# Superradiance in Quantum Vacuum

## Abstract

**:**

## 1. Introduction

## 2. QED Vacuum

## 3. Incident Field

## 4. Secondary Field

## 5. Superradiant Scattering

## 6. Conclusions

## Funding

## Conflicts of Interest

## References

- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng.
**2019**, 7, 54. [Google Scholar] [CrossRef] - DiPiazza, A.; Muller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys.
**2012**, 84, 20121177. [Google Scholar] - Marklund, M.; Shukla, P.K. Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys.
**2006**, 78, 591. [Google Scholar] [CrossRef] [Green Version] - Ehlotzky, F.; Krajewska, K.; Zamiński, J.Z. Fundamental processes in quantum electrodymics in lasers fields of relativistic power. Rep. Prog. Phys.
**2009**, 72, 046401. [Google Scholar] [CrossRef] - Zhang, P.; Bulanov, S.S.; Seipt, D.; Arefiev, A.V.; Thomas, A.G.R. Relativistic plasma physics in supercritical fields. Phys. Plasmas
**2020**, 27, 050601. [Google Scholar] [CrossRef] - Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev.
**1951**, 82, 664. [Google Scholar] [CrossRef] - Bulanov, S.S.; Narozhny, N.B.; Mur, V.D.; Popov, V.S. Electron-posiyron pair production for electromagnetic pulses. Sov. J. Exp. Theor. Phys.
**2006**, 102, 9. [Google Scholar] [CrossRef] - Ruf, M.; Mocken, G.R.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Pair production in laser fields oscillating in space and time. Phys. Rev. Lett.
**2009**, 102, 080402. [Google Scholar] [CrossRef] [Green Version] - Karplus, R.; Numan, M. The scattering of light by light. Phys. Rev.
**1951**, 83, 776. [Google Scholar] [CrossRef] - Lundstrom, E.; Brodin, G.; Lundin, J.; Marklund, M.; Bingham, R.; Collier, J.; Mendonça, J.T.; Norreys, P. Using high-power lasers for detection of elastic photon-photon scattering. Phys. Rev. Lett.
**2006**, 96, 083602. [Google Scholar] [CrossRef] [Green Version] - King, B.; Hu, H.; Shen, B. Three-pulse photon-photon scattering. Phys. Rev. A
**2018**, 98, 023817. [Google Scholar] [CrossRef] [Green Version] - Bialynicka-Birula, Z.; Bialynicki-Birula, I. Nonlinear effects in Quantum Electrodynamics. Photon propagation and photon splitting in an external field. Phys. Rev. D
**1970**, 2, 2341. [Google Scholar] [CrossRef] - Adler, S.L. Photon splitting and photon dispersion in a strong magnetic field. Ann. Phys.
**1971**, 67, 599–647. [Google Scholar] [CrossRef] - Gies, H.; Karbstein, F.; Seegert, N. Quantum reflection of photons off spatio-temporal electromagnetic field inhomogeneities. New J. Phys.
**2015**, 17, 043060. [Google Scholar] [CrossRef] [Green Version] - Mendonça, J.T.; Marklund, M.; Shukla, P.K.; Brodin, G. Photon acceleration in vacuum. Phys. Lett. A
**2006**, 359, 700–704. [Google Scholar] [CrossRef] [Green Version] - Heisenberg, W.; Euler, H. Consequences of Dirac’s Theory of the Positron. Z. Phys.
**1936**, 98, 714–732. [Google Scholar] [CrossRef] - Dunne, G.V. The Heisenberg-Euler effective action: 75 years on. Int. J. Mod. Phys. A
**2012**, 27, 1260004. [Google Scholar] [CrossRef] [Green Version] - Klar, L. Detectable optical signatures of QED vacuum nonlinearities using high-intensity laser fields. Particles
**2020**, 3, 223–233. [Google Scholar] [CrossRef] [Green Version] - Shibata, K. Intrinsic resonant enhancement of light by nonlinear vacuum. Eur. Phys. J. D
**2020**, 74, 215. [Google Scholar] [CrossRef] - Paul, P.M.; Toma, E.S.; Berger, P.; Mullot, G.; Augé, F.; Balcou, P.; MUller, H.G.; Agostini, P. Observation of a train of attosecond pulses from high harmonic generation. Science
**2001**, 292, 1689–1692. [Google Scholar] [CrossRef] - Vincenti, H.; Quéré, F. Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett.
**2012**, 108, 113904. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Jahn, O.; Leshchenko, V.E.; Tzallas, P.; Kessel, A.; Krüger, M.; Münzer, A.; Trushin, S.A.; Tsakiris, G.D.; Kahaly, S.; Kormin, D.; et al. Towards intense isolated attosecond pulses from relativistic surface high harmonics. Optica
**2019**, 6, 280–287. [Google Scholar] [CrossRef] [Green Version] - Dicke, R. Coherence in spontaneous radiation processes. Phys. Rev.
**1954**, 93, 99. [Google Scholar] [CrossRef] [Green Version] - Rehler, N.E.; Eberly, J.H. Superradiance. Phys. Rev. A
**1971**, 3, 1735. [Google Scholar] [CrossRef] - Gross, M.; Haroche, S. Superradiance: An essay on the theory of collective spontaneous emission. Phys. Rep.
**1982**, 93, 301–396. [Google Scholar] [CrossRef] - Bonifacio, R.; McNeil, B.W.J.; Pierini, P. Superradiance in the high-gain free-electron laser. Phys. Rev. A
**1989**, 40, 4467. [Google Scholar] [CrossRef] [PubMed] - Scully, M.O.; Svidzinsky, A.A. The super of superradiance. Science
**2009**, 325, 1510–1511. [Google Scholar] [CrossRef] - Gover, A.; Ianconescu, R.; Friedman, A.; Emma, C.; Sudar, N.; Musumeci, P.; Pellegrini, C. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys.
**2019**, 91, 035003. [Google Scholar] [CrossRef] [Green Version] - Vieira, J.; Pardal, M.; Mendonça, J.T.; Fonseca, R.A. Generalized superradiance for producing broadband coherent radiation with transversely modulated arbitrarily diluted bunches. Nat. Phys.
**2020**. [Google Scholar] [CrossRef] - Itzykson, C.; Zuber, J.-B. Quantum Field Theory; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Dittrich, W.; Gies, H. Probing the Quantum Vacuum; Springer Tracts in Physics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Karbstein, F.; Shaisultanov, R. Stimulated photon emission from vacuum. Phys. Rev. D
**2015**, 91, 113002. [Google Scholar] [CrossRef] [Green Version] - Baeva, T.; Gordienko, S.; Pukhov, A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E
**2006**, 74, 046404. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mendonça, J.T. Emission of twisted photons from quantum vacuum. EuroPhys. Lett.
**2017**, 120, 61001. [Google Scholar] [CrossRef]

**Figure 1.**Geometry of the interaction: collision of an intense pulse with frequency ${\omega}_{0}$ with an intense high-harmonic pulse with frequencies ${\omega}_{n}=n{\omega}_{1}$. The intensity profiles of the two interacting pulses are represented, as well as the direction of their respective wavevectors. Nonlinear vacuum leads to the occurrence of a scattered signal with frequency $\omega $.

**Figure 2.**Electric field spikes due to a superposition of a large number of ${N}^{\prime}$ harmonics, as determined by Equation (16).

**Figure 3.**Scattered intensity as a function of the number of high harmonic field spikes N are represented, in arbitrary units, for different conditions of the inter-spike phase difference $\theta $: (

**a**) Intensity as a function of $\theta $, for three different numbers of field spikes; (

**b**) Intensity as a function of N for three different phase differences. Superradiance occurs for $\theta =2\pi $, and subradiance for $\theta =\pi $.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mendonça, J.T.
Superradiance in Quantum Vacuum. *Quantum Rep.* **2021**, *3*, 42-52.
https://doi.org/10.3390/quantum3010003

**AMA Style**

Mendonça JT.
Superradiance in Quantum Vacuum. *Quantum Reports*. 2021; 3(1):42-52.
https://doi.org/10.3390/quantum3010003

**Chicago/Turabian Style**

Mendonça, José Tito.
2021. "Superradiance in Quantum Vacuum" *Quantum Reports* 3, no. 1: 42-52.
https://doi.org/10.3390/quantum3010003