Reconstructing the Semiconductor Band Structure by Deep Learning
Abstract
:1. Introduction
2. Methods
2.1. Data Generation and Preprocessing
2.2. Model Structure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Numerical Method for Solving HHG: Semiconductor Bloch Equation
References
- Damascelli, A.; Hussain, Z.; Shen, Z.X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 2003, 75, 473. [Google Scholar] [CrossRef] [Green Version]
- Shuvaev, A.M.; Dziom, V.; Mikhailov, N.N.; Kvon, Z.D.; Shao, Y.; Basov, D.N.; Pimenov, A. Band structure of a two-dimensional Dirac semimetal from cyclotron resonance. Phys. Rev. B 2017, 96, 155434. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–Amorphous-semiconductor transition in germanium. Phys. Rev. B 1993, 49, 14251. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Corkum, P.; Krausz, F. Attosecond science. Nat. Phys. 2007, 3, 381–387. [Google Scholar] [CrossRef]
- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163. [Google Scholar] [CrossRef] [Green Version]
- Shambhu, G.; Di Chiara, A.D.; Emily, S.; Pierre, A.; DiMauro, L.F.; David, A.R. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 2011, 7, 138–141. [Google Scholar]
- Park, J.; Subramani, A.; Kim, S.; Ciappina, M.F. Recent trends in high-order harmonic generation in solids. Adv. Phys.-X 2022, 7, 2003244. [Google Scholar] [CrossRef]
- Vampa, G.; McDonald, C.R.; Orlando, G.; Klug, D.D.; Corkum, P.B.; Brabec, T. Theoretical Analysis of High-Harmonic Generation in Solids. Phys. Rev. Lett. 2014, 113, 073901. [Google Scholar] [CrossRef] [PubMed]
- Corkum, P.B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 1993, 71, 1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vampa, G.; Hammond, T.J.; Thiré, N.; Schmidt, B.E.; Légaré, F.; McDonald, C.R.; Brabec, T.; Klug, D.D.; Corkum, P.B. All-Optical Reconstruction of Crystal Band Structure. Phys. Rev. Lett. 2015, 115, 193603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Lan, P.F.; He, L.X.; Cao, W.; Zhang, Q.B.; Lu, P.X. Determination of Electron Band Structure using Temporal Interferometry. Phys. Rev. Lett. 2020, 124, 157403. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.; Spanner, M.; Tamblyn, I. Deep learning and the Schrödinger equation. Phys. Rev. A 2017, 96, 042113. [Google Scholar] [CrossRef] [Green Version]
- Zahavy, T.; Dikopoltsev, A.; Moss, D.; Haham, G.; Cohen, O.; Mannor, S.; Segev, M. Deep learning reconstruction of ultrashort pulses. Optica 2018, 5, 666. [Google Scholar] [CrossRef]
- Ryczko, K.; Strubbe, D.A.; Tamblyn, I. Deep learning and density-functional theory. Phys. Rev. Lett. 2019, 100, 022512. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.W.; Zhang, G.J.; Li, J.; Shi, G.L.; Zhou, M.Y.; Huang, B.Q.; Tang, Y.J.; Song, X.H.; Yang, W.F. Deep Learning for Feynman’s Path Integral in Strong-Field Time-Dependent Dynamics. Phys. Rev. Lett. 2020, 124, 113202. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, J.; McMorrow, B.; Turban, D.H.P.; Gaunt, A.L.; Spencer, J.S.; Matthews, A.G.D.G.; Obika, A.; Thiry, L.; Fortunato, M.; Pfau, D.; et al. Pushing the frontiers of density functionals by solving the fractional electron problem. Science 2021, 374, 1385–1389. [Google Scholar] [CrossRef]
- Shvetsov-Shilovski, N.I.; Lein, M. Deep learning for retrieval of the internuclear distance in a molecule from interference patterns in photoelectron momentum distributions. Phys. Rev. A 2022, 105, L021102. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.; Liu, H. Recent advances in feature selection and its applications. J. Mach. Learn. Res. 2010, 9, 249–256. [Google Scholar] [CrossRef]
- Li, J.D.; Cheng, K.W.; Wang, S.H.; Morstatter, F.; Trevino, R.; Tang, J.L.; Liu, H. Feature Selection: A Data Perspective. ACM Comput. Surv. 2018, 50, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Luo, J.W.; Wang, S.L.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Smirnova, O.; Mairesse, Y.; Patchkovskii, S.; Dudovich, N.; Villeneuve, D.; Corkum, P.; Ivanov, M.Y. High harmonic interferometry of multi-electron dynamics in molecules. Nature 2009, 460, 972–977. [Google Scholar] [CrossRef]
- Hohenleutner, M.; Langer, F.; Schubert, O.; Knorr, M.; Huttner, U.; Koch, S.W.; Kira, M.; Huber, R. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 2015, 523, 572–575. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.E.F.; Jiménez-Galán, Á.; Amorim, B.; Smirnova, O.; Ivanov, M. Topological strong-field physics on sub-laser-cycle timescale. Nat. Photonics 2019, 13, 849–854. [Google Scholar] [CrossRef] [Green Version]
- You, Y.S.; Wu, M.X.; Yin, Y.C.; Chew, A.; Ren, X.M.; Gholam-Mirzaei, S.; Browne, D.A.; Chini, M.; Chang, Z.H.; Schafer, K.J.; et al. Laser waveform control of extreme ultraviolet high harmonics from solids. Opt. Lett. 2017, 42, 1816–1819. [Google Scholar] [CrossRef]
- Hawkins, P.G.; Ivanov, M.Y. Role of subcycle transition dynamics in high-order-harmonic generation in periodic structures. Phys. Rev. A 2013, 87, 063842. [Google Scholar] [CrossRef]
- Guan, Z.; Zhou, X.X.; Bian, X.B. High-order-harmonic generation from periodic potentials driven by few-cycle laser pulses. Phys. Rev. A 2016, 93, 033852. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.F.; Lin, Y.C.; Chen, X.Y.; Xu, Y.X.; Zhang, H.D.; Ciappina, M.; Song, X.H. Wave mixing and high-harmonic generation enhancement by a two-color field driven dielectric metasurface. Chin. Opt. Lett. 2021, 19, 123202. [Google Scholar] [CrossRef]
- Zhang, H.D.; Liu, X.W.; Zhu, M.; Yang, S.D.; Dong, W.H.; Song, X.H.; Yang, W.F. High-order-harmonic generation from periodic potentials driven by few-cycle laser pulses. Chin. Phys. Lett. 2021, 38, 063201. [Google Scholar] [CrossRef]
- Song, X.H.; Zuo, R.X.; Yang, S.D.; Li, P.C.; Meier, T.; Yang, W.F. Attosecond temporal confinement of interband excitation by intraband motion. Opt. Express 2019, 27, 2225–2234. [Google Scholar] [CrossRef] [PubMed]
- Hollinger, R.; Paulus, G.G.; Wustelt, P.; Skruszewicz, S.; Zhang, Y.; Kang, H.; Würzler, D.; Jungnickel, T.; Dumergue, M.; Nayak, A.; et al. Carrier-envelope-phase measurement of few-cycle mid-infrared laser pulses using high harmonic generation in ZnO. Opt. Express 2020, 28, 7314. [Google Scholar] [CrossRef] [PubMed]
- Vampa, G.; Lu, J.; You, Y.S.; Baykusheva, D.R.; Wu, M.X.; Liu, H.Z.; Schafer, K.J.; Gaarde, M.B.; Reis, D.A.; Ghimire, S. Attosecond synchronization of extreme ultraviolet high harmonics from crystals. Optica 2020, 53, 144003. [Google Scholar] [CrossRef]
- McDonald, C.R.; Vampa, G.; Corkum, P.B.; Brabec, T. Interband Bloch oscillation mechanism for high-harmonic generation in semiconductor crystals. Phys. Rev. A 2015, 92, 033845. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.X.; Ghimire, S.; Reis, D.A.; Schafer, K.J.; Gaarde, M.B. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 2015, 91, 043839. [Google Scholar] [CrossRef] [Green Version]
- Lanin, A.A.; Stepanov, E.A.; Fedotov, A.B.; Zheltikov, A.M. Mapping the electron band structure by intraband high-harmonic generation in solids. Optica 2017, 4, 516–519. [Google Scholar] [CrossRef]
- Uzan, A.J.; Orenstein, G.; Jiménez-Galán, Á. Attosecond spectral singularities in solid-state high-harmonic generation. Nat. Photonics 2020, 16, 183–187. [Google Scholar] [CrossRef]
- Nourbakhsh, Z.; Tancogne-Dejean, N.; JiMerdji, H.; Rubio, A. High Harmonics and Isolated Attosecond Pulses from MgO. Phys. Rev. A 2021, 16, 014013. [Google Scholar] [CrossRef]
- Alcalà, J.; Bhattacharya, U.; Biegert, J.; Ciappina, M.; Elu, U.; Graß, T.; Grochowski, P.T.; Lewenstein, M.; Palau, A.; Sidiropoulos, T.P.H.; et al. High-harmonic spectroscopy of quantum phase transitions in a high-Tc superconductor. Proc. Natl. Acad. Sci. USA 2022, 119, e2207766119. [Google Scholar] [CrossRef]
- Shin, H.C.; Roth, H.R.; Gao, M.C.; Lu, L.; Xu, Z.Y.; Nogues, I.; Yao, J.H.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial Nets. NIPS 2018, 2, 2672–2680. [Google Scholar]
- Raissia, M.; Perdikarisb, P.; Karniadakisa, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Gherman, A.M.M.; Kovács, K.; Cristea, M.V.; Tosa, V. Artificial Neural Network Trained to Predict High-Harmonic Flux. Appl. Sci. 2018, 8, 2106. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 2010, 9, 249–256. [Google Scholar]
- Ma, X.R.; Tu, Z.C.; Ran, S.J. Deep Learning Quantum States for Hamiltonian Estimation. Chin. Phys. Lett. 2021, 38, 110301. [Google Scholar]
- Li, C.; Huang, H.P. Learning Credit Assignment. Phys. Rev. Lett. 2020, 125, 178301. [Google Scholar] [CrossRef]
- Luu, T.T.; Garg, M.; Kruchinin, S.Y.; Moulet, A.; Hassan, M.T.; Goulielmakis, E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 2015, 521, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Escobar, E.; Mercadé, L.; Barreda, Á.I.; García-Rupérez, J.; Martínez, A. Photonic Bandgap Closure and Metamaterial Behavior in 1D Periodic Chains of High-Index Nanobricks. Photonics 2022, 9, 691. [Google Scholar] [CrossRef]
- Sirmaci, Y.; Gomez, A.B.; Pertsch, T.; Schmid, J.; Cheben, P.; Staude, I. All-Dielectric Huygens’ Meta-Waveguides for Resonant Integrated Photonics, PREPRINT (Version 1) Available at Research Square. Available online: https://www.researchsquare.com/article/rs-1929644/v1 (accessed on 5 October 2022).
- Golde, D.; Meier, T.; Koch, S.W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 2008, 77, 075330. [Google Scholar] [CrossRef]
- McDonald, C.R.; Vampa, G.; Corkum, P.B.; Brabec, T. Intense-Laser Solid State Physics: Unraveling the Difference between Semiconductors and Dielectrics. Phys. Rev. Lett. 2017, 118, 173601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.H.; Yang, S.D.; Zuo, R.X.; Meier, T.; Yang, W.F. Enhanced high-order harmonic generation in semiconductors by excitation with multicolor pulses. Phys. Rev. A. 2020, 101, 033410. [Google Scholar] [CrossRef]
- Zuo, R.X.; Trautmann, A.; Wang, G.F.; Hannes, W.R.; Yang, S.D.; Song, X.H.; Meier, T.; Ciappina, M.; Duc, H.T.; Yang, W.F. Neighboring Atom Collisions in Solid-State High Harmonic Generation. Ultrafast Sci. 2021, 9861923. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.S.; Lan, P.F.; Zhang, X.F.; Wang, D.; Zhang, Q.B.; Lu, P.X. Time-dependent population imaging for high-order-harmonic generation in solids. Phys. Rev. A 2017, 95, 063419. [Google Scholar] [CrossRef] [Green Version]
- Luu, T.T.; Wörner, H.J. High-order harmonic generation in solids: A unifying approach. Phys. Rev. B 2016, 94, 115164. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Liu, X.; Lin, J.; Zuo, R.; Song, X.; Ciappina, M.; Yang, W. Reconstructing the Semiconductor Band Structure by Deep Learning. Mathematics 2022, 10, 4268. https://doi.org/10.3390/math10224268
Yang S, Liu X, Lin J, Zuo R, Song X, Ciappina M, Yang W. Reconstructing the Semiconductor Band Structure by Deep Learning. Mathematics. 2022; 10(22):4268. https://doi.org/10.3390/math10224268
Chicago/Turabian StyleYang, Shidong, Xiwang Liu, Jinyan Lin, Ruixin Zuo, Xiaohong Song, Marcelo Ciappina, and Weifeng Yang. 2022. "Reconstructing the Semiconductor Band Structure by Deep Learning" Mathematics 10, no. 22: 4268. https://doi.org/10.3390/math10224268
APA StyleYang, S., Liu, X., Lin, J., Zuo, R., Song, X., Ciappina, M., & Yang, W. (2022). Reconstructing the Semiconductor Band Structure by Deep Learning. Mathematics, 10(22), 4268. https://doi.org/10.3390/math10224268