Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,223)

Search Parameters:
Keywords = atomic optics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2144 KB  
Article
Effect of Surface Treatments on Interlaminar Strength of an FML Formed by Basalt Fiber/Polyester Composite and Al 3003-H14 Sheets Manufactured via Combined VARTM and Vacuum Bagging Processes
by Cesar Alfonso Cortes-Tejada, Honorio Ortíz-Hernández, Marco Antonio García-Bernal, Gabriela Lourdes Rueda-Morales, Hilario Hernández-Moreno, Víctor Manuel Sauce-Rangel and Alexander Morales-Gómez
J. Manuf. Mater. Process. 2025, 9(10), 331; https://doi.org/10.3390/jmmp9100331 - 9 Oct 2025
Abstract
Metal/composite interfacial interactions are critical to the mechanical performance of Fiber Metal Laminates (FMLs). In this study, the feasibility of successively combining Vacuum-Assisted Resin Transfer Molding (VARTM) and Vacuum Bagging (VB) was investigated, a strategy that has not been reported in the literature [...] Read more.
Metal/composite interfacial interactions are critical to the mechanical performance of Fiber Metal Laminates (FMLs). In this study, the feasibility of successively combining Vacuum-Assisted Resin Transfer Molding (VARTM) and Vacuum Bagging (VB) was investigated, a strategy that has not been reported in the literature for the fabrication of FMLs with 2/1 stacking configuration, using low-cost 3003-H14 aluminum alloy. The substrate was surface modified through mechanical abrasion and chemical etching in an ultrasonic bath with a 0.1 M NaOH solution, varying the exposure time (20, 40, and 60 min). These surfaces were characterized by optical microscopy and atomic force microscopy (AFM), conducting both qualitative and quantitative analyses of the two- and three-dimensional surface features associated with pore morphology. Additionally, their effects on interlaminar strength and Mode I failure modes of the adhesive joint at the metal/composite interface were evaluated. Micrographs of the surface variants revealed a systematic evolution of the metallic microstructure. The T-peel tests demonstrated that the microstructural features influenced the interlaminar behavior. The 40 min treatment exhibited the highest initial peak force (26.4 N) and the highest average peel force (12.4 N), with a predominantly cohesive mixed-mode failure, representing the most favorable configuration for maximizing adhesion at the metal/composite interface. Full article
22 pages, 1436 KB  
Article
Preparation and Characterization of Chemically Cross-Linked Xanthan/Poly(Vinylalcohol) Hydrogel Films Containing Cerium Oxide Nanoparticles for Potential Application in Removal of Methylene Blue and Crystal Violet Dyes
by Nicusor Fifere, Maria Marinela Lazar, Irina Elena Raschip, Anton Airinei, Cristian-Dragos Varganici and Maria Valentina Dinu
Gels 2025, 11(10), 809; https://doi.org/10.3390/gels11100809 (registering DOI) - 9 Oct 2025
Abstract
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer [...] Read more.
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer network was confirmed by attenuated total reflectance–Fourier transform infrared (ATR-FTIR), thermal analysis, and swelling behavior. Morphological features were evaluated by atomic force microscopy (AFM), scanning electron microscopy (SEM), while optical properties were investigated by UV–Vis spectroscopy. Undoped films displayed high transparency (~80% transmittance at 400 nm), with thermal cross-linking determined only slight yellowing and negligible changes in absorption edge (300 ± 2 nm). In contrast, CeO2NPs incorporation increased reflectance and introduced a new absorption threshold around 400 ± 2 nm, indicating nanoparticle–matrix interactions that modify optical behavior. Sorption studies with Methylene Blue (MB) and Crystal Violet (CV) dyes highlighted the influence of nanoparticle content and cross-linking on functional performance, with thermally treated samples showing the highest efficiency (~97–98% MB and 71–83% CV removal). Overall, the results demonstrate how structural tailoring and cross-linking control the characteristics of Xn/PVA/CeO2 nanocomposites, providing insight into their design as multifunctional hydrogel materials for environmental applications. Full article
23 pages, 3836 KB  
Article
Kinetically Assisted Chemical Removal of Organic Contaminants by Reactive Oxygen Species: Insights from ReaxFF Molecular Dynamics Simulations
by Zixu Wang, Yuhai Li, Peng Zhang, Fei Wang, Laixi Sun, Qingshun Bai, Mingzhi Zhu and Baoxu Wang
Molecules 2025, 30(19), 4010; https://doi.org/10.3390/molecules30194010 - 7 Oct 2025
Abstract
Organic contaminants on optical components critically impair intense laser systems. Oxygen plasma cleaning is a promising non-contact method, yet the mechanism by which the initial kinetic energy of reactive oxygen species assists chemically driven removal remains unclear. This study employs ReaxFF molecular dynamics [...] Read more.
Organic contaminants on optical components critically impair intense laser systems. Oxygen plasma cleaning is a promising non-contact method, yet the mechanism by which the initial kinetic energy of reactive oxygen species assists chemically driven removal remains unclear. This study employs ReaxFF molecular dynamics to elucidate how reactive oxygen species chemically decompose dibutyl phthalate and how kinetic energy assists chemical reactions by enhancing transport, penetration, and energy transfer. While the core removal mechanism is chemical, kinetic energy promotes plasma-contaminant encounters and facilitates access to otherwise sluggish pathways. The results show that kinetic energy is a key promoter that enhances chemical decomposition, with the contaminant decomposition rate enhanced by up to 1310% and residues reduced by 81.13% compared to pure chemical reactions. This study identifies and quantifies two dominant reaction pathways (butyl chain cleavage & benzene ring cleavage). The analysis of diffusion and energy transfer reveals that higher kinetic energy improves reactive oxygen species transport, enables deeper penetration, and selectively activates specific reaction pathways by overcoming energy barriers. Synergy with flux, dose, and temperature is also demonstrated. This work provides atomic-level insights into kinetic promotion mechanisms, supporting optimized plasma cleaning processes and contributing to the performance stability and operational longevity of intense laser systems. Full article
Show Figures

Figure 1

59 pages, 2566 KB  
Review
Non-Perturbative Approaches to Linear and Nonlinear Responses of Atoms, Molecules, and Molecular Aggregates: A Theoretical Approach to Molecular Quantum Information and Quantum Biology
by Satoru Yamada, Takao Kobayashi, Masahiro Takahata, Hiroya Nitta, Hiroshi Isobe, Takashi Kawakami, Shusuke Yamanaka, Mitsutaka Okumura and Kizashi Yamaguchi
Chemistry 2025, 7(5), 164; https://doi.org/10.3390/chemistry7050164 - 7 Oct 2025
Viewed by 42
Abstract
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information [...] Read more.
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information processing by spontaneous parametric downconversion (SPDC) and stimulated four-wave mixing (SFWM). Quasi-energy derivative (QED) methods, such as QED Møller–Plesset (MP) perturbation, are reviewed as time-dependent variational methods (TDVP), providing analytical expressions of time-dependent linear and nonlinear responses of open-shell atoms, molecules, and molecular aggregates. Numerical Liouville methods for the low HG (LHG) and high HG (HHG) regimes are reviewed to elucidate the NLR of molecules in both LHG and HHG regimes. Three-step models for the generation of HHG in the latter regime are reviewed in relation to developments of attosecond science and spectroscopy. Orbital tomography is also reviewed in relation to the theoretical and experimental studies of the amplitudes and phases of wave functions of open-shell atoms and molecules, such as molecular oxygen, providing the Dyson orbital explanation. Interactions between quantum lights and molecules are theoretically examined in relation to derivations of several distribution functions for quantum information processing, quantum dynamics of molecular aggregates, and future developments of quantum molecular devices such as measurement-based quantum computation (MBQP). Quantum dynamics for energy transfer in dendrimer and related light-harvesting antenna systems are reviewed to examine the classical and quantum dynamics behaviors of photosynthesis. It is shown that quantum coherence plays an important role in the well-organized arrays of chromophores. Finally, applications of quantum optics to molecular quantum information and quantum biology are examined in relation to emerging interdisciplinary frontiers. Full article
13 pages, 2083 KB  
Article
Temperature-Controlled Cascaded Fabry–Pérot Filters: A Scalable Solution for Ultra-Low-Noise Stokes Photon Detection in Quantum Systems
by Ya Li, Changqing Niu, Weizhe Qiao, Xiaolong Zou and Youxing Chen
Photonics 2025, 12(10), 986; https://doi.org/10.3390/photonics12100986 - 4 Oct 2025
Viewed by 121
Abstract
This study addresses the issue of cross-interference that occurs when locked continuous light and signal photons are collinear during interferometer measurements. To tackle this, a temperature-controlled Fabry–Pérot cavity filter with a heterogeneous cascaded structure is proposed and applied. The system consists of six [...] Read more.
This study addresses the issue of cross-interference that occurs when locked continuous light and signal photons are collinear during interferometer measurements. To tackle this, a temperature-controlled Fabry–Pérot cavity filter with a heterogeneous cascaded structure is proposed and applied. The system consists of six filtering stages, created by designing Fabry–Pérot cavities of three different lengths, each used twice (to match optical frequencies), along with temperature control settings. By applying differentiated linewidth regulation, the approach effectively suppresses interference from locked light while significantly enhancing the signal-to-noise ratio in photon detection. This method overcomes the challenge of interference from same-frequency noise photons in atomic ensemble-entangled sources, achieving a noise–photon extinction ratio on the order of 106 and surpassing the frequency resolution limit of a single filter. Experimental results demonstrate that the system reduces the noise floor in the detection optical path to below 10−16, while maintaining a photon transmission efficiency above 53% for the signal. This technology effectively addresses key challenges in noise suppression and photon state fidelity optimization in optical fiber quantum communication, offering a scalable frequency–photon noise filtering solution for long-distance quantum communication. Furthermore, its multi-parameter cooperative filtering mechanism holds broad potential applications in areas such as quantum storage and optical frequency combs. Full article
Show Figures

Figure 1

18 pages, 2205 KB  
Article
Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics
by Sung-Hun Jo, Donghwan Kim, Chaewon Park and Eun Gyo Jeong
Polymers 2025, 17(19), 2688; https://doi.org/10.3390/polym17192688 - 4 Oct 2025
Viewed by 246
Abstract
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The [...] Read more.
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The polymer, deposited via initiated chemical vapor deposition (iCVD), offered over 90% optical transmittance, low RMS roughness (1–3 nm), and excellent solvent resistance, providing a stable base for inorganic barrier integration. An ALD Al2O3/ZnO nano-stratified barrier initially delivered effective moisture blocking, but tensile stress accumulation imposed a critical thickness of 30 nm, where the WVTR plateaued at ~2.5 × 10−4 g/m2/day. To overcome this limitation, a 40 nm e-beam SiO2 capping layer was added, introducing compressive stress via atomic peening and stabilizing Al2O3 interfaces through Si–O–Al bonding. This stress-balanced design doubled the critical thickness to 60 nm and reduced the WVTR to 3.75 × 10−5 g/m2/day, representing an order-of-magnitude improvement. OLEDs fabricated on this ultrathin platform preserved J–V–L characteristics and efficiency (~4.5–5.0 cd/A) after water-assisted transfer and on-skin deformation, while maintaining LT80 lifetimes of 140–190 h at 400 cd/m2 and stable emission for over 20 days in ambient storage. These results demonstrate that the stress-balanced encapsulation platform provides a practical route to meet the durability and reliability requirements of next-generation wearable optoelectronic devices. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 1884 KB  
Review
Silicon Photocatalytic Water-Treatment: Synthesis, Modifications, and Machine Learning Insights
by Abay S. Serikkanov, Nurlan B. Bakranov, Tunyk K. Idrissova, Dina I. Bakranova and Danil W. Boukhvalov
Nanomaterials 2025, 15(19), 1514; https://doi.org/10.3390/nano15191514 - 3 Oct 2025
Viewed by 323
Abstract
Photocatalytic technologies based on silicon (Si-based) nanostructures offer a promising solution for water purification, hydrogen generation, and the conversion of CO2 into useful chemical compounds. This review systematizes the diversity of modern approaches to the synthesis and modification of Si-based photocatalysts, including [...] Read more.
Photocatalytic technologies based on silicon (Si-based) nanostructures offer a promising solution for water purification, hydrogen generation, and the conversion of CO2 into useful chemical compounds. This review systematizes the diversity of modern approaches to the synthesis and modification of Si-based photocatalysts, including chemical deposition, metal-associated etching, hydrothermal methods, and atomic layer deposition. Heterostructures, plasmonic effects, and co-catalysts that enhance photocatalytic activity are considered. Particular attention is drawn to the silicon doping of semiconductors, such as TiO2 and ZnO, to enhance their optical and electronic properties. The formation of heterostructures and the evaluation of their efficiency were discussed. Despite the high biocompatibility and availability of silicon, its photocorrosion and limited stability require the development of protective coatings and morphology optimization. The application of machine learning for predicting redox potentials and optimizing photocatalyst synthesis could offer new opportunities for increasing their efficiency. The review highlights the potential of Si-based materials for sustainable technologies and provides a roadmap for further research. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

18 pages, 3872 KB  
Article
Predicting the Bandgap of Graphene Based on Machine Learning
by Qinze Yu, Lingtao Zhan, Xiongbai Cao, Tingting Wang, Haolong Fan, Zhenru Zhou, Huixia Yang, Teng Zhang, Quanzhen Zhang and Yeliang Wang
Physchem 2025, 5(4), 41; https://doi.org/10.3390/physchem5040041 - 1 Oct 2025
Viewed by 192
Abstract
Over the past decade, two-dimensional materials have become a research hotspot in chemistry, physics, materials science, and electrical and optical engineering due to their excellent properties. Graphene is one of the earliest discovered 2D materials. The absence of a bandgap in pure graphene [...] Read more.
Over the past decade, two-dimensional materials have become a research hotspot in chemistry, physics, materials science, and electrical and optical engineering due to their excellent properties. Graphene is one of the earliest discovered 2D materials. The absence of a bandgap in pure graphene limits its application in digital electronics where switching behavior is essential. In the present study, researchers have proposed a variety of methods for tuning the graphene bandgap. Machine learning methodologies have demonstrated the capability to enhance the efficiency of materials research by automating the recording of characteristic parameters from the discovery and preparation of 2D materials, property calculations, and simulations, as well as by facilitating the extraction and summarization of governing principles. In this work, we use first principle calculations to build a dataset of graphene band gaps under various conditions, including the application of a perpendicular external electric field, nitrogen doping, and hydrogen atom adsorption. Support Vector Machine (SVM), Random Forest (RF), and Multi-Layer Perceptron (MLP) Regression were utilized to successfully predict the graphene bandgap, and the accuracy of the models was verified using first principles. Finally, the advantages and limitations of the three models were compared. Full article
Show Figures

Figure 1

14 pages, 2468 KB  
Article
Optimizing Annealing Temperature for Enhanced Electrical Performance and Stability of Solution-Processed In2O3 Thin-Film Transistors
by Taehui Kim, Seullee Lee, Ye-Won Lee, Dongwook Kim, Youngjun Yun, Jin-Hyuk Bae, Hyeonju Lee and Jaehoon Park
Micromachines 2025, 16(10), 1091; https://doi.org/10.3390/mi16101091 - 26 Sep 2025
Viewed by 329
Abstract
This study investigates the influence of post-deposition thermal annealing temperature on the crystal structure, chemical composition, and electrical performance of solution-processed indium oxide (In2O3) thin films. Based on thermogravimetric analysis (TGA) of the precursor solution, annealing temperatures of 350, [...] Read more.
This study investigates the influence of post-deposition thermal annealing temperature on the crystal structure, chemical composition, and electrical performance of solution-processed indium oxide (In2O3) thin films. Based on thermogravimetric analysis (TGA) of the precursor solution, annealing temperatures of 350, 450, and 550 °C were adopted. The resulting In2O3 films were characterized using ultraviolet–visible (UV–Vis) spectroscopy, atomic force microscopy (AFM), Raman spectroscopy, and Hall-effect measurements to evaluate their optical, morphological, crystalline polymorphism, and electrical properties. The results revealed that the film annealed at 450 °C exhibited a field-effect mobility of 4.28 cm2/V·s and an on/off current ratio of 2.15 × 107. The measured hysteresis voltages were 3.11, 1.80, and 0.92 V for annealing temperatures of 350, 450, and 550 °C, respectively. Altogether, these findings indicate that an annealing temperature of 450 °C provides an optimal balance between the electrical performance and device stability for In2O3-based thin-film transistors (TFTs), making this condition favourable for high-performance oxide electronics. Full article
Show Figures

Figure 1

23 pages, 3810 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Viewed by 272
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
Show Figures

Figure 1

17 pages, 2371 KB  
Article
Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles
by Panangattukara Prabhakaran Praveen Kumar
Colorants 2025, 4(4), 29; https://doi.org/10.3390/colorants4040029 - 24 Sep 2025
Viewed by 245
Abstract
Excessive copper ions in the human body can cause a variety of diseases, such as gastrointestinal disorders, cirrhosis, and Alzheimer’s disease. Techniques like Inductively Coupled Plasma–Mass Spectroscopy and Atomic Absorption Spectroscopy are available for copper detection, but the associated cost issues for sample [...] Read more.
Excessive copper ions in the human body can cause a variety of diseases, such as gastrointestinal disorders, cirrhosis, and Alzheimer’s disease. Techniques like Inductively Coupled Plasma–Mass Spectroscopy and Atomic Absorption Spectroscopy are available for copper detection, but the associated cost issues for sample preparation and labor limit their application for on-site detection. Herein, we are reporting a versatile method for detecting copper ions using a peptide-functionalized gold nanoparticle sensor in combination with various optical spectroscopic techniques. The peptide (CW) exhibited selective sensing ability for Cu(II) with visual colorimetric and optical spectroscopic changes compared to other metal ions tested. CW showed a visual colorimetric response from colorless to light brown color after interaction with Cu(II). Converting CW to a gold nanoparticle appended (CW-AuNPs) nanoplatform enabled a multimodal detection platform for Cu (II), which utilizes colorimetric and optical spectrum changes and surface-enhanced Raman spectroscopy (SERS) to enable highly sensitive sensing of Cu(II), even at extremely low concentrations (76 nms.). CW-AuNPs exhibit a controlled aggregation property in the presence of Cu(II), resulting in the creation of hot spots for SERS-based detection. Moreover, the peptide unit attached to the gold nanoparticles serves both as a binding motif for Cu(II) and as a Raman reporter for Cu(II) sensing. Our comprehensive analysis, including solution-state and dry-mapping Raman spectroscopic studies, demonstrates remarkable picomolar sensitivity of the peptide–gold nanoparticle system for Cu(II) detection. Moreover, we prepared a paper test strip from CW-AuNPs and used it as a visual colorimetric platform for sensitive detection of copper ions. Full article
Show Figures

Figure 1

39 pages, 4595 KB  
Review
Recent Advances in Metal Nanoclusters: From Novel Synthesis to Emerging Applications
by Alexandru-Milentie Hada, Marc Lamy de la Chapelle, Monica Focsan and Simion Astilean
Molecules 2025, 30(19), 3848; https://doi.org/10.3390/molecules30193848 - 23 Sep 2025
Viewed by 512
Abstract
Metallic nanoclusters (NCs), composed of a few to a hundred atoms, occupy a unique space between molecules and nanoparticles, exhibiting discrete electronic states, strong photoluminescence, and size-dependent catalytic activity. Their ultrasmall cores (<3 nm) and ligand-controlled surfaces confer tunable optical, electronic, and catalytic [...] Read more.
Metallic nanoclusters (NCs), composed of a few to a hundred atoms, occupy a unique space between molecules and nanoparticles, exhibiting discrete electronic states, strong photoluminescence, and size-dependent catalytic activity. Their ultrasmall cores (<3 nm) and ligand-controlled surfaces confer tunable optical, electronic, and catalytic properties, making them attractive for diverse applications. In recent years, significant progress has been made toward developing faster, more reproducible, and scalable synthesis routes beyond classical wet-chemical reduction. Emerging strategies such as microwave-, photochemical-, sonochemical-, and catalytically assisted syntheses, together with smart, automation-driven platforms, have improved efficiency, structural control, and environmental compatibility. These advances have accelerated the deployment of NCs in imaging, sensing, and catalysis. Near-infrared emitting NCs enable deep-tissue, high-contrast fluorescence imaging, while theranostic platforms combine diagnostic precision with photothermal or photodynamic therapy, gene delivery, and anti-inflammatory treatment. NC-based sensors allow ultrasensitive detection of ions, small molecules, and pathogens, and atomically precise NCs have enabled efficient CO2 reduction, water splitting, and nitrogen fixation. Therefore, in this review, we highlight studies reported in the past five years on the synthesis and applications of metallic NCs, linking emerging methodologies to their functional potential in nanotechnology. Full article
(This article belongs to the Special Issue Metallic Nanoclusters and Their Interaction with Light)
Show Figures

Graphical abstract

22 pages, 6698 KB  
Article
Photocatalytic Optimization of ATiO3 Codoped with Se/Zr: A DFT Study for Hydrogen Production
by Abdellah Bouzaid, Younes Ziat and Hamza Belkhanchi
Materials 2025, 18(18), 4389; https://doi.org/10.3390/ma18184389 - 19 Sep 2025
Viewed by 329
Abstract
Recent advances in energy conversion technologies, especially solar-driven photocatalytic water splitting, are vital for satisfying the increasing global need for sustainable and clean energy. Perovskite oxides have attracted considerable attention among photocatalytic materials due to their tunable electronic structures, exceptional stability, and promise [...] Read more.
Recent advances in energy conversion technologies, especially solar-driven photocatalytic water splitting, are vital for satisfying the increasing global need for sustainable and clean energy. Perovskite oxides have attracted considerable attention among photocatalytic materials due to their tunable electronic structures, exceptional stability, and promise for effective hydrogen generation and environmental remediation. In this study, the optoelectronic and photocatalytic (PC) characteristics of ATiO3 (A = Ca, Mg) perovskites, undoped and codoped with Se and Zr, have been analyzed using ab initio simulations based on the density functional theory (DFT). The calculated formation energies for codoped systems range from −1.01 to −3.32 Ry/atom, confirming their thermodynamic stability. Furthermore, band structure calculations indicate that the undoped compounds CaTiO3 and MgTiO3 possess indirect band gaps of 2.766 eV and 2.926 eV, respectively. In contrast, codoping alters the electronic properties by changing the band gap from indirect to direct and reducing its energy, resulting in the direct band gap values 2.153 eV, 1.374 eV, 2.159 eV, and 1.726 eV for the compounds Ca8Ti7Zr1O23Se1, Ca8Ti6Zr2O22Se2, Mg8Ti7Zr1O23Se1, and Mg8Ti6Zr2O22Se2, respectively. Additionally, this codoping improves light absorption and optical conductivity in the visible and ultraviolet ranges. These enhancements become increasingly evident with elevated dopant concentrations, leading to intensified light–matter interactions. Analysis of the band edge potentials reveals that the Se-/Zr-codoped CaTiO3 compounds satisfy the necessary criteria for the photodissociation of water, conferring on them an ability to generate H2 and O2 under light irradiation. However, under different pH conditions, Se-/Zr-codoped MgTiO3 is expected to perform better at higher pH levels, while Se-/Zr-codoped CaTiO3 is more effective at lower pH levels. These findings highlight the promise of codoped materials for renewable energy applications, such as solar-driven hydrogen production and optoelectronic devices, with pH being a critical factor in enhancing their photocatalytic performance. Full article
Show Figures

Figure 1

22 pages, 19737 KB  
Article
Temporal Sculpting of Laser Pulses for Functional Engineering of Al2O3/AgO Films: From Structural Control to Enhanced Gas Sensing Performance
by Doaa Yaseen Doohee, Abbas Azarian and Mohammad Reza Mozaffari
Sensors 2025, 25(18), 5836; https://doi.org/10.3390/s25185836 - 18 Sep 2025
Viewed by 419
Abstract
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were [...] Read more.
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were achieved through optical lens modifications to control both energy density and laser spot size. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses showed a distinct reduction in both crystallite and grain sizes with decreasing pulse width, along with significant improvements in surface morphology refinement and film compactness. Hall effect measurements revealed a transition from n-type to p-type conductivity with decreasing pulse width, demonstrating increased hole concentration and reduced carrier mobility attributed to grain boundary scattering. Furthermore, current-voltage (I-V) characteristics demonstrated improved photoconductivity under illumination, with the most pronounced enhancement observed in samples prepared using longer pulse durations. Gas sensing measurements for NO2 and H2S revealed enhanced sensitivity, improved response/recovery characteristics at 250 °C, with optimal performance achieved in films deposited using shorter pulse durations. This improvement is attributed to their larger surface area and higher density of active adsorption sites. Our results demonstrate a clear relationship between laser pulse parameters and the functional properties of Al2O3/AgO films, providing valuable insights for optimizing deposition processes to develop advanced gas sensors. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

13 pages, 2169 KB  
Article
Controlled Formation of Nanoislands During Microwave Annealing of Au Thin Films
by Ali Ghanim Gatea Al-Rubaye, Alaa Alasadi, Khalid Rmaydh Muhammed and Catalin-Daniel Constantinescu
Metals 2025, 15(9), 1030; https://doi.org/10.3390/met15091030 - 18 Sep 2025
Viewed by 446
Abstract
We present a systematic study on the fabrication of gold nanoislands by microwave-assisted annealing, a rapid and energy-efficient alternative to conventional thermal treatments. Gold thin films with nominal thicknesses of 4, 5, 6, 8, and 10 nm are deposited by thermal evaporation directly [...] Read more.
We present a systematic study on the fabrication of gold nanoislands by microwave-assisted annealing, a rapid and energy-efficient alternative to conventional thermal treatments. Gold thin films with nominal thicknesses of 4, 5, 6, 8, and 10 nm are deposited by thermal evaporation directly onto BK7 glass substrates, with and without a 3 nm chromium adhesion layer. The samples are subsequently annealed in a microwave kiln, where microwave irradiation is absorbed and converted to heat within the graphite-coated cavity (kiln), allowing the substrate temperature to exceed 550 °C, the threshold required for film dewetting. This process induces a controlled morphological evolution from continuous thin films to well-defined nanoislands, with the final size distribution strongly dependent on the initial film thickness. Compared with oven-based annealing, microwave treatment promotes faster and more uniform heating, which enhances atomic diffusion and accelerates dewetting while reducing the risk of substrate deformation or excessive coalescence. The resulting nanoislands exhibit tailored size-dependent plasmonic properties, with clear correlations between film thickness, crystallite size, and optical absorption features. Importantly, the method is cost-efficient, requiring shorter processing times and lower energy input, while enabling reproducible fabrication of high-quality plasmonic nanostructures on inexpensive glass substrates, suitable for applications in sensing, photonics, and nanophotonics. Full article
(This article belongs to the Special Issue Metallic Nanostructured Materials and Thin Films)
Show Figures

Graphical abstract

Back to TopTop