ensemble model integrates eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Categorical Boosting (CatBoost) models using an Attention-Based Dynamic Weight Allocation (ADWA) approach, along with a ridge regression model. The results indicate that our ensemble model outperforms individual machine learning (ML) models, achieving a coefficient of determination (R2) of 0.929, root mean square error (RMSE) of 25.232 mm, mean absolute error (MAE) of 19.125 mm, and Nash–Sutcliffe efficiency (NSE) of 0.936, validated by 10-fold cross-validation. In situ measurements indicate that, compared with the original data, approximately 61.7% of the monitoring wells (266 out of 431) exhibit a higher correlation after downscaling, with the overall correlation coefficient increasing by about 18.7%, which suggests that the downscaled product exhibits an appreciable improvement in accuracy. The ensemble model proposed in this study, by integrating the advantages of various ML algorithms, is better able to address the complexity and uncertainty of groundwater storage variations, thus providing scientific support for the sustainable management of groundwater resources. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

16 pages, 2816 KB  
Review
Artificial General Intelligence (AGI) Applications and Prospect in Oil and Gas Reservoir Development
by Jiulong Wang, Xiaotian Luo, Xuhui Zhang and Shuyi Du
Processes 2025, 13(5), 1413; https://doi.org/10.3390/pr13051413 - 6 May 2025
Viewed by 1981
Abstract
The cornerstone of the global economy, oil and gas reservoir development, faces numerous challenges such as resource depletion, operational inefficiencies, safety concerns, and environmental impacts. In recent years, the integration of artificial intelligence (AI), particularly artificial general intelligence (AGI), has gained significant attention [...] Read more.
The cornerstone of the global economy, oil and gas reservoir development, faces numerous challenges such as resource depletion, operational inefficiencies, safety concerns, and environmental impacts. In recent years, the integration of artificial intelligence (AI), particularly artificial general intelligence (AGI), has gained significant attention for its potential to address these challenges. This review explores the current state of AGI applications in the oil and gas sector, focusing on key areas such as data analysis, optimized decision and knowledge management, etc. AGIs, leveraging vast datasets and advanced retrieval-augmented generation (RAG) capabilities, have demonstrated remarkable success in automating data-driven decision-making processes, enhancing predictive analytics, and optimizing operational workflows. In exploration, AGIs assist in interpreting seismic data and geophysical surveys, providing insights into subsurface reservoirs with higher accuracy. During production, AGIs enable real-time analysis of operational data, predicting equipment failures, optimizing drilling parameters, and increasing production efficiency. Despite the promising applications, several challenges remain, including data quality, model interpretability, and the need for high-performance computing resources. This paper also discusses the future prospects of AGI in oil and gas reservoir development, highlighting the potential for multi-modal AI systems, which combine textual, numerical, and visual data to further enhance decision-making processes. In conclusion, AGIs have the potential to revolutionize oil and gas reservoir development by driving automation, enhancing operational efficiency, and improving safety. However, overcoming existing technical and organizational challenges will be essential for realizing the full potential of AI in this sector. Full article
Show Figures

Figure 1

19 pages, 4848 KB  
Article
Performance Evaluation of Shotcrete Mortar with Silicon Manganese Slag as Substitute for Fine Aggregate
by Woo-Ri Kwon, Jung-Bin Lee, Bok-Mo Yoon and Jang-Ho Jay Kim
Materials 2025, 18(8), 1754; https://doi.org/10.3390/ma18081754 - 11 Apr 2025
Viewed by 483
Abstract
Shotcrete is a versatile construction material, yet its performance limitations, such as high rebound rates and poor adhesion, demand technological improvements to ensure structural reliability. Silicon manganese (SiMn) slag, a by-product of SiMn alloy production, has gained attention as a potential sustainable alternative [...] Read more.
Shotcrete is a versatile construction material, yet its performance limitations, such as high rebound rates and poor adhesion, demand technological improvements to ensure structural reliability. Silicon manganese (SiMn) slag, a by-product of SiMn alloy production, has gained attention as a potential sustainable alternative to natural aggregates in construction materials, addressing both resource depletion and carbon reduction challenges in the industry. This study is conducted to develop and evaluate a new mix design of mortar incorporating SiMn slag as fine aggregate, focusing on enhancing performance. Mixtures with varying percentages (0%, 30%, 50%, 70%, and 100%) of SiMn slag as a fine aggregate replacement were evaluated for fresh properties (air content, slump), mechanical performance (compressive strength, flexural strength, splitting tensile strength), durability (chloride ion penetration resistance, freeze–thaw resistance, carbonation resistance), and constructability (rebound rate, free shrinkage) to assess suitability as mortar for shotcrete. The experimental results demonstrated that the mixture with 50% SiMn slag replacement demonstrated the most balanced performance, showing an increase of 12.33% in compressive strength, 8.97% in splitting tensile strength, and 18.4% in flexural strength compared to the control. Durability properties also improved by an average of 11.93%, while rebound rate and shrinkage were significantly reduced. The findings confirm that SiMn slag is a technically viable and advantageous substitute for fine aggregates in shotcrete. Further research is needed to refine its economic feasibility and broaden its implementation in sustainable construction. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete)
Show Figures

Graphical abstract

15 pages, 1484 KB  
Review
Ocular Side Effects of Dupilumab: A Comprehensive Overview of the Literature
by Giacomo Boscia, Federico Spataro, Vanessa Desantis, Antonio Giovanni Solimando, Angelo Vacca, Roberto Ria and Alfonso Savastano
J. Clin. Med. 2025, 14(7), 2487; https://doi.org/10.3390/jcm14072487 - 5 Apr 2025
Cited by 1 | Viewed by 2119
Abstract
Dupilumab, a monoclonal antibody targeting the interleukin (IL)-4 receptor alpha subunit and IL-13, has markedly advanced the treatment of atopic conditions such as dermatitis, asthma, and chronic rhinosinusitis. However, its expanding use has brought increased attention to a range of ocular adverse events—conjunctivitis, [...] Read more.
Dupilumab, a monoclonal antibody targeting the interleukin (IL)-4 receptor alpha subunit and IL-13, has markedly advanced the treatment of atopic conditions such as dermatitis, asthma, and chronic rhinosinusitis. However, its expanding use has brought increased attention to a range of ocular adverse events—conjunctivitis, blepharitis, keratitis, corneal ulcers, and cicatricial conjunctivitis—that remain underrecognized and frequently underestimated in clinical practice. These manifestations often emerge in patients with atopic dermatitis and display varying severity, posing diagnostic and therapeutic challenges. Rather than isolated phenomena, these effects appear to stem from a complex interplay of goblet cell depletion, mucin deficiency, immune dysregulation, and microbiome alterations, including Demodex proliferation. Current management strategies remain largely empirical, lacking standardized protocols, and are often guided by anecdotal evidence. In this review, we critically appraise the existing literature, synthesize emerging pathogenic hypotheses, and highlight the unmet clinical need for evidence-based treatment algorithms. We advocate for a multidisciplinary approach and future research aimed at elucidating mechanisms, refining risk stratification, and minimizing ocular toxicity without compromising the therapeutic benefits of dupilumab. Furthermore, we intend to provide a more practical and straightforward resource for the reader based on the current literature on approaching the topic. Full article
Show Figures

Figure 1

26 pages, 4510 KB  
Review
Application of Lignin-Derived Carbon Materials in Adsorption and Separation
by Xiaorui Dong, Yunlei Zhang, Shouyan Shao, Hao Li and Xingchen Yan
Separations 2025, 12(4), 88; https://doi.org/10.3390/separations12040088 - 4 Apr 2025
Viewed by 1636
Abstract
In the context of sustainable human development and the depletion of petroleum resources, lignin has received widespread attention as a carbon-rich, low-cost, and renewable resource. Owing to their distinctive physical and chemical properties, carbon materials are extensively applied in the fields of adsorption [...] Read more.
In the context of sustainable human development and the depletion of petroleum resources, lignin has received widespread attention as a carbon-rich, low-cost, and renewable resource. Owing to their distinctive physical and chemical properties, carbon materials are extensively applied in the fields of adsorption and separation. The conversion of lignin into diverse multifunctional carbon materials, such as porous carbon, activated carbon, carbon fibers, carbon foams, and carbon aerogels, has emerged as a pivotal strategy for the high-value utilization of lignin. In this paper, representative examples of various lignin-based carbon materials utilized in the field of adsorption and separation over the past decade are reviewed and categorized according to the type of carbon materials, and their preparation methods and adsorption effects are described. Full article
(This article belongs to the Special Issue Separation Technology for Resource Utilization and Recovery)
Show Figures

Graphical abstract

23 pages, 4313 KB  
Systematic Review
Building a Greener Future: How Earth Blocks Are Reshaping Sustainability and Circular Economy in Construction
by Swati Sinha and Jayaraman Sethuraman Sudarsan
Architecture 2025, 5(2), 25; https://doi.org/10.3390/architecture5020025 - 31 Mar 2025
Cited by 1 | Viewed by 2044
Abstract
Sustainability has become an important focus in the construction industry due to growing environmental concerns, resource depletion, and the urgency to reduce greenhouse gas emissions. The construction sector contributes significantly to the world’s carbon emissions and energy consumption, making it a prime candidate [...] Read more.
Sustainability has become an important focus in the construction industry due to growing environmental concerns, resource depletion, and the urgency to reduce greenhouse gas emissions. The construction sector contributes significantly to the world’s carbon emissions and energy consumption, making it a prime candidate for sustainable transformation. In response to these challenges, there has been a shift towards utilizing earth-based products, especially earth blocks, as sustainable alternatives. Compressed stabilized earth blocks (CSEBs) are garnering increased attention because of their ability to lower environmental impact. These blocks are made from locally sourced materials, reducing the transportation-related emissions and energy use. Their production processes typically require far less energy than traditional building blocks, which results in reduced carbon footprints. Earth blocks also contribute to sustainability through their thermal performance, which can enhance energy efficiency in buildings by naturally regulating indoor temperatures. As a result, less artificial heating and cooling is required, leading to further energy savings. Furthermore, CSEBs and other earth blocks can incorporate waste materials promoting a circular economy and resource efficiency. This paper explores the multifaceted role of earth blocks in sustainable construction by conducting a comprehensive systematic and bibliometric analysis. By evaluating research trends, the evolution of the field, and the broader impact of these materials, this study aims to provide a deeper understanding of the contributions of earth blocks to sustainability. Key areas of focus include identifying prominent research themes, emerging technologies, and future opportunities for incorporating earth blocks into mainstream construction practices. This approach aligns with the vision of advancing sustainable architecture and green buildings to minimize environmental pollution and resource consumption while supporting the transition to a circular economy in the built environment. Full article
Show Figures

Figure 1

14 pages, 7295 KB  
Article
Polymerization of Poly(3,4-ethylenedioxythiophene) on Sulfated Cellulose Nanofiber and Its Conducting Property
by Naofumi Takahashi, Atsuya Ogo and Takeshi Shimomura
Materials 2025, 18(6), 1273; https://doi.org/10.3390/ma18061273 - 13 Mar 2025
Viewed by 667
Abstract
Recent research on incorporating biomass resources into functional polymers has garnered significant attention. Poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) is the most commercially successful conducting polymer composed of over 70 wt% petroleum-derived PSS, which presents an opportunity for partial replacement with biomass-based resources. In this study, [...] Read more.
Recent research on incorporating biomass resources into functional polymers has garnered significant attention. Poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) is the most commercially successful conducting polymer composed of over 70 wt% petroleum-derived PSS, which presents an opportunity for partial replacement with biomass-based resources. In this study, a complex of PEDOT and sulfated cellulose nanofiber (PEDOT:s-CNF) was synthesized, and the relationship between its conductivity and doping conditions was investigated. PEDOT was synthesized on s-CNF, which was used in place of PSS, and the results indicate that conductivity increases as PEDOT polymerization progresses; however, excessive polymerization reduces electrical conductivity. Based on X-ray photoelectron spectroscopy and zeta potential measurements, the doping concentration decreases as PEDOT polymerization progresses to an excess state. This decrease is attributed to the depletion of sulfate groups, which act as dopants on s-CNFs, occurring as a consequence of the addition of PEDOT monomers. Enhancing the degree of sulfate group substitution on s-CNFs and incorporating additional dopants containing sulfonic groups improved conductivity. Specifically, adding p-toluenesulfonic acid (PTSA) as a dopant increased conductivity, reaching approximately 10 mS cm−1. However, at higher PTSA concentrations, the strong acidity of sulfonic groups reduced the degree of sulfate group dissociation, leading to a decline in doping efficiency. Full article
Show Figures

Graphical abstract

17 pages, 3112 KB  
Article
Assessment of the Hydrogen Production Potential in a Zeolite Assisted Two-Phase Dark and Photo-Fermentation Process from Urban Waste Mixture
by Marco Gottardo, Navid Khorramian, Paolo Pavan, Federico Battista, David Bolzonella, Roberto Lauri and Francesco Valentino
Resources 2025, 14(3), 43; https://doi.org/10.3390/resources14030043 - 6 Mar 2025
Viewed by 1068
Abstract
Waste-based sustainable solutions proposed by scientific and industrial communities for energy production are an approach that can respond to the growing concerns regarding climate change and fossil resources depletion. This study investigates a two-phase bioprocess combining dark fermentation (DF) and photo-fermentation (PF) to [...] Read more.
Waste-based sustainable solutions proposed by scientific and industrial communities for energy production are an approach that can respond to the growing concerns regarding climate change and fossil resources depletion. This study investigates a two-phase bioprocess combining dark fermentation (DF) and photo-fermentation (PF) to enhance hydrogen yield while anaerobically treating urban organic food waste and sewage sludge. A key objective was to assess the effect of waste composition and temperature on hydrogen accumulation, with particular attention to the fermentation product and the role of zeolite in improving process efficiency. In the DF stage, the addition of zeolite significantly enhanced hydrogen production by increasing microbial activity and improving substrate bioavailability. As a result, hydrogen production increased up to 27.3 mmol H2/(L d) under thermophilic conditions. After the suspended solids were removed from the dark fermentation broth, a photo-fermentation step driven by a pure strain of Rhodopseudomonas palustris was performed under permanent IR light and different substrate-to-inoculum [S/I] ratios. The maximum hydrogen production rate was 9.33 mmol H2/(L d), when R. palustris was inoculated at the lowest [S/I] ratio (<20 COD/COD) and with 0.5 g VSS/L as the initial concentration. This condition in the photo-fermentation process led to an increase in the hydrogen yield up to 35% compared to values obtained from dark fermentation alone. Full article
Show Figures

Figure 1

Back to TopTop