Assessment of the Hydrogen Production Potential in a Zeolite Assisted Two-Phase Dark and Photo-Fermentation Process from Urban Waste Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dark Fermentation (DF) Batch Tests
2.2. Photo-Fermentation (PF) Batch Tests
2.3. Analytical Methods
2.4. Calculations
3. Results
3.1. Hydrogen Production in Mesophilic and Thermophilic DF Tests
3.2. Fermentation Products in the Mesophilic and Thermophilic DF Tests
3.3. Hydrogen Production and Kinetics in the Photo-Fermentation Process Driven by R. palustris
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic Digestion |
DF | Dark Fermentation |
EPS | Extracellular Polymers |
EU | European Union |
HRT | Hydraulic Retention Time |
IR | Infra-Red |
OLR | Organic Loading Rate |
PHA | Polyhydroxyalkanoates |
PNSB | Purple Nonsulfur Bacteria |
PPB | Purple Phototrophic Bacteria |
SRT | Sludge Retention Time |
S/I | Substrate-to-Inoculum ratio |
VFA | Volatile Fatty Acid |
VSS | Volatile Suspended Solid |
WWTP | Wastewater Treatment Plant |
References
- European Commission. Closing the Loop—An EU Action Plan for Te Circular Economy. 2015. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614 (accessed on 7 January 2025).
- Zabaniotou, A.; Kamaterou, P. Food waste valorization advocating circular bioeconomy—A critical review of potentialities and perspectives of spent coffee grounds biorefinery. J. Clean. Prod. 2019, 211, 1553–1566. [Google Scholar] [CrossRef]
- Gottardo, M.; Dosta, J.; Cavinato, C.; Crognale, S.; Tonanzi, B.; Rossetti, S.; Bolzonella, D.; Pavan, P.; Valentino, F. Boosting butyrate and hydrogen production in acidogenic fermentation of food waste and sewage sludge mixture: A pilot scale demonstration. J. Clean. Prod. 2023, 404, 136919. [Google Scholar] [CrossRef]
- Available online: https://observatory.clean-hydrogen.europa.eu/eu-policy/eu-hydrogen-strategy-under-eu-green-deal (accessed on 25 February 2025).
- Johnravindar, D.; Wong, J.W.C.; Chakraborty, D.; Bodedla, G.; Kaur, G. Food waste and sewage sludge co-digestion amended with different biochars: VFA kinetics, methane yield and digestate quality assessment. J. Environ. Manag. 2021, 290, 112457. [Google Scholar] [CrossRef] [PubMed]
- Tena, M.; Perez, M.; Solera, R. Effect of hydraulic retention time on hydrogen production from sewage sludge and wine vinasse in a thermophilic acidogenic CSTR: A promising approach for hydrogen production within the biorefinery concept. Int. J. Hydrogen Energy 2021, 46, 7810–7820. [Google Scholar] [CrossRef]
- Hossain, S.; Wasima, F.; Shawon, S.I.K.; Das, B.K.; Das, P.; Paul, S. Hydrogen from food waste: Energy potential, economic feasibility, and environmental impact for sustainable valorization. Energy Rep. 2024, 11, 3367–3382. [Google Scholar] [CrossRef]
- Khan, U.; Bilal, M.; Adil, H.M.; Darlington, N.; Khan, A.; Khan, N.; Ihsanullah, I. Hydrogen from sewage sludge: Production methods, influencing factors, challenges, and prospects. Sci. Total Environ. 2024, 919, 170696. [Google Scholar] [CrossRef]
- Vidal-Antich, C.; Perez-Esteban, N.; Astals, S.; Peces, M.; Mata-Alvarez, J.; Dosta, J. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. Sci. Total Environ. 2021, 757, 143763. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Xi, B.; Sun, W.; Xia, X.; Zhu, C.; He, X.; Li, M.; Yang, T.; Wang, P.; et al. Biogas production improvement and C/N control by natural clinoptilolite addition into anaerobic co-digestion of Phragmites australis, feces and kitchen waste. Bioresour. Technol. 2015, 180, 192–199. [Google Scholar] [CrossRef]
- Silva, R.M.; Abreu, A.A.; Salvador, A.F.; Alves, M.M.; Neves, I.C.; Pereira, M.A. Zeolite addition to improve biohydrogen production from dark fermentation of C5/C6-sugars and Sargassum sp. biomass. Sci. Rep. 2021, 11, 16350. [Google Scholar] [CrossRef]
- Dinesh, G.K.; Chauhan, R.; Chakma, S. Influence and strategies for enhanced biohydrogen production from food waste. Renew. Sustain. Energy Rev. 2018, 92, 807–822. [Google Scholar] [CrossRef]
- Rezania, S.; Din, M.F.M.; Taib, S.M.; Sohaili, J.; Chelliapan, S.; Kamyab, H.; Saha, B.B. Review on fermentative biohydrogen production from water hyacinth, wheat straw and rice straw with focus on recent perspectives. Int. J. Hydrogen Energy 2017, 42, 20955–20969. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Zhang, Z.; Lee, D.J.; Zhou, X.; Jing, Y.; Ge, X.; Jiang, D.; Hu, J.; He, C. Photo-fermentative hydrogen production from crop residue: A mini review. Bioresour. Technol. 2017, 229, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Androga, D.D.; Özgür, E.; Eroglu, I.; Gündüz, U.; Yücel, M. Amelioration of photofermentative hydrogen production from molasses dark fermenter effluent by zeolite-based removal of ammonium ion. Int. J. Hydrogen Energy 2012, 37, 16421–16429. [Google Scholar] [CrossRef]
- Tuci, G.A.; Valentino, F.; Pavan, P.; Gottardo, M. Tannery sludge valorization through zeolite-assisted anaerobic process for short-chain fatty acids (SCFAs) production. Environ. Res. 2024, 246, 118046. [Google Scholar] [CrossRef]
- APHA, AWWA, WEF, 1998; Standard Methods for the Examinations of Water and Wastewater, 20th ed. American Public Health Association: Washington, WA, USA, 1998.
- Megazyme. L-Lactic Acid Assay Procedure (L-LACTATE). 2018. Available online: https://prod-docs.megazyme.com/documents/Assay_Protocol/K-LATE_DATA.pdf (accessed on 23 January 2025).
- Sivagurunathan, P.; Sen, B.; Lin, C.Y. Batch fermentative hydrogen production by enriched mixed culture: Combination strategy and their microbial composition. J. Biosci. Bioeng. 2014, 117, 222–228. [Google Scholar] [CrossRef]
- Mansouri, E.; Sayadi, M.H.; Fahoul, N. Bio-hydrogen production using modified zeolite decorated with green iron oxide nanoparticles during the fermentation process from food industry wastewater. J. Water Environ. Nanotechnol. 2024, 9, 385–397. [Google Scholar] [CrossRef]
- Moretto, G.; Valentino, F.; Pavan, P.; Majone, M.; Bolzonella, D. Optimization of urban waste fermentation for volatile fatty acids production. Waste Manag. 2019, 92, 21–29. [Google Scholar] [CrossRef]
- Li, Z.; Huang, X.; Dong, W.; Wang, H.; Liu, B. Simultaneous nitrogen and phosphorus control from alkali and zeolite sludge fermentation process: Mechanism and application. J. Environ. Chem. Eng. 2023, 11, 111324. [Google Scholar] [CrossRef]
- Bella, K.; Rao, P.V. Anaerobic co-digestion of cheese whey and septage: Effect of substrate and inoculum on biogas production. J. Environ. Manag. 2022, 308, 114581. [Google Scholar] [CrossRef]
- Detman, A.; Mielecki, D.; Chojnacka, A.; Salamon, A.; Błaszczyk, M.K.; Sikora, A. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Microb. Cell Factories 2019, 18, 36. [Google Scholar] [CrossRef]
- Leite, W.R.M.; Gottardo, M.; Pavan, P.; Filho, P.B.; Bolzonella, D. Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge. Renew. Energy 2016, 86, 1324–1331. [Google Scholar] [CrossRef]
- Battista, F.; Strazzera, G.; Valentino, F.; Gottardo, M.; Villano, M.; Matos, M.; Silva, F.; Reis, M.M.; Mata-Alvarez, J.; Astals, S.; et al. New insights in food waste, sewage sludge and green waste anaerobic fermentation for short-chain volatile fatty acids production: A review. J. Environ. Chem. Eng. 2022, 10, 108319. [Google Scholar] [CrossRef]
- Yang, Y.; Bu, J.; Tiong, Y.W.; Xu, S.; Zhang, J.; He, Y.; Zhu, M.; Tong, Y.W. Enhanced thermophilic dark fermentation of hydrogen production from food waste by Fe-modified biochar. Environ. Res. 2024, 244, 117946. [Google Scholar] [CrossRef] [PubMed]
- Jian, Q.; Li, X.; Chen, Y.; Liu, Y.; Pan, Y. Production of high optical purity l-lactic acid from waste activated sludge by supplementing carbohydrate: Effect of temperature and pretreatment time. Environ. Technol. 2016, 37, 2457–2466. [Google Scholar] [CrossRef]
- Gottardo, M.; Crognale, S.; Tonanzi, B.; Rossetti, S.; D’Annibale, L.; Dosta, J.; Valentino, F. Volatile fatty acid production from hydrolyzed sewage sludge: Effect of hydraulic retention time and insight into thermophilic microbial community. Biomass Conv. Biorefin. 2024, 14, 14921–14932. [Google Scholar] [CrossRef]
- Atasoy, M.; Owusu-Agyeman, I.; Plaza, E.; Cetecioglu, Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresour. Technol. 2018, 268, 773–786. [Google Scholar] [CrossRef]
- Aktij, S.A.; Zirehpour, A.; Mollahosseini, A.; Taherzadeh, M.J.; Tiraferri, A.; Rahimpour, A. Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review. J. Ind. Eng. Chem. 2020, 81, 24–40. [Google Scholar] [CrossRef]
- Fernandez-Dominguez, D.; Astals, S.; Peces, M.; Frison, N.; Bolzonella, D.; Mata-Alvarez, J.; Dosta, J. Volatile fatty acids production from biowaste at mechanical-biological treatment plants: Focusing on fermentation temperature. Bioresour. Technol. 2020, 314, 123729. [Google Scholar] [CrossRef]
- Cavaliere, C.; Capriotti, A.L.; Cerrato, A.; Lorini, L.; Montone, M.C.; Valentino, F.; Laganà, A.; Majone, M. Identification and quantification of polycyclic aromatic hydrocarbons in polyhydroxyalkanoates produced from mixed microbial cultures and municipal organic wastes at pilot scale. Molecules 2021, 26, 539. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Marconi, E.; Lorini, L.; Valentino, F.; Silva, F.; Sommer Ferreira, B.; Canepari, S.; Majone, M. Elemental concentration and migratability in bioplastics derived from organic waste. Chemosphere 2020, 259, 127472. [Google Scholar] [CrossRef]
- Riccardi, C.; Buiarelli, F.; Castellani, F.; Di Filippo, P.; Lorini, L.; Majone, M.; Matos, M.; Pomata, D.; Simonetti, G.; Ferreira, B.S.; et al. Polychlorinated biphenyl profile in polyhydroxyalkanoates synthetized from urban organic wastes. Polymers 2020, 12, 659. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Muñoz, C.A.; Torres-Franco, A.; de Godos, I.; Muñoz, R. Exploring the metabolic capabilities of purple phototrophic bacteria during piggery wastewater treatment. J. Water Process. Eng. 2022, 50, 103317. [Google Scholar] [CrossRef]
- Vasiliadou, I.A.; Berná, A.; Manchon, C.; Melero, J.A.; Martinez, F.; Esteve-Nuñez, A.; Puyol, D. Biological and bioelectrochemical systems for hydrogen production and carbon fixation using purple phototrophic bacteria. Front. Energy Res. 2018, 6, 107. [Google Scholar] [CrossRef]
- Vasiliadou, I.A.; Melero, J.A.; Molina, R.; Puyol, D.; Martinez, F. Optimization of H2 Production through minimization of CO2 emissions by mixed cultures of purple phototrophic bacteria in aqueous samples. Water 2020, 12, 2015. [Google Scholar] [CrossRef]
- Mabutyana, L.; Pott, R.W.M. Photo-fermentative hydrogen production by Rhodopseudomonas palustris CGA009 in the presence of inhibitory compounds. Int. J. Hydrogen Energy 2021, 46, 29088–29099. [Google Scholar] [CrossRef]
- Allegue, L.D.; Ventura, M.; Melero, J.A.; Puyol, D. Unraveling PHA production from urban organic waste with purple phototrophic bacteria via organic overload. Renew. Sustain. Energy Rev. 2022, 166, 112687. [Google Scholar] [CrossRef]
Parameter | MSS | FW |
---|---|---|
TS (g/L) | 27.6 ± 0.4 | 48 ± 2 |
VS (g/L) | 22.3 ± 0.2 | 43 ± 1 |
CODSOL (g/L) | 0.29 ± 0.01 | 16.6 ± 0.7 |
CODVFA (g/L) | - | 4.0 ± 0.5 |
pH | 7.0 ± 0.5 | 4.7 ± 0.2 |
Ammonia (g N-NH4+/L) | 0.48 ± 0.04 | 0.11 ± 0.02 |
Phosphate (g P-PO43−/L) | 0.08 ± 0.01 | 0.01 ± 0.01 |
TKN (g N/kg TS) | 35 ± 2 | 13 ± 2 |
P (g P/kg TS) | 3.6 ± 0.7 | 0.5 ± 0.1 |
Operating Conditions | Dark Fermentation Batch Tests | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | A1 | B | B1 | C | C1 | D | D1 | E | E1 | F | F1 | |
Temperature (°C) | 37 | 37 | 37 | 37 | 37 | 37 | 55 | 55 | 55 | 55 | 55 | 55 |
Inoculum (g VS/L) | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
MSS Content (%, v/v) | 100 | 100 | 0 | 0 | 35 | 35 | 100 | 100 | 0 | 0 | 35 | 35 |
FW Content (%, v/v) | 0 | 0 | 100 | 100 | 65 | 65 | 0 | 0 | 100 | 100 | 65 | 65 |
Zeolite (g/g TS) | 0 | 0.2 | 0 | 0.2 | 0 | 0.2 | 0 | 0.2 | 0 | 0.2 | 0 | 0.2 |
Parameters | Dark Fermentation Batch Tests | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | A1 | B | B1 | C | C1 | D | D1 | E | E1 | F | F1 | |
VFA * (g COD/L) | 11.6 ± 0.4 | 12.9 ± 0.2 | 22.4 ± 0.1 | 25.0 ± 0.4 | 22.8 ± 0.1 | 24 ± 1 | 14.7 ± 0.8 | 14.1 ± 0.7 | 23.6 ± 0.3 | 30.5 ± 0.5 | 23.5 ± 0.9 | 26.0 ± 0.6 |
Caproic acid * (g COD/L) | 0.4 ± 0.1 | 0.11 ± 0.02 | 0.4 ± 0.1 | 0.5 ± 0.1 | 0.8 ± 0.1 | 0.3 ± 0.1 | 0.34 ± 0.09 | 0.41 ± 0.09 | 1.2 ± 0.6 | 2.7 ± 0.8 | 0.3 ± 0.1 | 1.6 ± 0.1 |
Ethanol * (g COD/L) | 0.5 ± 0.1 | 0.23 ± 0.06 | 2.8 ± 0.3 | 0.8 ± 0.1 | 1.1 ± 0.2 | 2.0 ± 0.1 | 0.6 ± 0.1 | 0.4 ± 0.1 | 1.9 ± 0.2 | 1.7 ± 0.1 | 2.1 ± 0.3 | 0.9 ± 0.2 |
Lactic acid * (g COD/L) | 1.2 ± 0.2 | 1.3 ± 0.4 | 2.1 ± 0.2 | 1.5 ± 0.3 | 2.0 ± 0.2 | 1.1 ± 0.3 | 0.8 ± 0.2 | 0.8 ± 0.2 | 5.3 ± 0.6 | 4.4 ± 0.8 | 2.1 ± 0.6 | 1.7 ± 0.3 |
YOAs * (g CODOAs/VS0) | 0.18 ± 0.01 | 0.20 ± 0.03 | 0.35 ± 0.03 | 0.39 ± 0.02 | 0.36 ± 0.02 | 0.38 ± 0.01 | 0.23 ± 0.02 | 0.22 ± 0.03 | 0.37 ± 0.03 | 0.48 ± 0.03 | 0.37 ± 0.02 | 0.41 ± 0.02 |
RH2 (mmol H2/L d) | 7.4 ± 0.3 | 12.1 ± 0.2 | 18.5 ± 0.2 | 22.2 ± 0.4 | 15.2 ± 0.5 | 19.6 ± 0.6 | 12.0 ± 0.3 | 17.0 ± 0.3 | 21.1 ± 0.5 | 27.3 ± 0.6 | 19.7 ± 0.7 | 24.9 ± 0.5 |
H2 content ** (%, v/v) | 12 ± 2 | 15 ± 2 | 29.9 ± 0.9 | 33.6 ± 0.6 | 16.6 ± 0.7 | 22.2 ± 0.8 | 13.1 ± 0.5 | 18 ± 1 | 27.4 ± 0.7 | 32.1 ± 0.4 | 18.2 ± 0.3 | 26.3 ± 0.7 |
CO2 content ** (%, v/v) | 88 ± 2 | 85 ± 2 | 70.1 ± 0.9 | 66.4 ± 0.6 | 83.4 ± 0.7 | 77.8 ± 0.8 | 86.9 ± 0.5 | 82 ± 1 | 72.6 ± 0.7 | 67.9 ± 0.4 | 81.8 ± 0.3 | 73.7 ± 0.7 |
PF Batch Tests | R. palustris | VFA (t0) | N-NH4+ (t0) | RR.p. | RVFA | RH2 | YH2 |
---|---|---|---|---|---|---|---|
g VSS/L | g COD/L | g/L | mg VSS/(L h) | g COD/(L d) | mmol H2/L d | NL H2/g CODVFA | |
Control | 0 | 3.2 | 1.72 | - | - | - | - |
a1 | 0.1 | 3.2 | 1.72 | 13.3 ± 0.4 | 1.68 ± 0.05 | 1.79 ± 0.02 | 6.2 × 10−3 |
b1 | 0.1 | 6.45 | 3.12 | 13.4 ± 0.2 | 1.58 ± 0.02 | 1.52 ± 0.01 | 4.8 × 10−3 |
c1 | 0.1 | 9.6 | 5.1 | 12.1 ± 0.1 | 0.79 ± 0.01 | 1.43 ± 0.03 | 5.5 × 10−3 |
d1 | 0.1 | 12.8 | 6.85 | 6.4 ± 0.1 | 0.52 ± 0.01 | 1.43 ± 0.01 | 7.1 × 10−3 |
a2 | 0.25 | 3.2 | 1.72 | 12.4 ± 0.2 | 1.92 ± 0.04 | 3.97 ± 0.01 | 1.3 × 10−3 |
b2 | 0.25 | 6.45 | 3.12 | 14.9 ± 0.3 | 1.67 ± 0.03 | 3.39 ± 0.06 | 9.3 × 10−3 |
c2 | 0.25 | 9.6 | 5.1 | 11.6 ± 0.1 | 1.11 ± 0.03 | 3.37 ± 0.02 | 9.0 × 10−3 |
d2 | 0.25 | 12.8 | 6.85 | 10.2 ± 0.1 | 1.17 ± 0.01 | 3.17 ± 0.03 | 9.0 × 10−3 |
a3 | 0.5 | 3.2 | 1.72 | 21.3 ± 0.1 | 2.30 ± 0.03 | 9.33 ± 0.04 | 2.9 × 10−2 |
b3 | 0.5 | 6.45 | 3.12 | 17.5 ± 0.4 | 1.85 ± 0.02 | 7.25 ± 0.04 | 2.1 × 10−2 |
c3 | 0.5 | 9.6 | 5.1 | 11.0 ± 0.3 | 1.16 ± 0.01 | 5.82 ± 0.02 | 1.9 × 10−2 |
d3 | 0.5 | 12.8 | 6.85 | 10.8 ± 0.1 | 1.43 ± 0.01 | 5.28 ± 0.02 | 1.7 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gottardo, M.; Khorramian, N.; Pavan, P.; Battista, F.; Bolzonella, D.; Lauri, R.; Valentino, F. Assessment of the Hydrogen Production Potential in a Zeolite Assisted Two-Phase Dark and Photo-Fermentation Process from Urban Waste Mixture. Resources 2025, 14, 43. https://doi.org/10.3390/resources14030043
Gottardo M, Khorramian N, Pavan P, Battista F, Bolzonella D, Lauri R, Valentino F. Assessment of the Hydrogen Production Potential in a Zeolite Assisted Two-Phase Dark and Photo-Fermentation Process from Urban Waste Mixture. Resources. 2025; 14(3):43. https://doi.org/10.3390/resources14030043
Chicago/Turabian StyleGottardo, Marco, Navid Khorramian, Paolo Pavan, Federico Battista, David Bolzonella, Roberto Lauri, and Francesco Valentino. 2025. "Assessment of the Hydrogen Production Potential in a Zeolite Assisted Two-Phase Dark and Photo-Fermentation Process from Urban Waste Mixture" Resources 14, no. 3: 43. https://doi.org/10.3390/resources14030043
APA StyleGottardo, M., Khorramian, N., Pavan, P., Battista, F., Bolzonella, D., Lauri, R., & Valentino, F. (2025). Assessment of the Hydrogen Production Potential in a Zeolite Assisted Two-Phase Dark and Photo-Fermentation Process from Urban Waste Mixture. Resources, 14(3), 43. https://doi.org/10.3390/resources14030043