An Evaluation of the Applicability of a Microwave Radiometer Under Different Weather Conditions at the Southern Edge of the Taklimakan Desert
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Information
2.2. Research Methods
2.2.1. Retrieval of Temperature, Specific Humidity, and Water Vapor Density at Different Heights
2.2.2. Evaluation Criteria for Accuracy
2.2.3. The Potential Temperature Gradient Method Calculates the Planetary Boundary Layer
3. Results
3.1. Evaluation of the Accuracy of Temperature and Humidity Measurements Made by the Microwave Radiometer
3.2. The Evaluation of Observation Accuracy at Different Times
3.3. Evaluation of Observational Accuracy Under Different Humidity Conditions
3.4. Temperature Comparison Between Microwave Radiometer and FY–4A Data
3.5. Evaluation of the PBLH Inversion Results
4. Discussion
5. Conclusions
- (1)
- The comparison between microwave radiometer and radiosonde shows that it had good applicability in sunny, rainy, and dusty weather conditions. In sandstorm weather, the best observation result of T was obtained by the microwave radiometer, with an R2 of 0.992. The accuracy of q and was the highest under the sand blowing condition, with R2 values of 0.9334 and 0.9452.
- (2)
- When the relative humidity was 0–10%, the detection temperature of the microwave radiometer was the best, and its R2 was 0.9819. When RH was 70–80%, the best results were obtained from q and , and the R2 values were 0.963 and 0.9777, respectively.
- (3)
- The comparison of the effective results of the temperature observed by the microwave radiometer and the FY–4A satellite showed that there was a good correlation between different months, in which the temperature observed in May had the best correlation, and the R2 was 0.9142.
- (4)
- The effective calculation height of the microwave radiometer was better in sunny, rainy, and dusty weather, and the R2 values were 0.7801, 0.7346, and 0.7867, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, M.; Wang, Y.; Mamtimin, A.; Gao, J.; Aihaiti, A.; Zhou, C.; Yang, F.; Huo, W.; Wen, C.; Wang, B. Applicability Assessment of Coherent Doppler Wind LiDAR for Monitoring during Dusty Weather at the Northern Edge of the Tibetan Plateau. Remote Sens. 2022, 14, 5264. [Google Scholar] [CrossRef]
- Temimi, M.; Fonseca, R.; Nelli, N.; Valappil, V.; Weston, M.; Thota, M.; Wehbe, Y.; Yousef, L. On the analysis of ground-based microwave radiometer data during fog conditions. Atmos. Res. 2020, 231, 104652. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Y.; Zhang, G.; Yang, L. The detection principle and error analysis of MP-3000A microwave radiometer. Desert Oasis Meteorol. 2009, 3, 54–57. [Google Scholar]
- Cimini, D.; Campos, E.; Ware, R.; Albers, S.; Giuliani, G.; Oreamuno, J.; Joe, P.; Koch, S.; Cober, S.; Westwater, E. Thermodynamic Atmospheric Profiling During the 2010 Winter Olympics Using Ground-Based Microwave Radiometry. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4959–4969. [Google Scholar] [CrossRef]
- Cimini, D.; Nelson, M.; Güldner, J.; Ware, R. Forecast indices from a ground-based microwave radiometer for operational meteorology. Atmos. Meas. Tech. 2015, 8, 315–333. [Google Scholar] [CrossRef]
- Pan, Y.; Lei, L.; Li, Q.; Jiang, S.; Wang, Z. Analysis on the solar influence to brightness temperatures observed with a ground-based microwave radiometer. J. Atmos. Sol. Terr. Phys. 2021, 222, 105725. [Google Scholar] [CrossRef]
- Qi, Y.; Fan, S.; Li, B.; Mao, J.; Lin, D. Assimilation of Ground-Based Microwave Radiometer on Heavy Rainfall Forecast in Beijing. Atmosphere 2022, 13, 74. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Shu, J. Characteristics Analysis of the Multi-Channel Ground-Based Microwave Radiometer Observations during Various Weather Conditions. Atmosphere 2022, 13, 1556. [Google Scholar] [CrossRef]
- Boudala, F.S.; Gultepe, I.; Milbrandt, J.A. The Performance of Commonly Used Surface-Based Instruments for Measuring Visibility, Cloud Ceiling, and Humidity at Cold Lake, Alberta. Remote Sens. 2021, 13, 5058. [Google Scholar] [CrossRef]
- Hall, G.E. Measurement of atmospheric liquid water by a ground-based single-frequency microwave radiometer. J. Atmos. Ocean. Technol. 2009, 8, 685–690. [Google Scholar] [CrossRef]
- Liu, G.; Liu, C.; Kuo, T. Rainfall intensity estimation by ground-based dual-frequency microwave radiometers. J. Appl. Meteorol. 2001, 40, 1035–1041. [Google Scholar] [CrossRef]
- Chan, P. Performance and application of a multi-wavelength, ground-based microwave radiometer in intense convective weather. Meteorol. Z. 2009, 18, 253–265. [Google Scholar] [CrossRef]
- Mengying, W.; Yansong, B.; Jiajia, M.; Heng, Z.; Wenbin, L. Research on bias analysis and correction of temperature and humidity data with ground-based microwave radiometer. Torrential Rain Disasters 2023, 42, 467–478. [Google Scholar] [CrossRef]
- Fang, S.; Haojie, H.; Yudu, Z.; Min, X.; Xianghan, Z. Evaluation and analysis of retrieval products of atmospheric temperature and humidity profiles from ground-based microwave radiometer in Langfang. J. Mar. Meteorol. 2023, 43, 71–83. [Google Scholar] [CrossRef]
- Chakraborty, R.; Das, S.; Jana, S.; Maitra, A. Nowcasting of rain events using multi-frequency radiometric observations. J. Hydrol. 2014, 513, 467–474. [Google Scholar] [CrossRef]
- Jianping, H.; Min, H.; Hongru, Y.; Beidou, Z.; Jianrong, B.; Qinjian, J. A Study of Liquid Water Path and Precipitable Water Vapor in Lanzhou Area Using Ground-Based Microwave Radiometer. Chin. J. Atmos. Sci. 2010, 34, 548–558. [Google Scholar]
- Zeng, Y.; Yang, L. Analysis on Mesoscale Impact System and Atmospheric Vertical Structure of Two Types of Heavy Rains in Urumqi. Plateau Meteorol. 2020, 39, 774–787. [Google Scholar]
- Yang, P.; Xia, J.; Chen, Y.; Zhang, Y.; Li, Z.; Zhang, S.; Wang, W. Dynamic evolution of recent droughts in Central Asia based on microwave remote sensing satellite products. J. Hydrol. 2023, 620, 129497. [Google Scholar] [CrossRef]
- Chen, W.; Kuze, H.; Uchiyama, A.; Suzuki, Y.; Takeuchi, N. One-year observation of urban mixed layer characteristics at Tsukuba, Japan using a micro pulse lidar. Atmos. Environ. 2001, 35, 4273–4280. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, S.; Kim, J.; Kang, J.; Sugimoto, N. Asian dust event observed in Seoul, Korea, during 29–31 May 2008: Analysis of transport and vertical distribution of dust particles from lidar and surface measurements. Sci. Total Environ. 2010, 408, 1707–1718. [Google Scholar] [CrossRef]
- Guo, B.; Liu, L.; Huang, D.; Wang, L.; Li, X. Analysis of Lidar Measurements from a Dust Event. Meteorol. Mon. 2008, 34, 52–57. [Google Scholar]
- Dong, L.; Fudi, Q.; Chuanjia, J.; Guming, Y.; Jun, Z. Polarization Lidar Observations of Cirrus Clouds and Asian Dust Aerosols over Hefei. Chin. J. Atmos. Sci. 2003, 27, 1093–1100. [Google Scholar]
- Xie, C.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Wang, Z. Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China. Appl. Opt. 2008, 47, 4945–4951. [Google Scholar] [CrossRef]
- Dong, X.; Qi, H.; Ren, L.; Wang, Y.; Di, Y.; Chen, Y.; Sugimoto, N.; Sakamoto, K.; Wang, Q. Application and Data Demonstration of Application and Data Demonstration of Lidar in Sandstorm Observation. Res. Environ. Sci. 2007, 20, 106–111. [Google Scholar]
- Yanpeng, W.; Yan, C.; Xuhui, D.; Huimin, Y. Observation of Sand-Dust Weather by Lidar in the Spring of 2005 at Beijing. Chin. J. Spectrosc. Lab. 2008, 25, 265–267. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Z.; Zhang, B.; Wang, X.; Wang, W.; Gbauidi, A.; Gong, Y. Evaluation of the effect of air pollution control during the Beijing 2008 Olympic Games using Lidar data. Chin. Sci. Bull. 2010, 55, 1311–1316. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Deng, Z.; Xia, X.; Ren, G.; An, D.; Ayikan, M.; Zhong, Y. Characteristics of atmospheric boundary layer and its relation with PM2.5 during winter in Shihezi, an Oasis city in Northwest China. Atmos. Pollut. Res. 2023, 14, 101902. [Google Scholar] [CrossRef]
- Kumar, M.; Mallik, C.; Kumar, A.; Mahanti, N.C.; Shekh, A.M. Evaluation of the boundary layer depth in semi-arid region of India. Dyn Atmos. Ocean. 2010, 49, 96–107. [Google Scholar] [CrossRef]
- Nakamae, K.; Takemi, T. Relationship between the development of a convective mixed layer and dust weather in arid and semi-arid regions of East Asia. Int. J. Clim. 2022, 42, 3076–3093. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Mamtimin, A.; Sayit, H.; Zhou, C.; Li, R.; Dawut, M.; Yang, F.; Huo, W.; Wen, C.; et al. Evolution law of atmospheric boundary layer in Gurbantünggüt Desert based on reanalysis dataset and in situ observation data. Heliyon 2023, 9, e14147. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; He, Q.; Wang, Y.; Pan, H.; Zhang, Z. Comparative analysis of atmospheric boundary layer sunny day and sandstorm in the hinterland of Taklimakan Desert. Desert Oasis Meteorol. 2024, 18, 50–58. [Google Scholar] [CrossRef]
- Sheng, P.; Mao, Z.; Li, J.; Ge, Z.; Zhang, A.; Sang, J.; Pai, N.; Zhang, H.S. Atmospheric Physics, 2nd ed.; Peking University Press: Beijing, China, 2013. [Google Scholar]
- Yang, F. Comparison of Determination Methods and Characteristics of Boundary Layer Height in Semi-Arid Area. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Liu, S.; Liang, X. Observed Diurnal Cycle Climatology of Planetary Boundary Layer Height. J. Clim. 2010, 23, 5790–5809. [Google Scholar] [CrossRef]
- Yin, R.; Han, W. Impact of Targeted Sounding Observations From FY-4B GIIRS on Two Super Typhoon Forecasts in 2024. IEEE Trans. Geosci. Remote Sens. 2024, 22, 5500805. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Ma, X.; Guo, H.; Gong, Z.; Yan, X. Can the Assimilation of the Ascending and Descending Sections’ Data from Round-Trip Drifting Soundings Improve the Forecasting of Rainstorms in Eastern China? Atmosphere 2023, 14, 1127. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, Y.; Yang, L.; Wang, J.; Yan, X. Bias analysis of retrieval profile of temperature with microwave radiometer in clear sky. Torrential Rain Disasters 2022, 41, 720–726. [Google Scholar] [CrossRef]
- Cao, M.; Wang, B.; Yang, Z.; Zhang, Y. Comparison Analysis of Ground-Based Microwave Radiometer and Radiosonde Data. J. Shaanxi Meteorol. 2021, 47–54. [Google Scholar] [CrossRef]
- Fu, X.; Peng, J.; Wang, X.; Zhang, Y.; Chen, Z.; Wu, J.; Xue, H.; Chen, H. Comprehensive Analysis on Accuracy of Ground-Based Microwave Radiometer Measurements. Meteorol. Mon. 2023, 49, 1235–1245. [Google Scholar] [CrossRef]
- Zhou, B.; Zhu, L.; Wu, H.; Dong, Z.; Wang, X.; Luo, Y. Accuracy of Atmospheric Profiles Retrieved from Microwave Radiometer and Its Application to Precipitation Forecast. J. Appl. Meteorol. Sci. 2023, 34, 717–728. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Mao, J.; Wang, Z. Comparison analysis on detection performance of ground-based microwave radiometers under different weather conditions. J. Appl. Meteorol. Sci. 2018, 29, 282–295. [Google Scholar] [CrossRef]
- Wang, W.; Lei, H.; Nie, H.; Wang, Z.; Guo, X. A study on channel saturation of atmospheric water vapor detection based on airborne microwave radiometer. Acta Meteorol. Sin. 2021, 79, 509–520. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, G.; Liao, K.; Lu, Y.; Zhu, W.; Feng, G. Impact of precipitation on the retrieval deviation of ground-based microwave radiometer. Torrential Rain Disasters 2013, 32, 70–76. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, J.; Mamtimin, A.; Aihaiti, A.; Xu, L. Validation of FY-4A Temperature Profiles by Radiosonde Observations in Taklimakan Desert in China. Remote Sens. 2023, 15, 2925. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Q.; Yan, S.; Wang, Y.; Xiang, J. Determining of atmospheric boundary layer heights and its applications to numerical weather prediction models. Torrential Rain Disasters 2022, 41, 515–524. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Li, Q.; Cai, X.; Fan, S.; Song, Y.; Hu, F.; Che, H.; Quan, J.; Kang, L.; et al. Research progress on estimation of atmospheric boundary layer height. Acta Meteorol. Sin. 2020, 78, 522–536. [Google Scholar] [CrossRef]
- Huang, J.; Liao, B.; Shen, Z.; Zhang, Z.; Lan, J.; Wang, C. Research and application of boundary layer height based on microwave radiometer and aerosol lidar. J. Trop. Meteorol. 2022, 38, 180–192. [Google Scholar] [CrossRef]
- Cao, M.; Wang, B.; Ren, D.; Yang, Y.; Bai, S. Analysis of the Low-Level Atmospheric Inversion Detection Capability of Ground-Based Microwave Radiometers. J. Shaanxi Meteorol. 2022, 70–75. [Google Scholar]
- Wang, W.; Wang, R.; Lei, L.; Fan, C.; Li, G. Distribution characteristics of atmospheric vapor and liquid water in central Guanzhong Plain based on observation data of ground-based microwave radiometer. J. Arid. Meteorol. 2023, 41, 774–782. [Google Scholar] [CrossRef]
- Bao, Y.; Cai, X.; Qian, C.; Min, J.; Lu, Q.; Zuo, Q. 0-10 km temperature and humidity profiles retrieval from ground-based microwave radiometer. J. Trop. Meteorol. 2016, 32, 163–171. [Google Scholar]
- Zhang, C.; Jiang, Z.; Liu, M.; Dong, Y.; Li, J. Relationship between summer time near-surface ozone concentration and planetary boundary layer height in Beijing. Atmos. Res. 2023, 293, 106892. [Google Scholar]
- Zhao, P.; Duan, S.; Shi, J.; Luo, C.; Zhang, J.; Zhong, M.; Li, S.; Chen, J. Analysis on the evolution of atmospheric boundary layer in Yunnan province and its effect on the change of PM2.5 concentration. Progress. Inquisitiones De. Mutat. Clim. 2023, 19, 278–292. [Google Scholar]
- Song, L.; Deng, T.; Li, Z.; Wu, C.; He, G.; Li, F.; Wu, M.; Wu, D. Retrieval of Boundary Layer Height and Its Influence on PM2.5 Concentration Based on Lidar Observation over Guangzhou. J. Trop. Meteorol. 2022, 27, 303–318. [Google Scholar] [CrossRef]
- Song, L.; Deng, T.; Wu, D.; He, G.; Sun, J.; Weng, J.; Cheng, W. Study on planetary boundary layer height in a typical haze period and different weather types over Guangzhou. Acta Sci. Circumstantiae 2019, 29, 1381–1391. [Google Scholar]
Remote Sensing Equipment | Temporal Resolution | Detection Height Range | Data Used |
---|---|---|---|
GTS sounding | April–June, August: 12 h July: 6 h | Above 20 km | T, P, RH, etc. |
Microwave radiometer | 2 min | 0~10 km | T, RH, etc. |
FY-4A satellite | 2 h | 0~1100 hpa | T |
R2 | Clear Sky | Dusty Weather | ||
---|---|---|---|---|
8:00 | 20:00 | 8:00 | 20:00 | |
T | 0.9804 | 0.9886 | 0.9837 | 0.9896 |
q | 0.8707 | 0.8590 | 0.9128 | 0.9636 |
0.8878 | 0.8789 | 0.9266 | 0.8818 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Song, M.; Mamtimin, A.; Xue, Y.; Peng, J.; Sayit, H.; Wang, Y.; Liu, J.; Gao, J.; Aihaiti, A.; et al. An Evaluation of the Applicability of a Microwave Radiometer Under Different Weather Conditions at the Southern Edge of the Taklimakan Desert. Remote Sens. 2025, 17, 1171. https://doi.org/10.3390/rs17071171
Guo J, Song M, Mamtimin A, Xue Y, Peng J, Sayit H, Wang Y, Liu J, Gao J, Aihaiti A, et al. An Evaluation of the Applicability of a Microwave Radiometer Under Different Weather Conditions at the Southern Edge of the Taklimakan Desert. Remote Sensing. 2025; 17(7):1171. https://doi.org/10.3390/rs17071171
Chicago/Turabian StyleGuo, Jiawei, Meiqi Song, Ali Mamtimin, Yayong Xue, Jian Peng, Hajigul Sayit, Yu Wang, Junjian Liu, Jiacheng Gao, Ailiyaer Aihaiti, and et al. 2025. "An Evaluation of the Applicability of a Microwave Radiometer Under Different Weather Conditions at the Southern Edge of the Taklimakan Desert" Remote Sensing 17, no. 7: 1171. https://doi.org/10.3390/rs17071171
APA StyleGuo, J., Song, M., Mamtimin, A., Xue, Y., Peng, J., Sayit, H., Wang, Y., Liu, J., Gao, J., Aihaiti, A., Wen, C., Yang, F., Huo, W., & Zhou, C. (2025). An Evaluation of the Applicability of a Microwave Radiometer Under Different Weather Conditions at the Southern Edge of the Taklimakan Desert. Remote Sensing, 17(7), 1171. https://doi.org/10.3390/rs17071171