Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,191)

Search Parameters:
Keywords = atherosclerotic cardiovascular disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 928 KiB  
Review
Reprogramming Atherosclerosis: Precision Drug Delivery, Nanomedicine, and Immune-Targeted Therapies for Cardiovascular Risk Reduction
by Paschalis Karakasis, Panagiotis Theofilis, Panayotis K. Vlachakis, Konstantinos Grigoriou, Dimitrios Patoulias, Antonios P. Antoniadis and Nikolaos Fragakis
Pharmaceutics 2025, 17(8), 1028; https://doi.org/10.3390/pharmaceutics17081028 (registering DOI) - 7 Aug 2025
Abstract
Atherosclerosis is a progressive, multifactorial disease driven by the interplay of lipid dysregulation, chronic inflammation, oxidative stress, and maladaptive vascular remodeling. Despite advances in systemic lipid-lowering and anti-inflammatory therapies, residual cardiovascular risk persists, highlighting the need for more precise interventions. Targeted drug delivery [...] Read more.
Atherosclerosis is a progressive, multifactorial disease driven by the interplay of lipid dysregulation, chronic inflammation, oxidative stress, and maladaptive vascular remodeling. Despite advances in systemic lipid-lowering and anti-inflammatory therapies, residual cardiovascular risk persists, highlighting the need for more precise interventions. Targeted drug delivery represents a transformative strategy, offering the potential to modulate key pathogenic processes within atherosclerotic plaques while minimizing systemic exposure and off-target effects. Recent innovations span a diverse array of platforms, including nanoparticles, liposomes, exosomes, polymeric carriers, and metal–organic frameworks (MOFs), engineered to engage distinct pathological features such as inflamed endothelium, dysfunctional macrophages, oxidative microenvironments, and aberrant lipid metabolism. Ligand-based, biomimetic, and stimuli-responsive delivery systems further enhance spatial and temporal precision. In parallel, advances in in-silico modeling and imaging-guided approaches are accelerating the rational design of multifunctional nanotherapeutics with theranostic capabilities. Beyond targeting lipids and inflammation, emerging strategies seek to modulate immune checkpoints, restore endothelial homeostasis, and reprogram plaque-resident macrophages. This review provides an integrated overview of the mechanistic underpinnings of atherogenesis and highlights state-of-the-art targeted delivery systems under preclinical and clinical investigation. By synthesizing recent advances, we aim to elucidate how precision-guided drug delivery is reshaping the therapeutic landscape of atherosclerosis and to chart future directions toward clinical translation and personalized vascular medicine. Full article
Show Figures

Figure 1

16 pages, 1769 KiB  
Review
SGLT2 Inhibitors and GLP-1 Receptor Agonists in Cardiovascular–Kidney–Metabolic Syndrome
by Aryan Gajjar, Arvind Kumar Raju, Amani Gajjar, Mythili Menon, Syed Asfand Yar Shah, Sourbha Dani and Andrew Weinberg
Biomedicines 2025, 13(8), 1924; https://doi.org/10.3390/biomedicines13081924 - 7 Aug 2025
Abstract
Cardiovascular–Kidney–Metabolic (CKM) syndrome symbolizes a single pathophysiologic entity including obesity, type 2 diabetes, chronic kidney disease, and cardiovascular disease. These conditions altogether accelerate adverse outcomes when they coexist. Recent evidence has shown that the function of glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium–glucose [...] Read more.
Cardiovascular–Kidney–Metabolic (CKM) syndrome symbolizes a single pathophysiologic entity including obesity, type 2 diabetes, chronic kidney disease, and cardiovascular disease. These conditions altogether accelerate adverse outcomes when they coexist. Recent evidence has shown that the function of glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium–glucose cotransporter-2 inhibitors (SGLT2i) alleviate stress on multiple organs. SGLT2i has been demonstrated to benefit heart failure, hemodynamic regulation, and renal protection while GLP-1RA on the other hand has been shown to demonstrate a strong impact on glycemic management, weight loss, and atherosclerotic cardiovascular disease. This review will aim to understand and evaluate the mechanistic rationalization, clinical evidence, and the potential therapeutic treatment of SGLT2 inhibitors and GLP-1 receptor agonists to treat individuals who have CKM syndrome. This analysis also assesses whether combination therapy can be a synergistic approach that may benefit patients but is still underutilized because of the lack of clear guidelines, the associated costs, and disparities in accessibility. Therefore, in this review, we will be discussing the combination therapy’s additive and synergistic effects, current recommendations and clinical evidence, and mechanistic insights of these GLT2 inhibitors and GLP-1 receptor agonists in CKM syndrome patients. Overall, early and combination usage of GLP-1RA and SGLT2i may be essential to demonstrating a significant shift in modern cardiometabolic therapy toward patient-centered care. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

26 pages, 1333 KiB  
Review
Coronary Artery Disease and Atherosclerosis in Other Vascular Districts: Epidemiology, Risk Factors and Atherosclerotic Plaque Features
by Michele Russo, Filippo Luca Gurgoglione, Alessandro Russo, Riccardo Rinaldi, Laura Torlai Triglia, Matteo Foschi, Carlo Vigna, Rocco Vergallo, Rocco Antonio Montone, Umberto Benedetto, Giampaolo Niccoli and Marco Zimarino
Life 2025, 15(8), 1226; https://doi.org/10.3390/life15081226 - 3 Aug 2025
Viewed by 177
Abstract
Coronary artery disease (CAD) is the main cause of morbidity and death worldwide, and atherosclerosis represents the leading pathophysiological pathway responsible for CAD. Atherosclerotic process is a complex interplay of mechanisms and mediators resulting in plaque formation, progression and destabilization, the latter being [...] Read more.
Coronary artery disease (CAD) is the main cause of morbidity and death worldwide, and atherosclerosis represents the leading pathophysiological pathway responsible for CAD. Atherosclerotic process is a complex interplay of mechanisms and mediators resulting in plaque formation, progression and destabilization, the latter being the most frequent cause of acute cardiovascular events. Considering the systemic nature of atherosclerosis, polyvascular disease involvement is possible and has been described since 1960s. Accordingly, epidemiologic studies reported that concomitant CAD and atherosclerosis in other arterial beds like carotid arteries, lower limb arteries, mesenteric and renal circulation, and aorta, is frequent and related to increased chance of future cardiovascular events. Although risk factors, atherosclerotic plaque features and mechanisms of plaque destabilization are largely shared across different sites, many studies have reported some disparities among districts. Moreover, simultaneous polyvascular disease has been associated with increased likelihood of having particular plaque characteristics depending on the affected arterial level. In this comprehensive narrative review, we aim to discuss about epidemiology of concomitant CAD and atherosclerosis in other arterial beds, and to examine differences in risk factors, plaque features and mechanisms of plaque instability between CAD and other atherosclerotic locations. Finally, we review the studies observing differences on plaque features according to involved atherosclerotic sites, focusing on CAD. Full article
Show Figures

Figure 1

16 pages, 929 KiB  
Article
Galectin-3 Reflects Systemic Atherosclerosis in Patients with Coronary Artery Disease
by Horea-Laurentiu Onea, Calin Homorodean, Florin-Leontin Lazar, Mihai Octavian Negrea, Teodora Calin, Ioan Cornel Bitea, Minodora Teodoru, Vlad Ionut Nechita, Ariela Ligia Olteanu and Dan-Mircea Olinic
Medicina 2025, 61(8), 1388; https://doi.org/10.3390/medicina61081388 - 30 Jul 2025
Viewed by 227
Abstract
Background and Objectives: Galectin-3 (Gal-3), a pro-inflammatory cytokine, has been implicated in atherosclerosis and adverse cardiovascular outcomes. While its role in coronary artery disease (CAD) is increasingly recognized, its association with systemic atherosclerosis remains underexplored. Objective: To investigate serum Gal-3 levels in [...] Read more.
Background and Objectives: Galectin-3 (Gal-3), a pro-inflammatory cytokine, has been implicated in atherosclerosis and adverse cardiovascular outcomes. While its role in coronary artery disease (CAD) is increasingly recognized, its association with systemic atherosclerosis remains underexplored. Objective: To investigate serum Gal-3 levels in patients with CAD and evaluate correlations between CAD severity and extra-coronary atherosclerotic involvement (carotid, femoral, and radial territories). Materials and Methods: We prospectively enrolled 56 patients with CAD undergoing coronary angiography (42.8% with acute-ACS; 57.2% with chronic coronary syndromes-CCS). Gal-3 levels were measured within 24 h of admission. Atherosclerosis severity was assessed angiographically and through vascular ultrasound of the carotid, femoral, and radial arteries. Patients were stratified by median Gal-3 levels, and clinical follow-up was performed at 1 and 3 months. Results: Gal-3 levels were significantly higher in CAD vs. controls (20.7 vs. 10.1 ng/mL; p < 0.00001) and in ACS vs. CCS (22.18. vs. 17.93 ng/mL; p = 0.019). Gal-3 correlated positively with culprit lesion diameter stenosis (DS) (R = 0.30; p = 0.023) and maximum severity of additional treated lesions (R = 0.62; p = 0.006). Gal-3 also correlated positively with carotid plaque thickness (R = 0.32; p = 0.016), while patients with Gal-3 levels above the median showed increased median values for femoral plaque thickness (32.4 vs. 26.45 mm, p = 0.046). No correlation was found with radial artery calcification. Gal-3 showed moderate discrimination for ACS (AUC = 0.685; cut-off 20.18 ng/mL). On multivariate analysis age, DS, and ACS presentation were independent predictors of Gal-3 above 19.07 ng/mL. Conclusions: Gal-3 levels are elevated in ACS and correlate with atherosclerotic burden, particularly in coronary, carotid, and femoral territories. These findings support Gal-3 as a potential marker of lesion severity and systemic vascular involvement, highlighting its possible role in risk stratification and the monitoring of atherosclerotic disease progression. This study provides integrated insights into the impact of Gal-3 across multiple vascular beds by assessing them concurrently within the same patient cohort. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

18 pages, 875 KiB  
Review
Monounsaturated Fatty Acids in Cardiovascular Disease: Intake, Individual Types, and Content in Adipose Tissue as a Biomarker of Endogenous Exposure
by Jonas Pedersen, Berit Storgaard Hedegaard, Erik Berg Schmidt, Christina C. Dahm, Kirsten B. Holven, Kjetil Retterstøl, Philip C. Calder and Christian Bork
Nutrients 2025, 17(15), 2509; https://doi.org/10.3390/nu17152509 (registering DOI) - 30 Jul 2025
Viewed by 300
Abstract
Unhealthy dietary patterns are a major modifiable risk factor for atherosclerotic cardiovascular disease (ASCVD). International guidelines recommend reducing saturated fatty acid intake while increasing polyunsaturated and monounsaturated fatty acids (MUFAs) to mitigate cardiovascular risk. However, evidence regarding MUFAs and risk of ASCVD remains [...] Read more.
Unhealthy dietary patterns are a major modifiable risk factor for atherosclerotic cardiovascular disease (ASCVD). International guidelines recommend reducing saturated fatty acid intake while increasing polyunsaturated and monounsaturated fatty acids (MUFAs) to mitigate cardiovascular risk. However, evidence regarding MUFAs and risk of ASCVD remains conflicting, with recent studies raising concern about a potential higher risk associated with MUFA intake. The aim of this narrative review is to provide an overview of current knowledge and gaps in the literature regarding MUFAs and the risk of ASCVD with a focus on intake, individual types, and content in adipose tissue as a biomarker of endogenous exposure. Main findings reveal that most studies have inappropriately combined all MUFAs together, despite individual MUFA types having different biological effects and showing varying correlations between dietary intake and adipose tissue content. Adipose tissue composition may serve as a biomarker of long-term MUFA exposure, reflecting cumulative intake over one to two years while minimizing biases inherent in dietary assessments. However, tissue levels reflect both dietary intake and endogenous synthesis, complicating interpretation. Importantly, the source of MUFAs appears critical, with plant-derived MUFAs potentially offering advantages over animal-derived sources. In conclusion, we suggest that future research should focus on individual MUFA types rather than treating them as a homogeneous group, investigate their specific dietary sources and associations with ASCVD risk, and use adipose tissue biomarkers to improve exposure assessment and clarify causal relationships while considering overall dietary patterns. Full article
(This article belongs to the Special Issue Diet, Nutrition and Cardiovascular Health—2nd Edition)
Show Figures

Figure 1

13 pages, 1969 KiB  
Review
Computed Tomography and Coronary Plaque Analysis
by Hashim Alhammouri, Ramzi Ibrahim, Rahmeh Alasmar, Mahmoud Abdelnabi, Eiad Habib, Mohamed Allam, Hoang Nhat Pham, Hossam Elbenawi, Juan Farina, Balaji Tamarappoo, Clinton Jokerst, Kwan Lee, Chadi Ayoub and Reza Arsanjani
Tomography 2025, 11(8), 85; https://doi.org/10.3390/tomography11080085 - 30 Jul 2025
Viewed by 327
Abstract
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies [...] Read more.
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies offer improved spatial resolution, tissue differentiation, and functional assessment of coronary lesions. Additionally, artificial intelligence has emerged as a powerful tool to automate plaque detection, quantify burden, and refine risk prediction. Collectively, these innovations provide a more comprehensive approach to coronary artery disease evaluation and support personalized management strategies. Full article
(This article belongs to the Special Issue New Trends in Diagnostic and Interventional Radiology)
Show Figures

Figure 1

16 pages, 1005 KiB  
Review
Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism
by Renata Nurzyńska-Wierdak
Metabolites 2025, 15(8), 502; https://doi.org/10.3390/metabo15080502 - 28 Jul 2025
Viewed by 327
Abstract
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption [...] Read more.
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption of fruits, vegetables, whole grains and other plant foods negatively correlates with the risk of developing chronic diseases. Green leafy vegetables (GLVs) are a key element of healthy eating habits and an important source of vitamins C and E, carotenoids—mainly β-carotene and lutein—and minerals. This review discusses and summarizes the current knowledge on the health benefits of consuming GLVs in the prevention and treatment of MetS to provide a compendium for other researchers investigating new natural products. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Figure 1

33 pages, 1268 KiB  
Review
A Comprehensive Review of the Latest Approaches to Managing Hypercholesterolemia: A Comparative Analysis of Conventional and Novel Treatments: Part I
by Ema-Teodora Nițu, Narcisa Jianu, Cristina Merlan, Darius Foica, Laura Sbârcea, Valentina Buda, Maria Suciu, Adelina Lombrea and Dana Emilia Movilă
Life 2025, 15(8), 1185; https://doi.org/10.3390/life15081185 - 25 Jul 2025
Cited by 1 | Viewed by 956
Abstract
Hypercholesterolemia is a major modifiable risk factor for atherosclerotic cardiovascular disease (ASCVD), affecting a significant proportion of the adult population worldwide. This narrative review provides a comprehensive and up-to-date overview of hyperlipidemia management, spanning from epidemiological trends and underlying pathophysiological mechanisms to the [...] Read more.
Hypercholesterolemia is a major modifiable risk factor for atherosclerotic cardiovascular disease (ASCVD), affecting a significant proportion of the adult population worldwide. This narrative review provides a comprehensive and up-to-date overview of hyperlipidemia management, spanning from epidemiological trends and underlying pathophysiological mechanisms to the limitations of conventional therapies such as statins and ezetimibe. Particular emphasis is placed on cardiovascular risk assessment, current stratification tools, and international guideline-based interventions. The present paper, focusing primarily on the biological mechanisms of dyslipidemia and the clinical use of traditional lipid-lowering agents, serves as the first part of a two-part series, preceding a forthcoming review of novel pharmacological approaches. Our data synthesis is based on a structured literature search conducted across Google Scholar, PubMed, and Scopus, including studies published up to June 2025. The review also includes aspects related to non-pharmacological strategies, pharmacoeconomic considerations, and pharmacogenetic influences on treatment response. Ultimately, this work aims to equip clinicians with evidence-based, nuanced insights essential for optimizing lipid management and reducing cardiovascular risk, while setting the foundation for understanding how emerging therapies may overcome current therapeutic limitations. Full article
Show Figures

Figure 1

20 pages, 3967 KiB  
Article
Targeting the Opioid System in Cardiovascular Disease: Liver Proteomic and Lipid Profile Effects of Naloxone in Atherosclerosis
by Kinga Jaskuła, Agata Nawrocka, Piotr Poznański, Aneta Stachowicz, Marzena Łazarczyk, Mariusz Sacharczuk, Zbigniew Gaciong and Dominik S. Skiba
Biomedicines 2025, 13(8), 1802; https://doi.org/10.3390/biomedicines13081802 - 23 Jul 2025
Viewed by 242
Abstract
Background: The endogenous opioid system plays a pivotal role in numerous physiological processes and is implicated in a range of diseases, including atherosclerosis, a condition contributing to nearly 50% of deaths in Western societies. Objectives: This study investigates the effects of opioid receptor [...] Read more.
Background: The endogenous opioid system plays a pivotal role in numerous physiological processes and is implicated in a range of diseases, including atherosclerosis, a condition contributing to nearly 50% of deaths in Western societies. Objectives: This study investigates the effects of opioid receptor blockade, using naloxone, on the plasma lipid profile and atherosclerosis progression. Methods: ApoE−/− mice with advanced atherosclerosis were treated with naloxone for seven days, and the effects on atherosclerotic plaque development and liver steatosis were evaluated. Results: A proteomic analysis of liver samples post-treatment identified 38 proteins with altered abundance. The results revealed that naloxone treatment led to an increase in HDL cholesterol, a lipid fraction associated with protective cardiovascular effects. Furthermore, naloxone did not influence the progression of atherosclerotic plaques or the development of liver steatosis. Conclusions: In conclusion, while short-term naloxone treatment in mice with advanced atherosclerosis does not alter overall atherosclerotic plaque progression or liver steatosis, the observed elevation in HDL cholesterol and the extensive changes in liver protein abundance underscore the complex and multifaceted role of the opioid system in lipid metabolism and cardiovascular health. These findings provide a foundation for further exploration of opioid receptor antagonists as modulators of lipid profiles and potential contributors to cardiovascular therapy. Full article
Show Figures

Graphical abstract

20 pages, 311 KiB  
Article
Serum Concentrations of Vascular Endothelial Growth Factor in Polish Patients with Systemic Lupus Erythematosus Are Associated with Cardiovascular Risk and Autoantibody Profiles
by Katarzyna Fischer, Hanna Przepiera-Będzak, Marcin Sawicki, Maciej Brzosko and Marek Brzosko
J. Clin. Med. 2025, 14(14), 5133; https://doi.org/10.3390/jcm14145133 - 19 Jul 2025
Viewed by 426
Abstract
Background/Objectives: This study was conducted to analyze the associations between vascular endothelial growth factor (VEGF) serum concentrations and immunological biomarkers, inflammatory parameters, classical atherosclerosis risk factors, and cardiovascular manifestations in systemic lupus erythematosus (SLE) patients. Methods: The project included 83 individuals [...] Read more.
Background/Objectives: This study was conducted to analyze the associations between vascular endothelial growth factor (VEGF) serum concentrations and immunological biomarkers, inflammatory parameters, classical atherosclerosis risk factors, and cardiovascular manifestations in systemic lupus erythematosus (SLE) patients. Methods: The project included 83 individuals suffering from SLE, with 20 healthy individuals as controls. The serum levels of VEGF were determined through the ELISA method using R&D Systems tests. Laboratory markers, autoantibody profiles, traditional atherosclerotic risk factors, and organ manifestations were evaluated. Atherosclerotic changes were determined based on several indices including carotid intima-media thickness, ankle-brachial index and high resistance index assessments. Results: The reference range of serum VEGF concentrations was established based on the 25th and 75th percentiles obtained in the controls. High VEGF levels were significantly correlated with the presence of selected anti-phospholipid antibodies such as anti-prothrombin (OR = 10.7; 95%CI: 2.1–53.4) and anti-beta2 glycoprotein I (OR = 3.5; 95%CI: 1.1–10.8), as well as cardiac disorders (OR = 8.0; 95%CI: 1.6–39.5). On the other hand, low concentrations of VEGF were significantly related to lower frequencies of anti-double-stranded DNA antibodies (OR = 0.31; 95%CI: 0.11–0.91) and anti-endothelial cell antibodies (OR = 0.30; 95%CI: 0.11–0.85). Patients with low VEGF levels showed significantly reduced risks of atherosclerotic lesions (OR = 0.24; 95%CI: 0.04–0.99) and vasculitis development (OR = 0.17; 95%CI = 0.03–0.91). Conclusions: In conclusion, VEGF’s pathogenetic role in SLE and SLE-related atherothrombosis is manifested in close correlation with aPLs which may enhance their direct impact on endothelium. High VEGF levels are helpful for identifying cardiovascular risk in patients, while low concentrations indicate lower disease activity, as well as a lower risk of organ involvement. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
11 pages, 2539 KiB  
Article
Relationship Between Frontal QRS-T Angle and Non-Alcoholic Fatty Liver Disease (NAFLD) Fibrosis Score in Patients with Stable Angina Pectoris
by Ali Gökhan Özyıldız, Afag Özyıldız, Hüseyin Durak, Nadir Emlek and Mustafa Çetin
J. Clin. Med. 2025, 14(14), 5117; https://doi.org/10.3390/jcm14145117 - 18 Jul 2025
Viewed by 315
Abstract
Aim: The frontal QRS-T (fQRS-T) angle serves as an electrocardiography indicator that visually represents the disparity between the frontal QRS axis and the T axis. The heterogeneity between cardiac depolarization and repolarization rises with an increase in the fQRS-T angle. Prior research has [...] Read more.
Aim: The frontal QRS-T (fQRS-T) angle serves as an electrocardiography indicator that visually represents the disparity between the frontal QRS axis and the T axis. The heterogeneity between cardiac depolarization and repolarization rises with an increase in the fQRS-T angle. Prior research has demonstrated a relationship between the fQRS-T angle and the extent of atherosclerosis, along with the risk of cardiovascular mortality. The non-alcoholic fatty liver disease fibrosis score (NFS) is a non-invasive scoring tool used to quantify the degree of liver fibrosis in individuals with non-alcoholic fatty liver disease (NAFLD). Non-alcoholic fatty liver disease increases the risk of atherosclerotic cardiovascular disease, which can be predicted using the NFS. The objective of this study is to examine the potential correlation between the fQRS-T angle and NFS in patients with stable angina pectoris. Materials and Methods: This cross-sectional study included 177 (48 women) non-alcoholic patients who underwent coronary angiography due to stable angina pectoris. Individual NFS values were calculated using clinical and laboratory data. Patients were categorized into two groups based on a NFS threshold value of 0.67. Following a minimum fasting period of 12 h, biochemical laboratory parameters were acquired using a peripheral venous sample, and electrocardiographic data were recorded. Results: The univariate logistic regression analysis revealed significant associations between hypertension (p = 0.018), coronary artery disease (p = 0.014), neutrophil (p = 0.024), hemoglobin (p = 0.038), and low-density lipoprotein (LDL, p = 0.007) with the NFS. The electrocardiographic variables related to the score included the QRS duration (p = 0.015), Pmax (p = 0.026), QTC interval (p = 0.02), and fQRS-T angle (p < 0.001). In the multivariate logistic regression analysis, NFS was independently associated with LDL (OR: 0.984, 95% CI: 0.970–0.998, p = 0.024) and fQRS-T angle (OR: 3.472, 95% CI: 1.886–6.395, p < 0.001). Conclusions: The FQRS-T angle may exhibit a distinct correlation with NAFLD. Extensive investigations should validate this link, since the fibrosis score can serve as an effective tool for monitoring patients prior to the onset of clinical symptoms associated with liver fibrosis. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

20 pages, 695 KiB  
Review
The Pathogenic Role of C-Reactive Protein in Diabetes-Linked Unstable Atherosclerosis
by Melania Sibianu and Mark Slevin
Int. J. Mol. Sci. 2025, 26(14), 6855; https://doi.org/10.3390/ijms26146855 - 17 Jul 2025
Viewed by 368
Abstract
C-reactive protein (CRP) has long been recognized as a biomarker of systemic inflammation and cardiovascular disease (CVD) risk. However, emerging evidence highlights the distinct and potent pro-inflammatory role of its monomeric form (mCRP), which is predominantly tissue-bound and directly implicated in vascular injury [...] Read more.
C-reactive protein (CRP) has long been recognized as a biomarker of systemic inflammation and cardiovascular disease (CVD) risk. However, emerging evidence highlights the distinct and potent pro-inflammatory role of its monomeric form (mCRP), which is predominantly tissue-bound and directly implicated in vascular injury and plaque destabilization. This narrative review explores the interactions and overlapping pathways that converge within and modulate CRP, mCRP, the associated pathophysiology of diabetes mellitus, and cardiovascular disease. We examine how mCRP promotes endothelial dysfunction, leukocyte recruitment, platelet activation, and macrophage polarization, thereby contributing to the formation of unstable atherosclerotic plaques. Furthermore, we discuss the critical influence of diabetes in amplifying mCRP’s pathogenic effects through metabolic dysregulation, chronic hyperglycemia, and enhanced formation of advanced glycation end products (AGEs). The synergistic interaction of mCRP with the AGE-receptor for AGE (RAGE) axis exacerbates oxidative stress and vascular inflammation, accelerating atherosclerosis progression and increasing cardiovascular risk in diabetic patients. Understanding these mechanistic pathways implicates mCRP as both a biomarker and therapeutic target, particularly in the context of diabetes-associated CVD. This review highlights the need for further research into targeted interventions that disrupt the mCRP-[AGE-RAGE] inflammatory cycle to reduce plaque instability and improve cardiovascular outcomes in high-risk populations. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 1637 KiB  
Article
High-Tyrosol/Hydroxytyrosol Extra Virgin Olive Oil Enhances Antioxidant Activity in Elderly Post-Myocardial Infarction Patients
by Mojgan Morvaridzadeh, Mehdi Alami, Nada Zoubdane, Hawa Sidibé, Hicham Berrougui, Tamàs Fülöp, Michel Nguyen and Abdelouahed Khalil
Antioxidants 2025, 14(7), 867; https://doi.org/10.3390/antiox14070867 - 16 Jul 2025
Viewed by 459
Abstract
Cardiovascular disease (CVD), particularly atherosclerotic cardiovascular disease (ASCVD), is the leading cause of death worldwide, driven by factors like oxidative stress, inflammation, and lipid metabolism disorders. Although phenolic compounds such as Tyrosol (Tyr) and Hydroxytyrosol (HTyr) found in extra virgin olive oil (EVOO) [...] Read more.
Cardiovascular disease (CVD), particularly atherosclerotic cardiovascular disease (ASCVD), is the leading cause of death worldwide, driven by factors like oxidative stress, inflammation, and lipid metabolism disorders. Although phenolic compounds such as Tyrosol (Tyr) and Hydroxytyrosol (HTyr) found in extra virgin olive oil (EVOO) have shown promising antioxidant and anti-inflammatory effects, their specific roles in modulating oxidative stress biomarkers and high-density lipoprotein (HDL) functionality in elderly populations, especially in those with prior myocardial infarction, are not fully understood. This study aimed to investigate the effects of EVOO phenolic compounds on oxidative stress biomarkers and HDL functionality, and related metabolic outcomes in both healthy and post-myocardial infarction (post-MI) elderly individuals. This pilot randomized clinical trial study included healthy and post-MI participants aged 65–85 years. Participants in each group were randomly assigned to consume 25 mL per day of one of three types of olive oils: high phenolic (HTyr/Tyr) extra virgin olive oil (HP-EVOO), extra virgin olive oil (EVOO), or refined olive oil (ROO) for a period of 26 weeks. Blood samples were collected at baseline and post-intervention to assess key biomarkers. Plasma levels of (poly)phenols, malondialdehyde (MDA), total antioxidant capacity (FRAP), lecithin-cholesterol acyltransferase activity (LCAT), and serum paraoxonase-1 (PON-1) activity were measured. A total of 34 individuals completed the study (mean age: 74 years). Baseline characteristics, including sex, age, body mass index (BMI), weight, blood pressure, and inflammatory markers like C-reactive protein (CRP) levels, did not differ significantly between the two groups. A significant increase in both FRAP levels and PON-1 activity was observed in post-MI participants following HP-EVOO consumption compared to baseline (p = 0.014). No significant changes were observed in MDA levels, LCAT activity, or plasma (poly)phenols. These results indicate that HP-EVOO may enhance antioxidant capacity, particularly FRAP and PON-1 activity, in elderly post-MI individuals. The observed differences between groups suggest that underlying cardiometabolic status may influence the response to olive oil phenolic compounds. Further studies are needed to explore the long-term cardiovascular effects. Full article
Show Figures

Figure 1

26 pages, 1239 KiB  
Review
Genomic and Precision Medicine Approaches in Atherosclerotic Cardiovascular Disease: From Risk Prediction to Therapy—A Review
by Andreas Mitsis, Elina Khattab, Michaella Kyriakou, Stefanos Sokratous, Stefanos G. Sakellaropoulos, Stergios Tzikas, Nikolaos P. E. Kadogou and George Kassimis
Biomedicines 2025, 13(7), 1723; https://doi.org/10.3390/biomedicines13071723 - 14 Jul 2025
Viewed by 575
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of global morbidity and mortality, prompting significant interest in individualized prevention and treatment strategies. This review synthesizes recent advances in genomic and precision medicine approaches relevant to ASCVD, with a focus on genetic risk scores, [...] Read more.
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of global morbidity and mortality, prompting significant interest in individualized prevention and treatment strategies. This review synthesizes recent advances in genomic and precision medicine approaches relevant to ASCVD, with a focus on genetic risk scores, lipid metabolism genes, and emerging gene editing techniques. A structured literature search was conducted across PubMed, Scopus, and Web of Science databases to identify key publications from the last decade addressing genomic mechanisms, therapeutic targets, and computational tools in ASCVD. Notable findings include the identification of causal genetic variants such as PCSK9 and LDLR, the development of polygenic risk scores for early prediction, and the use of deep learning algorithms for integrative multi-omics analysis. In addition, we highlight current and future therapeutic applications including PCSK9 inhibitors, RNA-based therapies, and CRISPR-based genome editing. Collectively, these advances underscore the promise of precision medicine in tailoring ASCVD prevention and treatment to individual genetic and molecular profiles. Full article
(This article belongs to the Special Issue Cardiovascular Diseases in the Era of Precision Medicine)
Show Figures

Figure 1

23 pages, 1713 KiB  
Review
Targeted and Biomimetic Nanoparticles for Atherosclerosis Therapy: A Review of Emerging Strategies
by Dorota Bartusik-Aebisher, Rafał Podgórski, Iga Serafin and David Aebisher
Biomedicines 2025, 13(7), 1720; https://doi.org/10.3390/biomedicines13071720 - 14 Jul 2025
Viewed by 628
Abstract
Atherosclerosis, a chronic inflammatory disease, remains a leading cause of cardiovascular mortality worldwide. Despite standard treatments like statins and percutaneous coronary intervention (PCI), significant residual risk and therapeutic limitations underscore the need for innovative strategies. This review summarizes recent advances in nanoparticle-based therapies [...] Read more.
Atherosclerosis, a chronic inflammatory disease, remains a leading cause of cardiovascular mortality worldwide. Despite standard treatments like statins and percutaneous coronary intervention (PCI), significant residual risk and therapeutic limitations underscore the need for innovative strategies. This review summarizes recent advances in nanoparticle-based therapies for atherosclerosis, focusing on key developments from the last five years. We discuss various nanoplatforms designed to selectively target key cellular players in plaque pathogenesis, including macrophages, endothelial cells, and vascular smooth muscle cells (VSMCs), to inhibit inflammation, modulate cellular phenotypes, and stabilize plaques. A significant focus is placed on the emerging field of biomimetic nanoparticles, where therapeutic cores are camouflaged with cell membranes derived from macrophages, platelets, neutrophils, or erythrocytes. This approach leverages the natural biological functions of the source cells to achieve enhanced immune evasion, prolonged circulation, and precise targeting of atherosclerotic lesions. Furthermore, the review covers nanoparticles engineered for specific functional interventions, such as lowering LDL levels and exerting direct anti-inflammatory and anti-oxidative effects. Finally, we address the critical challenges hindering clinical translation, including nanotoxicity, biodistribution, and manufacturing scalability. In conclusion, nanotechnology offers a versatile and powerful platform for atherosclerosis therapy, with targeted and biomimetic strategies holding immense promise to revolutionize future cardiovascular medicine. Full article
Show Figures

Figure 1

Back to TopTop