Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = atomic coherent spectrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1605 KB  
Article
Investigation of the Complexation Activity of 2,4-Dithiouracil with Au(III) and Cu(II) and Biological Activity of the Newly Formed Complexes
by Petya Marinova, Dimitar Stoitsov, Nikola Burdzhiev, Slava Tsoneva, Denica Blazheva, Aleksandar Slavchev, Evelina Varbanova and Plamen Penchev
Appl. Sci. 2024, 14(15), 6601; https://doi.org/10.3390/app14156601 - 28 Jul 2024
Cited by 2 | Viewed by 1719
Abstract
The goal of this study is to synthesize, determine the structure, and examine the antimicrobial properties of novel Cu(II) and Au(III) complexes of 2,4-dithiouracil and its derivatives. These complexes were obtained by mixing aqueous solutions of the corresponding metal salts with the ligand [...] Read more.
The goal of this study is to synthesize, determine the structure, and examine the antimicrobial properties of novel Cu(II) and Au(III) complexes of 2,4-dithiouracil and its derivatives. These complexes were obtained by mixing aqueous solutions of the corresponding metal salts with the ligand dissolved in DMSO and aqueous NaOH, using a metal-to-ligand ratio of 1:4:2. The structures of the new compounds were analyzed by melting point determination, microwave plasma atomic emission spectrometry (MP-AES) for Cu and Au, inductively coupled plasma optical emission spectrometry (ICP-OES) for S, attenuated total reflection (ATR), solution and solid-state NMR, and Raman spectroscopy. The data for 2,4-dithiouracil obtained from the 1H NMR, 13C NMR, distortionless enhancement by polarization transfer spectrum (DEPT-135), proton–proton homonuclear correlation spectrum (1H-1H COSY), long-range 1H-13C heteronuclear multiple bond correlation experiment (HMBC), and heteronuclear single quantum coherence spectra (HSQC) aided the interpretation of the NMR data for the gold and copper complexes. Furthermore, the antimicrobial effect of the free ligands and their complexes was assessed against Gram-positive and Gram-negative bacteria, as well as yeasts. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

14 pages, 6746 KB  
Article
Fully Phase-Locked Fiber Dual Comb Enables Accurate Frequency and Phase Detection in Multidimensional Coherent Spectroscopy
by Shiping Xiong, Zejiang Deng, Zhong Zuo, Jiayi Pan, Zilin Zhao, Gehui Xie and Wenxue Li
Photonics 2024, 11(2), 120; https://doi.org/10.3390/photonics11020120 - 28 Jan 2024
Cited by 5 | Viewed by 3077
Abstract
High-resolution optical multidimensional coherent spectroscopy (MDCS) requires frequency-stable laser sources and high-resolution heterodyne spectra. Fully phase-locked dual-comb spectroscopy (DCS) enables the achievement of high resolution, high accuracy, broad bandwidth, and a rapid multi-heterodyne spectrum, which results in the DCS’s potential to replace the [...] Read more.
High-resolution optical multidimensional coherent spectroscopy (MDCS) requires frequency-stable laser sources and high-resolution heterodyne spectra. Fully phase-locked dual-comb spectroscopy (DCS) enables the achievement of high resolution, high accuracy, broad bandwidth, and a rapid multi-heterodyne spectrum, which results in the DCS’s potential to replace the spectrometer and phase detection system in MDCS. We verified the phase measurement capability of the MDCS system based on fully phase-locked fiber DCS by studying phase-sensitive photon echoes and double-quantum processes. The accurate phase and frequency of linear and nonlinear signals were obtained simultaneously using a single detector without subsequent frequency drift correction. Subsequently, the acquisition of longtime quantum beat signals demonstrates the high phase coherence between excitation pulses. Additionally, the two-dimensional coherent spectrum (2DCS) with high signal-to-noise-ratio and 100 MHz resolution was obtained via the MDCS system based on fully phase-locked fiber DCS. These results exhibit that fully phase-locked fiber DCS is an effective method for high-resolution 2DCS measurement, which facilitates further research on cold atoms, higher-order nonlinear spectra, and molecular fingerprint vibrational spectroscopy. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications)
Show Figures

Figure 1

18 pages, 7938 KB  
Article
The Construction of a Lattice Image and Dislocation Analysis in High-Resolution Characterizations Based on Diffraction Extinctions
by Kun Ni, Hanyu Wang, Qianying Guo, Zumin Wang, Wenxi Liu and Yuan Huang
Materials 2024, 17(3), 555; https://doi.org/10.3390/ma17030555 - 24 Jan 2024
Cited by 7 | Viewed by 3449
Abstract
This paper introduces a method for high-resolution lattice image reconstruction and dislocation analysis based on diffraction extinction. The approach primarily involves locating extinction spots in the Fourier transform spectrum (reciprocal space) and constructing corresponding diffraction wave functions. By the coherent combination of diffraction [...] Read more.
This paper introduces a method for high-resolution lattice image reconstruction and dislocation analysis based on diffraction extinction. The approach primarily involves locating extinction spots in the Fourier transform spectrum (reciprocal space) and constructing corresponding diffraction wave functions. By the coherent combination of diffraction and transmission waves, the lattice image of the extinction planes is reconstructed. This lattice image is then used for dislocation localization, enabling the observation and analysis of crystal planes that exhibit electron diffraction extinction effects and atomic jump arrangements during high-resolution transmission electron microscopy (HRTEM) characterization. Furthermore, due to the method’s effectiveness in localizing dislocations, it offers a unique advantage when analyzing high-resolution images with relatively poor quality. The feasibility of this method is theoretically demonstrated in this paper. Additionally, the method was successfully applied to observed edge dislocations, such as 1/6[211], 1/6[211], and 1/2[011], which are not easily observable in conventional HRTEM characterization processes, in electro-deposited Cu thin films. The Burgers vectors were determined. Moreover, this paper also attempted to observe screw dislocations that are challenging to observe in high-resolution transmission electron microscopy. By shifting a pair of diffraction extinction spots and superimposing the reconstructed images before and after the shift, screw dislocations with a Burgers vector of 1/2[011] were successfully observed in electro-deposited Cu thin films. Full article
Show Figures

Figure 1

9 pages, 545 KB  
Communication
Microwave Electrometry with Multi-Photon Coherence in Rydberg Atoms
by Zheng Yin, Qianzhu Li, Xiaoyun Song, Zhengmao Jia, Michal Parniak, Xiao Lu and Yandong Peng
Sensors 2023, 23(16), 7269; https://doi.org/10.3390/s23167269 - 19 Aug 2023
Cited by 2 | Viewed by 2330
Abstract
A scheme for the measurement of a microwave (MW) electric field is proposed via multi-photon coherence in Rydberg atoms. It is based on the three-photon electromagnetically induced absorption (TPEIA) spectrum. In this process, the multi-photon produces a narrow absorption peak, which has a [...] Read more.
A scheme for the measurement of a microwave (MW) electric field is proposed via multi-photon coherence in Rydberg atoms. It is based on the three-photon electromagnetically induced absorption (TPEIA) spectrum. In this process, the multi-photon produces a narrow absorption peak, which has a larger magnitude than the electromagnetically induced transparency (EIT) peak under the same conditions. The TPEIA peak is sensitive to MW fields, and can be used to measure MW electric field strength. We found that the magnitude of TPEIA peaks shows a linear relationship with the MW field strength. The simulation results show that the minimum detectable strength of the MW fields is about 1/10 of that based on an common EIT effect, and the probe sensitivity could be improved by about four times. Furthermore, the MW sensing based on three-photon coherence seems to be robust against the changes in the control field and shows a broad tunability, and the scheme may be useful for designing novel MW sensing devices. Full article
(This article belongs to the Special Issue Quantum Sensors and Sensing Technology)
Show Figures

Figure 1

11 pages, 3330 KB  
Article
Reconstructing the Semiconductor Band Structure by Deep Learning
by Shidong Yang, Xiwang Liu, Jinyan Lin, Ruixin Zuo, Xiaohong Song, Marcelo Ciappina and Weifeng Yang
Mathematics 2022, 10(22), 4268; https://doi.org/10.3390/math10224268 - 15 Nov 2022
Cited by 2 | Viewed by 3131
Abstract
High-order harmonic generation (HHG), the nonlinear upconversion of coherent radiation resulting from the interaction of a strong and short laser pulse with atoms, molecules and solids, represents one of the most prominent examples of laser–matter interaction. In solid HHG, the characteristics of the [...] Read more.
High-order harmonic generation (HHG), the nonlinear upconversion of coherent radiation resulting from the interaction of a strong and short laser pulse with atoms, molecules and solids, represents one of the most prominent examples of laser–matter interaction. In solid HHG, the characteristics of the generated coherent radiation are dominated by the band structure of the material, which configures one of the key properties of semiconductors and dielectrics. Here, we combine an all-optical method and deep learning to reconstruct the band structure of semiconductors. Our method builds up an artificial neural network based on the sensitivity of the HHG spectrum to the carrier-envelope phase (CEP) of a few-cycle pulse. We analyze the accuracy of the band structure reconstruction depending on the predicted parameters and propose a prelearning method to solve the problem of the low accuracy of some parameters. Once the network is trained with the mapping between the CEP-dependent HHG and the band structure, we can directly predict it from experimental HHG spectra. Our scheme provides an innovative way to study the structural properties of new materials. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

18 pages, 8889 KB  
Article
The DREAM Endstation at the Linac Coherent Light Source
by Peter Walter, Micheal Holmes, Razib Obaid, Lope Amores, Xianchao Cheng, James P. Cryan, James M. Glownia, Xiang Li, Ming-Fu Lin, May Ling Ng, Joseph Robinson, Niranjan Shivaram, Jing Yin, David Fritz, Justin James, Jean-Charles Castagna and Timur Osipov
Appl. Sci. 2022, 12(20), 10534; https://doi.org/10.3390/app122010534 - 19 Oct 2022
Cited by 2 | Viewed by 3524
Abstract
Free-electron lasers (FEL), with their ultrashort pulses, ultrahigh intensities, and high repetition rates at short wavelength, have provided new approaches to Atomic and Molecular Optical Science. One such approach is following the birth of a photo electron to observe ion dynamics on an [...] Read more.
Free-electron lasers (FEL), with their ultrashort pulses, ultrahigh intensities, and high repetition rates at short wavelength, have provided new approaches to Atomic and Molecular Optical Science. One such approach is following the birth of a photo electron to observe ion dynamics on an ultrafast timescale. Such an approach presents the opportunity to decipher the photon-initiated structural dynamics of an isolated atomic and molecular species. It is a fundamental step towards understanding single- and non-linear multi-photon processes and coherent electron dynamics in atoms and molecules, ultimately leading to coherent control following FEL research breakthroughs in pulse shaping and polarization control. A key aspect for exploring photoinduced quantum phenomena is visualizing the collective motion of electrons and nuclei in a single reaction process, as dynamics in atoms/ions proceed at femtosecond (1015 s) timescales while electronic dynamics take place in the attosecond timescale (1018 s). Here, we report on the design of a Dynamic Reaction Microscope (DREAM) endstation located at the second interaction point of the Time-Resolved Molecular and Optical (TMO) instrument at the Linac Coherent Light Source (LCLS) capable of following the photon–matter interactions by detecting ions and electrons in coincidence. The DREAM endstation takes advantage of the pulse properties and high repetition rate of LCLS-II to perform gas-phase soft X-ray experiments in a wide spectrum of scientific domains. With its design ability to detect multi-ions and electrons in coincidence while operating in step with the high repetition rate of LCLS-II, the DREAM endstation takes advantage of the inherent momentum conservation of reaction product ions with participating electrons to reconstruct the original X-ray photon–matter interactions. In this report, we outline in detail the design of the DREAM endstation and its functionality, with scientific opportunities enabled by this state-of-the-art instrument. Full article
(This article belongs to the Special Issue Recent Advances and Applications in X-ray Free-Electron Lasers)
Show Figures

Figure 1

11 pages, 1369 KB  
Article
Coherent Surface Plasmon Hole Burning via Spontaneously Generated Coherence
by Habibur Rahman, Hazrat Ali, Rafi Ud Din, Iftikhar Ahmad, Mahidur R. Sarker and Sawal Hamid Md Ali
Molecules 2021, 26(21), 6497; https://doi.org/10.3390/molecules26216497 - 27 Oct 2021
Cited by 4 | Viewed by 2115
Abstract
Surface plasmon (SP)—induced spectral hole burning (SHB) at the silver-dielectric interface is investigated theoretically. We notice a typical lamb dip at a selective frequency, which abruptly reduces the absorption spectrum of the surface plasmons polaritons (SPP). Introducing the spontaneous generated coherence (SGC) in [...] Read more.
Surface plasmon (SP)—induced spectral hole burning (SHB) at the silver-dielectric interface is investigated theoretically. We notice a typical lamb dip at a selective frequency, which abruptly reduces the absorption spectrum of the surface plasmons polaritons (SPP). Introducing the spontaneous generated coherence (SGC) in the atomic medium, the slope of dispersion becomes normal. Additionally, slow SPP propagation is also noticed at the interface. The spectral hole burning dip is enhanced with the SGC effect and can be modified and controlled with the frequency and intensity of the driving fields. The SPP propagation length at the hole-burning region is greatly enhanced under the effect of SGC. A propagation length of the order of 600 µm is achieved for the modes, which is a remarkable result. The enhancement of plasmon hole burning under SGC will find significant applications in sensing technology, optical communication, optical tweezers and nano-photonics. Full article
Show Figures

Figure 1

11 pages, 1846 KB  
Article
Generation of Energetic Highly Elliptical Extreme Ultraviolet Radiation
by Emmanouil Vassakis, Ioannis Orfanos, Ioannis Liontos and Emmanouil Skantzakis
Photonics 2021, 8(9), 378; https://doi.org/10.3390/photonics8090378 - 9 Sep 2021
Cited by 4 | Viewed by 3433
Abstract
In this study, the generation of energetic coherent extreme ultraviolet (XUV) radiation with the potential for controlled polarization is reported. The XUV radiation results from the process of high harmonic generation (HHG) in a gas phase atomic medium, driven by an intense two-color [...] Read more.
In this study, the generation of energetic coherent extreme ultraviolet (XUV) radiation with the potential for controlled polarization is reported. The XUV radiation results from the process of high harmonic generation (HHG) in a gas phase atomic medium, driven by an intense two-color circularly polarized counter-rotating laser field, under loose focusing geometry conditions. The energy of the XUV radiation emitted per laser pulse is found to be of the order of ~100 nJ with the spectrum spanning from 17 to 26 eV. The demonstrated energy values (along with tight XUV focusing geometries) are sufficient to induce nonlinear processes. Our results challenge current perspectives regarding ultrafast investigations of chiral phenomena in the XUV spectral region. Full article
(This article belongs to the Special Issue Extreme-Ultraviolet and X-ray Optics)
Show Figures

Figure 1

13 pages, 31966 KB  
Article
Ozone Activation on TiO2 Studied by IR Spectroscopy and Quantum Chemistry
by Timur Aminev, Irina Krauklis, Oleg Pestsov and Alexey Tsyganenko
Appl. Sci. 2021, 11(16), 7683; https://doi.org/10.3390/app11167683 - 20 Aug 2021
Cited by 3 | Viewed by 2575
Abstract
The adsorption of different isotopic ozone mixtures on TiO2 at 77K was studied using FTIR spectroscopy and DFT calculations of cluster models. In addition to weakly bound ozone with band positions close to those of free or dissolved molecules, the spectrum of [...] Read more.
The adsorption of different isotopic ozone mixtures on TiO2 at 77K was studied using FTIR spectroscopy and DFT calculations of cluster models. In addition to weakly bound ozone with band positions close to those of free or dissolved molecules, the spectrum of chemisorbed species was observed. The splitting of the ν1+3 combination band to eight maxima due to different isotopomers testified to the loss of molecule symmetry. The frequencies of all the isotopic modifications of the ozone molecules which form monodentate or bidentate complexes with four- or five-coordinated titanium atoms were calculated and compared with those of experimentally observed spectra. The four considered complexes adequately reproduced the splitting of the ν1+3 vibration band and the lowered anharmonism of chemisorbed O3. The energetically most favorable monodentate complex with four-coordinated titanium atoms showed good agreement with the observed spectra, although a large difference between the frequencies of ν1 and ν3 modes was found. For better coherence with the experiment, the interaction of the molecule with adjacent cations must be considered. Full article
(This article belongs to the Special Issue Advanced Spectroscopy for the Study of Gas-Solid Interactions)
Show Figures

Figure 1

11 pages, 738 KB  
Article
Superradiance in Quantum Vacuum
by José Tito Mendonça
Quantum Rep. 2021, 3(1), 42-52; https://doi.org/10.3390/quantum3010003 - 3 Jan 2021
Cited by 3 | Viewed by 4090
Abstract
A new process associated with the nonlinear optical properties of the electromagnetic quantum vacuum is described. It corresponds to the superradiant emission of photons, resulting from the interaction of an intense laser pulse with frequency ω0 with a counter-propagating high-harmonic signal with [...] Read more.
A new process associated with the nonlinear optical properties of the electromagnetic quantum vacuum is described. It corresponds to the superradiant emission of photons, resulting from the interaction of an intense laser pulse with frequency ω0 with a counter-propagating high-harmonic signal with a spectrum of frequencies nω1, for n integer, in the absence of matter. Under certain conditions, photon emission from vacuum will be enhanced by the square of the number of intense spikes associated with the high-harmonic pulse. This occurs when the field created by the successive spikes is coherently emitted, as in typical superradiant processes involving atoms. Subradiant conditions, where the nonlinearity of quantum vacuum is entirely suppressed, can equally be defined. Full article
(This article belongs to the Special Issue Exclusive Feature Papers of Quantum Reports)
Show Figures

Figure 1

22 pages, 2845 KB  
Article
High-Temperature Optical Spectra of Diatomic Molecules: Influence of the Avoided Level Crossing
by Robert Beuc and Goran Pichler
Atoms 2020, 8(2), 28; https://doi.org/10.3390/atoms8020028 - 15 Jun 2020
Cited by 8 | Viewed by 3380
Abstract
In this study, we analyzed the light absorption by diatomic molecules or colliding atoms in a spectral region dominated by an avoided crossing of adiabatic state levels or crossing of the corresponding diabatic state levels. Our attention was focused on the low-resolution spectrum [...] Read more.
In this study, we analyzed the light absorption by diatomic molecules or colliding atoms in a spectral region dominated by an avoided crossing of adiabatic state levels or crossing of the corresponding diabatic state levels. Our attention was focused on the low-resolution spectrum at a higher gas temperature under local thermodynamic equilibrium conditions. The absorption measurements of mixed vapors of potassium (≈80%) and cesium (≈20%) were made in the temperature range of 542–715 K and the infrared spectral range 900–1250 nm. In this area, the main spectral contributions were the broad A 1 Σ ( u ) + ( 0 ( u ) + ) X 1 Σ ( g ) + ( 0 ( g ) + ) bands of K2, Cs2, and KCs molecules. There was a crossing of A 1 Σ ( u ) + ( 0 ( u ) + ) and b 3 Π ( u ) ( 0 ( u ) + ) state potential curves and the coupling of this state was due to the matrix element A 1 Σ ( u ) + ( 0 ( u ) + ) | H s o | b 3 Π ( u ) ( 0 ( u ) + ) of the spin–orbit interaction. Using data for relevant electronic potential curves and transition dipole moments existing in the literature, the spectra of the A 1 Σ ( u ) + ( 0 ( u ) + ) X 1 Σ ( g ) + ( 0 ( g ) + ) molecular bands of K2, Cs2, and KCs molecules were calculated. Full quantum mechanical and semi-quantum coupled channel calculations were done and compared with their non-coherent adiabatic or diabatic approximations. Through the comparison of our theoretical and experimental spectra, we identified all observed spectral features and determined the atoms’ number density and gas temperature. Full article
(This article belongs to the Special Issue Atomic and Ionic Collisions with Formation of Quasimolecules)
Show Figures

Graphical abstract

13 pages, 2554 KB  
Article
Behavior of the Energy Spectrum and Electric Conduction of Doped Graphene
by Stefano Bellucci, Sergei Kruchinin, Stanislav P. Repetsky, Iryna G. Vyshyvana and Ruslan Melnyk
Materials 2020, 13(7), 1718; https://doi.org/10.3390/ma13071718 - 6 Apr 2020
Cited by 8 | Viewed by 2917
Abstract
We consider the effect of atomic impurities on the energy spectrum and electrical conductance of graphene. As is known, the ordering of atomic impurities at the nodes of a crystal lattice modifies the graphene spectrum of energy, yielding a gap in it. Assuming [...] Read more.
We consider the effect of atomic impurities on the energy spectrum and electrical conductance of graphene. As is known, the ordering of atomic impurities at the nodes of a crystal lattice modifies the graphene spectrum of energy, yielding a gap in it. Assuming a Fermi level within the gap domain, the electrical conductance diverges at the ordering of graphene. Hence, we can conclude about the presence of a metal–dielectric transition. On the other hand, for a Fermi level occurring outside of the gap, we see an increase in the electrical conductance as a function of the order parameter. The analytic formulas obtained in the Lifshitz one-electron strong-coupling model, describing the one-electron states of graphene doped with substitutional impurity atoms in the limiting case of weak scattering, are compared to the results of numerical calculations. To determine the dependence of the energy spectrum and electrical conductance on the order parameter, we consider both the limiting case of weak scattering and the case of finite scattering potential. The contributions of the scattering of electrons on a vapor of atoms to the density of states and the electrical conductance of graphene with an admixture of interstitial atoms are studied within numerical methods. It is shown that an increase in the electrical conductance with the order parameter is a result of both the growth of the density of states at the Fermi level and the time of relaxation of electron states. We have demonstrated the presence of a domain of localized extrinsic states on the edges of the energy gap arising at the ordering of atoms of the admixture. If the Fermi level falls in the indicated spectral regions, the electrical conductance of graphene is significantly affected by the scattering of electrons on clusters of two or more atoms, and the approximation of coherent potential fails in this case. Full article
(This article belongs to the Special Issue Nanocarbon Based Composites)
Show Figures

Figure 1

40 pages, 6732 KB  
Review
Nanosystems, Edge Computing, and the Next Generation Computing Systems
by Ali Passian and Neena Imam
Sensors 2019, 19(18), 4048; https://doi.org/10.3390/s19184048 - 19 Sep 2019
Cited by 48 | Viewed by 13261
Abstract
It is widely recognized that nanoscience and nanotechnology and their subfields, such as nanophotonics, nanoelectronics, and nanomechanics, have had a tremendous impact on recent advances in sensing, imaging, and communication, with notable developments, including novel transistors and processor architectures. For example, in addition [...] Read more.
It is widely recognized that nanoscience and nanotechnology and their subfields, such as nanophotonics, nanoelectronics, and nanomechanics, have had a tremendous impact on recent advances in sensing, imaging, and communication, with notable developments, including novel transistors and processor architectures. For example, in addition to being supremely fast, optical and photonic components and devices are capable of operating across multiple orders of magnitude length, power, and spectral scales, encompassing the range from macroscopic device sizes and kW energies to atomic domains and single-photon energies. The extreme versatility of the associated electromagnetic phenomena and applications, both classical and quantum, are therefore highly appealing to the rapidly evolving computing and communication realms, where innovations in both hardware and software are necessary to meet the growing speed and memory requirements. Development of all-optical components, photonic chips, interconnects, and processors will bring the speed of light, photon coherence properties, field confinement and enhancement, information-carrying capacity, and the broad spectrum of light into the high-performance computing, the internet of things, and industries related to cloud, fog, and recently edge computing. Conversely, owing to their extraordinary properties, 0D, 1D, and 2D materials are being explored as a physical basis for the next generation of logic components and processors. Carbon nanotubes, for example, have been recently used to create a new processor beyond proof of principle. These developments, in conjunction with neuromorphic and quantum computing, are envisioned to maintain the growth of computing power beyond the projected plateau for silicon technology. We survey the qualitative figures of merit of technologies of current interest for the next generation computing with an emphasis on edge computing. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

14 pages, 2914 KB  
Article
Antibacterial/Antiviral Property and Mechanism of Dual-Functional Quaternized Pyridinium-type Copolymer
by Yan Xue and Huining Xiao
Polymers 2015, 7(11), 2290-2303; https://doi.org/10.3390/polym7111514 - 11 Nov 2015
Cited by 56 | Viewed by 12638
Abstract
Due to the massive outbreaks of pathogen-caused diseases and the increase of drug-resistant pathogens, there is a particular interest in the development of novel disinfection agents with broad-spectrum antipathogenic activity. In the present study, water-soluble pyridinium-type polyvinylpyrrolidones with different counter anions were prepared. [...] Read more.
Due to the massive outbreaks of pathogen-caused diseases and the increase of drug-resistant pathogens, there is a particular interest in the development of novel disinfection agents with broad-spectrum antipathogenic activity. In the present study, water-soluble pyridinium-type polyvinylpyrrolidones with different counter anions were prepared. Structural characterization was conducted via 13C–1H heteronuclear single quantum coherence spectroscopy, static light scattering, UV spectrometry and apparent charge density. The influence of counter anion and polymer compositions on the antibacterial activity was studied against Staphylococcus aureus and Escherichia coli. Atomic force microscopy (AFM) was applied for tracking the morphological alterations in bacterial cells induced by prepared polycations. It was found that the exposure of bacteria to the polycations resulted in the destruction of cell membranes and the leakage of cytoplasm. The antiviral activity of pyridinium-type polycations against enveloped influenza virus was evaluated via a plaque assay. The action mode against enveloped virus was depicted to rationalize the antiviral mechanism. Full article
Show Figures

Graphical abstract

19 pages, 669 KB  
Review
Graphene and Graphene Nanomesh Spintronics
by Junji Haruyama
Electronics 2013, 2(4), 368-386; https://doi.org/10.3390/electronics2040368 - 4 Dec 2013
Cited by 36 | Viewed by 10892
Abstract
Spintronics, which manipulate spins but not electron charge, are highly valued as energy and thermal dissipationless systems. A variety of materials are challenging the realization of spintronic devices. Among those, graphene, a carbon mono-atomic layer, is very promising for efficient spin manipulation and [...] Read more.
Spintronics, which manipulate spins but not electron charge, are highly valued as energy and thermal dissipationless systems. A variety of materials are challenging the realization of spintronic devices. Among those, graphene, a carbon mono-atomic layer, is very promising for efficient spin manipulation and the creation of a full spectrum of beyond-CMOS spin-based nano-devices. In the present article, the recent advancements in graphene spintronics are reviewed, introducing the observation of spin coherence and the spin Hall effect. Some research has reported the strong spin coherence of graphene. Avoiding undesirable influences from the substrate are crucial. Magnetism and spintronics arising from graphene edges are reviewed based on my previous results. In spite of carbon-based material with only sp2 bonds, the zigzag-type atomic structure of graphene edges theoretically produces spontaneous spin polarization of electrons due to mutual Coulomb interaction of extremely high electron density of states (edge states) localizing at the flat energy band. We fabricate honeycomb-like arrays of low-defect hexagonal nanopores (graphene nanomeshes; GNMs) on graphenes, which produce a large amount of zigzag pore edges, by using a nonlithographic method (nanoporous alumina templates) and critical temperature annealing under high vacuum and hydrogen atmosphere. We observe large-magnitude ferromagnetism, which arises from polarized spins localizing at the hydrogen-terminated zigzag-nanopore edges of the GNMs, even at room temperature. Moreover, spin pumping effects are found for magnetic fields applied in parallel with the few-layer GNM planes. Strong spin coherence and spontaneously polarized edge spins of graphene can be expected to lead to novel spintronics with invisible, flexible, and ultra-light (wearable) features. Full article
(This article belongs to the Special Issue Carbon Nanoelectronics)
Show Figures

Figure 1

Back to TopTop