Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,767)

Search Parameters:
Keywords = atomic devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3433 KB  
Article
Defect Reduction in HEMT Epilayers on SiC Meta-Substrates
by Vin-Cent Su, Ting-Yu Wei, Meng-Hsin Chen, Chien-Te Ku and Guan-Shian Liu
Nanomaterials 2026, 16(3), 158; https://doi.org/10.3390/nano16030158 - 23 Jan 2026
Viewed by 66
Abstract
Dislocation reduction in gallium nitride (GaN) epitaxial layers remains a critical challenge for high-performance GaN-based electronic devices. In this study, GaN epitaxial growth on newly-developed 4H-Silicon Carbide (SiC) meta-substrates was systematically investigated to elucidate the role of surface pattern geometry in modulating dislocation [...] Read more.
Dislocation reduction in gallium nitride (GaN) epitaxial layers remains a critical challenge for high-performance GaN-based electronic devices. In this study, GaN epitaxial growth on newly-developed 4H-Silicon Carbide (SiC) meta-substrates was systematically investigated to elucidate the role of surface pattern geometry in modulating dislocation propagation. A series of truncated-hexagonal-pyramid meta-structures with a fixed array period and varying pattern ratios (R) were designed and fabricated to enable controlled tuning of the effective surface morphology. Atomic force microscopy confirmed comparable surface flatness for all samples after epitaxial growth. Cathodoluminescence analysis revealed a non-monotonic dependence of defect density on R, indicating the existence of an optimal pattern geometry. Among all configurations, the outstanding sample exhibited the lowest defect density, achieving a 54.96% reduction in threading dislocations (edge + mixed) compared with a planar reference. Cross-sectional transmission electron microscopy further confirmed a substantially reduced dislocation density and clear evidence of dislocation bending and termination near the meta-structured regions. These results demonstrate that geometry-engineered 4H-SiC meta-substrates provide an effective and scalable strategy for dislocation modulation in GaN epitaxy on SiC meta-substrates, offering a promising pathway toward advanced GaN power and RF devices. Full article
(This article belongs to the Special Issue Nonlinear Optics of Nanostructures and Metasurfaces)
15 pages, 5266 KB  
Article
Design and Evaluation of a Laboratory-Scale Thermal ALD System: Case Study of ZnO
by J. Navarro-Rodríguez, D. Mateos-Anzaldo, J. Martínez-Castelo, R. Ramos-Irigoyen, A. Pérez-Sánchez, O. Pérez-Landeros, M. Curiel-Álvarez, E. Martínez-Guerra, H. Tiznado-Vázquez and N. Nedev
Processes 2026, 14(3), 399; https://doi.org/10.3390/pr14030399 - 23 Jan 2026
Viewed by 107
Abstract
Atomic Layer Deposition (ALD) is a key thin-film fabrication technique that enables the growth of ultra-thin, conformal, and compositionally controlled layers for applications in nanoelectronics, optoelectronics, and energy devices. However, the high cost and operational complexity of commercial ALD systems limit their accessibility [...] Read more.
Atomic Layer Deposition (ALD) is a key thin-film fabrication technique that enables the growth of ultra-thin, conformal, and compositionally controlled layers for applications in nanoelectronics, optoelectronics, and energy devices. However, the high cost and operational complexity of commercial ALD systems limit their accessibility in academic and emerging research environments. In this work, a low-cost, automated thermal ALD system is designed, assembled, and experimentally validated for the deposition of zinc oxide (ZnO) thin films. The developed system enables precise control of precursor dosing, purge sequences, and substrate temperature via an integrated LabVIEW–Arduino control architecture, allowing reproducible and stable thin-film growth. The design allows the use of various precursors through high-precision three-way diaphragm valves. In addition, the system allows continuous purge gas flow in the reaction chamber, which enhances the drag velocity of the precursor gas, reducing dosage requirement, accelerating chamber saturation time and lowering the total consumption of precursors per deposition cycle. ZnO thin films were successfully grown on silicon and glass substrates at 200 °C using diethylzinc (DEZ) as the metal precursor and hydrogen peroxide (H2O2) as the oxidant. The process exhibited self-limiting growth characteristics typical of ALD, yielding a growth per cycle of approximately 0.8 Å. The deposited ZnO films exhibited optical transparency of 70–80% in the visible region, a refractive index of approximately 1.9, and an optical bandgap close to 3.4 eV, which are consistent with values reported for high-quality ZnO films grown in commercial ALD systems. These results demonstrate that the proposed low-cost platform is capable of producing functional ZnO thin films with properties comparable to those obtained with conventional commercial reactors. Overall, this work presents an accessible and scalable thermal ALD system that significantly reduces equipment costs while maintaining reliable process control and film quality, offering a practical framework for expanding thin-film research capabilities across microelectronics, optoelectronics, and nanotechnology laboratories. Full article
(This article belongs to the Special Issue Recent Progress in Thin Film Processes and Engineering)
Show Figures

Figure 1

17 pages, 4361 KB  
Article
Surface Modification of Zirconia with Thick Hydroxyapatite Film Using RF Magnetron Sputtering Technique
by Ihab Nabeel Safi, Hasanain K. A. Alalwan, Mustafa S. Tukmachi, Dhuha H. Mohammed and Maryam Sinan Abdulaali Al-Yasari
Prosthesis 2026, 8(1), 11; https://doi.org/10.3390/prosthesis8010011 - 19 Jan 2026
Viewed by 99
Abstract
Background/Objectives: The use of zirconia implants is gaining traction as a potential alternative to titanium. Although having excellent properties, the zirconia surface has limited osteogenic potential. The purpose of this study was to produce, for the first time, mechanically stable, thick micron-scale [...] Read more.
Background/Objectives: The use of zirconia implants is gaining traction as a potential alternative to titanium. Although having excellent properties, the zirconia surface has limited osteogenic potential. The purpose of this study was to produce, for the first time, mechanically stable, thick micron-scale hydroxyapatite coatings on zirconia implant material using radiofrequency (RF) magnetron sputtering. Methods: Zirconia samples were coated with HA using an RF magnetron sputtering device at a temperature of 125 °C for 20 h with 155 W of power. The procedure included rotating the substrate at a speed of 10 rpm while an argon gas flow was maintained continuously. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness measurements were used to evaluate the coat’s characteristics. Results: A smooth hydroxyapatite coating layer that was consistent and free of cracks was observed in all FESEM pictures. The EDX study revealed that the substrate surface contains HA particles, and the ratio of calcium (Ca) to phosphorus (P) was 16.58 to 11.31, which is very close to the ratio in original HA. FESEM cross-section pictures showed good adhesion between the coating and substrate without any gaps, and the coating thickness was 5 µm on average. A statistically significant difference was found in the roughness analysis between the samples of uncoated Zr and HA-coated Zr (p-value < 0.05). Conclusions: Zirconia implant material can be coated with a uniform layer of HA, displaying good adhesion and a thickness of a few micrometers when using magnetron sputtering for an extended period of time. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

40 pages, 5340 KB  
Review
Emerging Electrode Materials for Next-Generation Electrochemical Devices: A Comprehensive Review
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Micromachines 2026, 17(1), 106; https://doi.org/10.3390/mi17010106 - 13 Jan 2026
Viewed by 253
Abstract
The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence [...] Read more.
The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence on costly or scarce elements, driving the need for continuous innovation. Emerging electrode materials are designed to overcome these challenges by delivering enhanced reaction activity, superior mechanical robustness, accelerated ion diffusion kinetics, and improved economic feasibility. In energy storage, for example, the shift from conventional graphite in lithium-ion batteries has led to the exploration of silicon-based anodes, offering a theoretical capacity more than tenfold higher despite the challenge of massive volume expansion, which is being mitigated through nanostructuring and carbon composites. Simultaneously, the rise of sodium-ion batteries, appealing due to sodium’s abundance, necessitates materials like hard carbon for the anode, as sodium’s larger ionic radius prevents efficient intercalation into graphite. In electrocatalysis, the high cost of platinum in fuel cells is being addressed by developing Platinum-Group-Metal-free (PGM-free) catalysts like metal–nitrogen–carbon (M-N-C) materials for the oxygen reduction reaction (ORR). Similarly, for the oxygen evolution reaction (OER) in water electrolysis, cost-effective alternatives such as nickel–iron hydroxides are replacing iridium and ruthenium oxides in alkaline environments. Furthermore, advancements in materials architecture, such as MXenes—two-dimensional transition metal carbides with metallic conductivity and high volumetric capacitance—and Single-Atom Catalysts (SACs)—which maximize metal utilization—are paving the way for significantly improved supercapacitor and catalytic performance. While significant progress has been made, challenges related to fundamental understanding, long-term stability, and the scalability of lab-based synthesis methods remain paramount for widespread commercial deployment. The future trajectory involves rational design leveraging advanced characterization, computational modeling, and machine learning to achieve holistic, system-level optimization for sustainable, next-generation electrochemical devices. Full article
Show Figures

Figure 1

17 pages, 1569 KB  
Article
Mechanical Characterization of Stick Insect Tarsal Attachment Fluid Using Atomic Force Microscopy (AFM)
by Martin Becker, Alexander E. Kovalev, Thies H. Büscher and Stanislav N. Gorb
Biomimetics 2026, 11(1), 42; https://doi.org/10.3390/biomimetics11010042 - 6 Jan 2026
Viewed by 258
Abstract
Most insects secrete special fluids from their tarsal pads which are essential for the function of their attachment systems. Previous studies investigated several physical and chemical characteristics of this pad fluid in different insect species. However, there is not much known about the [...] Read more.
Most insects secrete special fluids from their tarsal pads which are essential for the function of their attachment systems. Previous studies investigated several physical and chemical characteristics of this pad fluid in different insect species. However, there is not much known about the mechanical properties of fluid from smooth adhesive pads. In this study, we used the stress–relaxation nanoindentation method to examine the viscoelastic properties of pad fluid from Sungaya aeta. Force–displacement and stress–relaxation curves on single fluid droplets were recorded with an atomic force microscope (AFM) and analyzed using Johnson–Kendall–Roberts (JKR) and generalized Maxwell models for determination of effective elastic modulus (E), work of adhesion (Δγ) and dynamic viscosity (η). In addition, we used white light interferometry (WLI) to measure the maximal height of freshly acquired droplets. Our results revealed three different categories of droplets, which we named “almost inviscid”, “viscous” and “rigid”. They are presumably determined at the moment of secretion and retain their characteristics even for several days. The observed mechanical properties suggest a non-uniform composition of different droplets. These findings provide a basis for advancing our understanding about the requirements for adaptive adhesion-mediating fluids and, hence, aid in advancing technical solutions for soft or liquid temporal adhesives and gripping devices. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Graphical abstract

8 pages, 1417 KB  
Communication
Integrable Post-Fabrication Annealing Treatment for Polymer-Based Capacitive Micromachined Ultrasonic Transducers: Performance Impacts
by Chenyang Luo, Jonas Welsch, Edmond Cretu, Robert Rohling and Martin Angerer
J. Manuf. Mater. Process. 2026, 10(1), 17; https://doi.org/10.3390/jmmp10010017 - 6 Jan 2026
Viewed by 268
Abstract
This study investigates the effects of post-fabrication annealing on polymer-based capacitive micromachined ultrasonic transducers (polyCMUTs). These devices comprise microscopic diaphragms produced via photolithographic patterning of polymer layers. Critical point drying, required to release the diaphragms, can cause significant plastic deformation, thereby reducing electromechanical [...] Read more.
This study investigates the effects of post-fabrication annealing on polymer-based capacitive micromachined ultrasonic transducers (polyCMUTs). These devices comprise microscopic diaphragms produced via photolithographic patterning of polymer layers. Critical point drying, required to release the diaphragms, can cause significant plastic deformation, thereby reducing electromechanical coupling. Post-fabrication annealing, carried out in incremental steps up to 190 °C, led to an effective increase in coupling by a factor of 5.4. Atomic Force Microscopy showed that the initial upward deflection of 162.7 nm decreased to 6.2 nm after annealing at 190 °C, while also improving surface uniformity. In parallel, the transducer’s resonance frequency rose from 2.33 MHz (unannealed) to 2.60 MHz, and the input impedance phase angle at resonance increased from −68.1° to −4.3°. Together, these changes indicate a significant improvement in resonator behavior and, consequently, device performance. Thus, post-fabrication annealing is an effective measure to achieve the designed performance while enhancing manufacturing yield, thereby increasing the applicability of polyCMUTs. Full article
Show Figures

Figure 1

25 pages, 2123 KB  
Review
Molecular Dynamics Simulation of Nano-Aluminum: A Review on Oxidation, Structure Regulation, and Energetic Applications
by Dihua Ouyang, Xin Chen, Qiantao Zhang, Chunpei Yu, He Cheng, Weiqiang Pang and Jieshan Qiu
Nanomaterials 2026, 16(1), 74; https://doi.org/10.3390/nano16010074 - 5 Jan 2026
Viewed by 364
Abstract
Nano-aluminum (nAl), characterized by its high combustion enthalpy and enhanced reactivity, serves as a critical component in advanced energetic materials like solid propellants and micro-ignition devices. However, the atomic-scale mechanisms governing its core–shell structure evolution, oxidation dynamics, and interfacial interactions remain elusive to [...] Read more.
Nano-aluminum (nAl), characterized by its high combustion enthalpy and enhanced reactivity, serves as a critical component in advanced energetic materials like solid propellants and micro-ignition devices. However, the atomic-scale mechanisms governing its core–shell structure evolution, oxidation dynamics, and interfacial interactions remain elusive to experimental probes due to spatiotemporal limitations. Molecular dynamics (MD) simulations, particularly the synergistic use of a ReaxFF reactive force field (for large-scale systems) and ab initio MD (for electronic-level accuracy), have emerged as a powerful tool to overcome this barrier. This review systematically delineates the oxidation mechanisms and core–shell structure regulation of nAl, with a focus on the multi-scale simulation paradigm integrating DFT, AIMD, and ReaxFF MD that directly supports nAl research. It critically examines the pivotal role of MD simulations in guiding the surface modification of nAl, elucidating combustion mechanisms at the atomic level, and designing interfaces in energetic composite systems. By synthesizing recent advances (2022–2025), this study establishes a clear structure–property relationship between microscopic features and macroscopic performance of nAl. Furthermore, it identifies prevailing challenges, including simulations under multi-physics loading, multi-scale bridging, and quantitative experiment-simulation validation that specifically affect nAl-based energetic systems. Finally, future research directions are prospected, encompassing the development of machine learning-empowered force fields tailored for nAl systems, multi-scale and multi-field coupling simulation frameworks targeting nAl applications, and closed-loop experiment-simulation systems for nAl-based energetic materials. This review aims to provide fundamental insights and a technical framework for the rational design and engineering application of nAl-based energetic materials in fields such as aerospace propulsion. Full article
Show Figures

Figure 1

39 pages, 2355 KB  
Review
Life-Cycle Assessment of Innovative Industrial Processes for Photovoltaic Production: Process-Level LCIs, Scale-Up Dynamics, and Recycling Implications
by Kyriaki Kiskira, Nikitas Gerolimos, Georgios Priniotakis and Dimitrios Nikolopoulos
Appl. Sci. 2026, 16(1), 501; https://doi.org/10.3390/app16010501 - 4 Jan 2026
Viewed by 255
Abstract
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module [...] Read more.
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module level. Although many life-cycle assessment (LCA) studies compare silicon, cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and perovskite technologies, most rely on aggregated indicators and database-level inventories. Few studies systematically compile and harmonize process-level life-cycle inventories (LCIs) for the manufacturing steps that differentiate emerging industrial routes, such as solution coating, R2R processing, atomic layer deposition, low-temperature annealing, and advanced encapsulation–metallization strategies. In addition, inconsistencies in functional units, system boundaries, electricity-mix assumptions, and scale-up modeling continue to limit meaningful cross-study comparison. To address these gaps, this review (i) compiles and critically analyzes process-resolved LCIs for innovative PV manufacturing routes across laboratory, pilot, and industrial scales; (ii) quantifies sensitivity to scale-up, yield, throughput, and electricity carbon intensity; and (iii) proposes standardized methodological rules and open-access LCI templates to improve reproducibility, comparability, and integration with techno-economic and prospective LCA models. The review also synthesizes current evidence on recycling, circularity, and critical-material management. It highlights that end-of-life (EoL) benefits for emerging PV technologies are highly conditional and remain less mature than for crystalline-silicon systems. By shifting the analytical focus from technology class to manufacturing process and life-cycle configuration, this work provides a harmonized evidence base to support scalable, circular, and low-carbon industrial pathways for next-generation PV technologies. Full article
(This article belongs to the Special Issue Life Cycle Assessment in Sustainable Materials Manufacturing)
Show Figures

Graphical abstract

16 pages, 2859 KB  
Article
Graphene-Based Nanostructures Produced by Laser Ablation Assisted by Electric Field
by Mariapompea Cutroneo, Vaclav Holy, Petr Malinsky, Petr Slepicka, Alena Michalcova and Lorenzo Torrisi
Nanomaterials 2026, 16(1), 72; https://doi.org/10.3390/nano16010072 - 4 Jan 2026
Viewed by 359
Abstract
The properties of carbon-based materials with nanometric size support their use in numerous applications, such as optoelectronics and energy devices, bioimaging, photodetectors, and sensors. Among the various nanostructure fabrication methods, pulsed laser ablation in liquids (PLA) is widely recognized for its simplicity and [...] Read more.
The properties of carbon-based materials with nanometric size support their use in numerous applications, such as optoelectronics and energy devices, bioimaging, photodetectors, and sensors. Among the various nanostructure fabrication methods, pulsed laser ablation in liquids (PLA) is widely recognized for its simplicity and rapid processing. It is considered an environmentally friendly synthesis, as it enables nanostructure fabrication in pure liquids without chemical reagents, activators, or vacuum systems, in line with the increasing interest in sustainable and green nanotechnologies. A great challenge of PLA is the reproducibility of the size and shape of the produced structure. This can be accomplished by selection of the proper laser parameters and characteristics of the used liquid. This study is focused on the comparison of the synthesis of graphene-based nanostructures by electric-field-assisted pulsed laser ablation of a graphite target immersed in distilled water and deionized water, used as separate liquid media, without the use of chemical reagents. This is an innovative and environmentally friendly approach for the production of graphene nanoparticles. The laser parameters were kept constant throughout the experiments, while different voltage values were applied between the electrodes immersed in the liquid medium. The applied electric field significantly influences plasma dynamics, cavitation bubble evolution, and post-ablation nanoparticle growth processes, enabling controlled tuning of nanoparticle size and morphology. The optical properties of the obtained suspensions were evaluated by UV–Vis and FTIR spectroscopies. Atomic force microscopy revealed the composition, morphology, and quality of the formed structures. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

22 pages, 4259 KB  
Review
Stoichiometry-Controlled Surface Reconstructions in Epitaxial ABO3 Perovskites for Sustainable Energy Applications
by Habib Rostaghi Chalaki, Ebenezer Seesi, Gene Yang, Mohammad El Loubani and Dongkyu Lee
Crystals 2026, 16(1), 37; https://doi.org/10.3390/cryst16010037 - 1 Jan 2026
Viewed by 446
Abstract
ABO3 perovskite oxides are a versatile class of materials whose surfaces and interfaces play essential roles in sustainable energy technologies, including catalysis, solid oxide fuel and electrolysis cells, thermoelectrics, and energy-relevant oxide electronics. The interplay between point defects and surface reconstructions strongly [...] Read more.
ABO3 perovskite oxides are a versatile class of materials whose surfaces and interfaces play essential roles in sustainable energy technologies, including catalysis, solid oxide fuel and electrolysis cells, thermoelectrics, and energy-relevant oxide electronics. The interplay between point defects and surface reconstructions strongly affects interfacial stability, charge transport, and catalytic activity under operating conditions. This review summarizes recent progress in understanding how oxygen vacancies, cation nonstoichiometry, and electronic defects couple to atomic-scale surface rearrangements in representative perovskite systems. We first revisit Tasker’s classification of ionic surfaces and clarify how defect chemistry provides compensation mechanisms that stabilize otherwise polar or metastable terminations. We then discuss experimental and theoretical insights into defect-mediated reconstructions on perovskite surfaces and how they influence the performance of energy conversion devices. Finally, we conclude with a perspective on design strategies that leverage defect engineering and surface control to enhance functionality in energy applications, aiming to connect fundamental surface science with practical materials solutions for the transition to sustainable energy. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

13 pages, 3866 KB  
Article
Near-Field Electrospray ZnO Thin Film for Ultraviolet Photodetectors
by Liyun Zhuo, Tao Peng, Jiaxin Jiang and Gaofeng Zheng
Micromachines 2026, 17(1), 69; https://doi.org/10.3390/mi17010069 - 31 Dec 2025
Viewed by 260
Abstract
ZnO thin-film ultraviolet photodetectors are widely used in the military, space, environmental protection, medicine, and other fields. Accurate printing of ZnO photoelectric-sensitive films plays a key role in the detection results. Therefore, obtaining printing technology with a simple process and high precision has [...] Read more.
ZnO thin-film ultraviolet photodetectors are widely used in the military, space, environmental protection, medicine, and other fields. Accurate printing of ZnO photoelectric-sensitive films plays a key role in the detection results. Therefore, obtaining printing technology with a simple process and high precision has become a challenge for ZnO photoelectrically sensitive films. By adjusting the distance between the nozzle and the collecting plate, the jet is atomized in a straight line and deposited directly on the collecting plate, which effectively improves the stability and controllability of the jet spraying and deposition processes. ZnO thin films with a uniform distribution of nanoparticles, significantly improved density, and controllable deposition area linewidth were successfully prepared. The effects of different ZnO film structures on the performance of ultraviolet photodetectors were tested. When the ultraviolet light intensity is 500, 1000, and 2500 mW/cm2, the Ilight of the photodetector is 4.62, 9.38, 14.67 mA, The on/off ratio (Ilight/Idark) is 20.7, 42.1, 65.8, implying satisfactory photoelectric performance as well as high stability and repeatability, providing an effective technical means for the precise printing application of micro-nano functional devices. Full article
(This article belongs to the Special Issue Emerging Technologies and Applications for Semiconductor Industry)
Show Figures

Graphical abstract

13 pages, 4256 KB  
Article
Aqua Regia-Free Removal of Cr-Pt Hard Masks Using Thin Ag or Au Sacrificial Layers for High-Fidelity LiTaO3 Metasurfaces
by Zhuoqun Wang, Yufeng Zang, Yuechen Jia and Ning Lu
Nanomaterials 2026, 16(1), 59; https://doi.org/10.3390/nano16010059 - 31 Dec 2025
Viewed by 318
Abstract
For the method of focused ion beam (FIB) milling to fabricate lithium tantalate (LiTaO3) metasurfaces, the use of a Cr-Pt mask can enhance imaging contrast and enable superior drift correction. However, removing the Pt component necessitates the volatile and toxic etchant [...] Read more.
For the method of focused ion beam (FIB) milling to fabricate lithium tantalate (LiTaO3) metasurfaces, the use of a Cr-Pt mask can enhance imaging contrast and enable superior drift correction. However, removing the Pt component necessitates the volatile and toxic etchant aqua regia, presenting considerable safety risks. This work introduces a novel lift-off strategy that incorporates thin Ag or Au sacrificial layers (≤30 nm) between the LiTaO3 substrate and Cr-Pt mask. Systematic evaluation identifies Ag or Au as optimal candidates due to their high sputtering yield for efficient FIB patterning and compatibility with a low-toxicity KI + I2 etchant. Experiments showed complete mask removal within 60 s while preserving structural fidelity: atomic force microscopy (AFM) results reveal a surface roughness comparable to conventional aqua regia processing, and scanning microscope (SEM) imaging confirms intact sidewall angles (10–11°). The second-harmonic generation (SHG) measurements reveal comparable optical performance upon the introduction of Ag or Au sacrificial layers. This approach eliminates hazardous etchant and maintains process precision, offering a scalable and safer fabrication route for LiTaO3-based photonic devices. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

30 pages, 3927 KB  
Article
FG-RCA: Kernel-Anchored Post-Exploitation Containment for IoT with Policy Synthesis and Mitigation of Zero-Day Attacks
by Fouad Ailabouni, Jesús-Ángel Román-Gallego and María-Luisa Pérez-Delgado
IoT 2026, 7(1), 3; https://doi.org/10.3390/iot7010003 - 25 Dec 2025
Viewed by 383
Abstract
Zero-day intrusions on IoT endpoints demand defenses that curtail attacker impact and persistence after breach. This article presents Fine-Grained Runtime Containment Agent (FG-RCA), a lightweight post-exploitation containment system that learns least-privilege behavior from execution and enforces it in the kernel via eBPF with [...] Read more.
Zero-day intrusions on IoT endpoints demand defenses that curtail attacker impact and persistence after breach. This article presents Fine-Grained Runtime Containment Agent (FG-RCA), a lightweight post-exploitation containment system that learns least-privilege behavior from execution and enforces it in the kernel via eBPF with Linux Security Modules (LSM). In a learn phase, LSM/eBPF probes stream security-relevant events to a Rust agent that synthesizes policies per device role. In an enforce phase, policies are compiled into eBPF maps and evaluated at an extended hook set spanning process execution (bprm_check_security), file access (file_open), network egress and exfiltration (socket_connect, socket_sendmsg), privilege use (capable), process injection (ptrace_access_check), tamper/anti-forensics (inode_unlink). Policies bind to kernel-truth identities—inode, device, mount intrusion detection system (IDS), executable SHA-256, and cgroup/namespace identifiers—rather than paths, mitigating time-of-check to time-of-use (TOCTOU) and aliasing. Operational safeguards include Ed25519-signed policies, atomic rollback, and shadow mode logging events to enable policy evolution. Evaluation on embedded Linux demonstrates containment with low overhead. Full article
(This article belongs to the Special Issue Cybersecurity in the Age of the Internet of Things)
Show Figures

Figure 1

11 pages, 6830 KB  
Article
Monolayer Metasurface Enabling Linear Polarizer and Quarter-Wave Plate for Chip-Scale Atomic Clocks
by Taolong Wang, Zhiqiang Li, Ting Liang, Jiangang Yu, Xiaoqian Cui, Xinpu Li, Zong Yao and Cheng Lei
Micromachines 2026, 17(1), 25; https://doi.org/10.3390/mi17010025 - 25 Dec 2025
Viewed by 343
Abstract
A monolayer metasurface-based Linear Polarizer and Quarter-Wave Plate (LP&QWP) is proposed for compact and precise polarization control in chip-scale atomic clocks (CSACs). Finite-difference time-domain simulations reveal that the designed metasurface efficiently converts linearly polarized light into right-handed circularly polarized light. Experimental characterization of [...] Read more.
A monolayer metasurface-based Linear Polarizer and Quarter-Wave Plate (LP&QWP) is proposed for compact and precise polarization control in chip-scale atomic clocks (CSACs). Finite-difference time-domain simulations reveal that the designed metasurface efficiently converts linearly polarized light into right-handed circularly polarized light. Experimental characterization of devices fabricated on optical glass substrates confirms the polarization manipulation performance, achieving a polarization extinction ratio (PER) of 4.8 dB and a degree of polarization (DOP) of 74.2%, confirming its ability to effectively control the state of polarization. The short-term frequency stability of the developed CSAC prototype reaches 9.29 × 10−11 at 1 s and 1.59 × 10−11 at 10,000 s, demonstrating its potential for integration into miniature timing systems. The novelty of this work lies in the specific application to CSACs and the co-optimization with attenuation, as the metasurface simultaneously realizes polarization control and optical power balancing within a single functional layer. This study bridges metasurface photonics and atomic frequency standards, providing a functional route toward polarization control and frequency stability in miniaturized chip-scale atomic clocks. Full article
Show Figures

Figure 1

24 pages, 2672 KB  
Review
Graphene-, Transition Metal Dichalcogenide-, and MXenes Material-Based Flexible Optoelectronic Devices
by Yingying Wang, Geyi Zhou, Zhisheng Zhang and Zhihong Zhu
Nanomaterials 2026, 16(1), 25; https://doi.org/10.3390/nano16010025 - 24 Dec 2025
Viewed by 655
Abstract
Characterized by their atomic thickness and exceptional mechanical properties, two-dimensional (2D) materials offer a compelling platform for developing flexible optoelectronic devices that maintain performance stability under mechanical deformation such as bending and stretching. This review systematically summarizes and critically discusses the recent advancements [...] Read more.
Characterized by their atomic thickness and exceptional mechanical properties, two-dimensional (2D) materials offer a compelling platform for developing flexible optoelectronic devices that maintain performance stability under mechanical deformation such as bending and stretching. This review systematically summarizes and critically discusses the recent advancements in applying three prominent 2D material categories—graphene, transition metal dichalcogenides (TMDs, e.g., MoS2 and WS2), and MXenes—in flexible optoelectronics. We focus on their specific applications in flexible photodetectors, light-emitting devices, optical modulators, solar cells, and gas sensors. A particular emphasis is placed on analyzing the unique physicochemical properties of these materials and elucidating the underlying mechanisms that enable bandgap stability and efficient optoelectronic conversion under mechanical strain. The potential of these devices demonstrated here underscores their broad application prospects in wearable systems and self-powered electronic platforms. Finally, we conclude by discussing the challenges and future prospects in the field of flexible optoelectronic devices based on two-dimensional materials. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

Back to TopTop