Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = aspheric lens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4132 KiB  
Article
Analysis of the Effect of Pupil Size and Corneal Aberration on the Optical Performance of Premium Intraocular Lenses
by Juan J. Miret, Vicente J. Camps, Celia García, Maria T. Caballero, Antonio Sempere-Molina and Juan M. Gonzalez-Leal
J. Clin. Med. 2025, 14(15), 5336; https://doi.org/10.3390/jcm14155336 - 29 Jul 2025
Viewed by 245
Abstract
Background/Objectives: To assess the optical performance of two refractive premium IOLs across pupil sizes and values of corneal spherical aberration (SA). Methods: Two refractive IOLs were evaluated in this study: Tecnis Eyhance and Mini Well. The surface profiles were obtained to [...] Read more.
Background/Objectives: To assess the optical performance of two refractive premium IOLs across pupil sizes and values of corneal spherical aberration (SA). Methods: Two refractive IOLs were evaluated in this study: Tecnis Eyhance and Mini Well. The surface profiles were obtained to calculate the through-object MTF (TO MTF) curves and simulate optotype images. Entrance pupil sizes ranging from 2 to 5.5 and three corneal models were analyzed in the simulation: an average population aberrated cornea, an aberration-free cornea and a post-Lasik myopic cornea. Results: For Model 1 and pupil sizes between 3.0 and 3.5 mm, Mini Well provided acceptable visual quality from far to near distances, whereas Eyhance struggled to maintain visual quality at distances closer than intermediate. For patients with lower-than-normal corneal SA (i.e., more prolate corneas, such as post-hyperopic LASIK) both IOLs exhibited a hyperopic shift in far focus. Conversely, for patients with higher-than-normal corneal SA (i.e., more oblate corneas, such as post-myopic LASIK), the shift occurred in the myopic direction. Despite the implementation of an optimized IOL power to circumvent any shift, the TO MTF nevertheless reflected the interaction between corneal and IOL SA. Furthermore, the Mini Well demonstrated increased tolerance to less negative SA values, while Eyhance exhibited behavior consistent with a monofocal lens for more positive SA values. Conclusions: Surgeons should consider each patient’s corneal asphericity and typical pupil diameter when selecting and calculating the power of the premium IOLs studied, particularly in patients with a history of refractive surgery. Full article
Show Figures

Figure 1

13 pages, 896 KiB  
Article
One-Year Comparative Evaluation of Highly Aspherical Lenslets and Horizontally Asymmetric Peripheral Defocus Lenses for Myopia Control in School-Aged Children
by Ivana Orešković, Maja Malenica Ravlić, Lana Knežević, Blanka Doko Mandić, Goran Marić, Ante Vukojević, Mia Zorić Geber, Zoran Vatavuk, Ivan Sabol and Jelena Škunca Herman
Life 2025, 15(7), 1119; https://doi.org/10.3390/life15071119 - 17 Jul 2025
Viewed by 351
Abstract
Purpose: The aim of this study was to compare the one-year efficacy of three spectacle lens designs, highly aspherical lenslets (HALs), horizontally asymmetric peripheral defocus (HAPD) lenses, and standard single vision lenses (SVLs) in slowing myopia progression in school-aged children. Methods: In this [...] Read more.
Purpose: The aim of this study was to compare the one-year efficacy of three spectacle lens designs, highly aspherical lenslets (HALs), horizontally asymmetric peripheral defocus (HAPD) lenses, and standard single vision lenses (SVLs) in slowing myopia progression in school-aged children. Methods: In this prospective, non-randomized study, 57 children, aged 8–17 years, were grouped based on the type of lenses worn: HAL (n = 16), HAPD (n = 21), or SVL (n = 20). Comprehensive ophthalmologic examinations were performed at baseline, 6 months, and 12 months. Outcome measures included spherical equivalent refraction (SER), spherical refraction (SR), cylindrical refraction (CR), and axial length (AL). Data were analyzed using non-parametric tests with significance set at p < 0.05. Results: All groups showed some progression in SER and AL over 12 months. The HAL group demonstrated the smallest median SER change (−0.3 D), compared to HAPD (−0.5 D) and SVL (−0.4 D), though group differences were not statistically significant (p = 0.111). Axial elongation was significantly lower in the HAL group (0.1 mm, IQR: 0.0–0.2 mm) compared to HAPD and SVL (both 0.2 mm, p < 0.0001). CR remained stable in all groups, with no clinically meaningful changes. The HAPD groups showed no advantages over SVL in any parameter. Conclusions: Among the three lens types studied, HAL lenses were the most effective in reducing both refractive and axial myopia progression over 12 months. These findings support their use as a reliable intervention in pediatric myopia control. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

10 pages, 1611 KiB  
Communication
Design of Eye Models for Quantitative Analysis of Interactions Between Ocular Aberrations and Intraocular Scattering
by Feng Rao, Lin Zhang, Xinheng Zhao, Jing Li, Jie Hou and Yan Wang
Photonics 2025, 12(7), 657; https://doi.org/10.3390/photonics12070657 - 30 Jun 2025
Viewed by 227
Abstract
Based on the widely used Gullstrand–Le Grand eye model, a scattering individual eye model was constructed with Zemax, which has individual ocular wavefront aberration and the scattering particles distributed in the eye. There are three main steps to build the model. Firstly, the [...] Read more.
Based on the widely used Gullstrand–Le Grand eye model, a scattering individual eye model was constructed with Zemax, which has individual ocular wavefront aberration and the scattering particles distributed in the eye. There are three main steps to build the model. Firstly, the Gullstand-Le Grand eye model was constructed, and converted into a non-sequential model. The axial lengths of all ocular components, and the corneal curvatures were input into the optical model. Secondly, a high-order aspheric surface-Zernike Fringe Sag surface was chosen to fit the wavefront aberrations measured with the ocular wavefront aberrometer. Thirdly, an embedded scattering lens within the crystalline lens was developed, of which parameters of scattering particles can be selected flexibly. The scattering individual eye model can be used to quantitatively investigate interaction between ocular aberrations and scattering light on retina image quality. The results demonstrated that when scattering particles were uniformly distributed across the optical pupil, MTFs at all spatial frequencies decreased proportionally with increasing particle density, independent of aberrations. When scattering particles were located in regions with smaller wavefront aberrations, the combined effect of scattering and aberrations synergistically degraded retinal image quality. In contrast, when particles were concentrated in zones of larger aberrations, the scattered light could partially compensate for the aberrational effects, leading to improved optical performance Full article
Show Figures

Figure 1

14 pages, 9709 KiB  
Article
Research on Large Divergence Angle Laser Ranging System
by Junwen Ji, Suhui Yang and Yimin Feng
Photonics 2025, 12(5), 482; https://doi.org/10.3390/photonics12050482 - 14 May 2025
Viewed by 442
Abstract
This study investigates a laser ranging technology scheme featuring a large divergence angle for both the emitted and received laser beams, focusing on applications where both the measured target and the ranging carrier are high-mobility platforms. A dual-concave beam-reducing lens design is adopted [...] Read more.
This study investigates a laser ranging technology scheme featuring a large divergence angle for both the emitted and received laser beams, focusing on applications where both the measured target and the ranging carrier are high-mobility platforms. A dual-concave beam-reducing lens design is adopted to reshape the original beam divergence angle of 10 mrad from the erbium glass laser into a ranging output beam divergence angle of 26 mrad, while maintaining the Gaussian energy distribution of the original laser beam. A φ500 μm photosensitive surface APD detector is used, and a combination of aspherical and spherical elements is employed in the receiving optical system to achieve a 30 mrad large field-of-view echo reception within the small photosensitive surface. This laser ranging system addresses the challenge of aiming and tracking for laser ranging between relatively high-speed moving objects and reduces the stability precision requirements for the ranging carrier platform. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

23 pages, 4982 KiB  
Article
Laser-Ablative Structuring of Elastic Bandages—An Experimental Study
by Peijiao Huang, Daoyong Zhang, Wenyuan Lu, Xihuai Wang, Da Chen, Shengbin Zhao and Mingdi Wang
Nanomaterials 2025, 15(9), 701; https://doi.org/10.3390/nano15090701 - 7 May 2025
Viewed by 435
Abstract
To address the problem of excessive ablation in conventional laser processing caused by the inhomogeneous energy distribution at the focal point, along with the inherent heterogeneity and surface irregularities of textile materials, a new method for laser printing elastic bandage fabrics was developed. [...] Read more.
To address the problem of excessive ablation in conventional laser processing caused by the inhomogeneous energy distribution at the focal point, along with the inherent heterogeneity and surface irregularities of textile materials, a new method for laser printing elastic bandage fabrics was developed. We used flat top light sources, short focal field mirrors, and low power lasers instead of the Gaussian light sources, long focal field mirrors, and high-power lasers used in traditional methods. First, the sample was preheated, and the aspherical lens system was designed and simulated. Then, the physical and chemical properties of laser-processed elastic bandage fabrics were investigated. Finally, based on single-factor experiments, orthogonal experimental analysis was conducted to determine the optimal process parameters. The results show that the optimized optical path can effectively improve the uniformity of the temperature field during laser scanning and enhance focusing performance; as energy gradually accumulates, chemical bonds in polymer molecules break; when the elastic bandage fabric is in a highly elastic state, it exhibits appropriate breaking strength and color difference. The best parameters obtained from the single-factor experiment are as follows: laser power range of 25–34 W, scanning speed range of 2200–2800 mm/s, preheating temperature range of 125–200 °C. The best parameters obtained from the orthogonal experiment are as follows: laser power 28 W, scanning speed 2800 mm/s, and the preheating temperature 175 °C. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

16 pages, 4654 KiB  
Article
Measurement Method of Refractive Index for Optical Lenses Based on Curvature Radius Fitting of Small-Sized Aspheric Surfaces
by Tao Zhong, Guangyan Guo, Yasong Chow, Yixuan Yang, Tianhao Zhang, Jiru Yang, Mingxuan Lu, Yonghuan Wang, Yongjian Zhu, Tianlei Jia, Yishi Shi and Changjun Ke
Optics 2025, 6(1), 4; https://doi.org/10.3390/opt6010004 - 20 Jan 2025
Viewed by 1378
Abstract
The study of the refractive index of traditional lenses is one of the foundational topics in the field of optics. The refractive index of a lens determines its ability to refract and focus light, making it a key parameter in optical design and [...] Read more.
The study of the refractive index of traditional lenses is one of the foundational topics in the field of optics. The refractive index of a lens determines its ability to refract and focus light, making it a key parameter in optical design and applications. For the measurement of the refractive index of blind samples of finished lenses, this paper proposes a measurement method based on the use of a focal length measuring instrument and an aspheric profilometer to measure the surface shape data of the front and back surfaces of the lens. This method combines curve fitting algorithms and curvature radius fitting algorithms, ultimately reconstructing the lens model using Zemax and back-calculating the refractive index of the lens. For the samples employed in this paper, the measurement accuracy of the focal length can achieve 1.06%, the fitting accuracy of the curvature radius can reach 0.138%, and the recovery accuracy of the refractive index can attain 6.303 × 10−4%. Full article
Show Figures

Figure 1

12 pages, 5154 KiB  
Article
A Long-Range Lidar Optical Collimation System Based on a Shaped Laser Source
by Shanshan Feng, Yuanhui Mu, Luyin Liu, Ruzhang Liu, Enlin Cai and Shuying Wang
Appl. Sci. 2024, 14(21), 9662; https://doi.org/10.3390/app14219662 - 23 Oct 2024
Viewed by 1642
Abstract
Semiconductor near-infrared lasers have been widely used in lidar systems. However, various source types have different shapes and divergence angles, causing more difficulties for long-distance detection. In this paper, an optical collimation system is designed for a long-range lidar system with a shaped [...] Read more.
Semiconductor near-infrared lasers have been widely used in lidar systems. However, various source types have different shapes and divergence angles, causing more difficulties for long-distance detection. In this paper, an optical collimation system is designed for a long-range lidar system with a shaped laser source (the wavelength is 905 nm, the emitted spot size is 50 µm long by 10 µm wide, and the divergence angles are 33°and 15°, respectively, which are unconventional). On the basis of the traditional method of aspheric lens setting, a pair of asymmetric aspherical lenses were designed using an extended polynomial. The simulation results show that the spot shapes are all close to circular from 100 mm to 30 m and the spot size always remains the same value. The corrected optical system is put into the designed lidar system for verification. It results show that the average divergence angles in the long and short axis directions are 0.06°and 0.07°, which satisfy the project requirements. This optical system designed provides a collimation scheme and expands the application of vehicle-mounted lidar in the field of long-range detection. Full article
Show Figures

Figure 1

17 pages, 12419 KiB  
Article
Design of a Novel Microlens Array and Imaging System for Light Fields
by Yifeng Li, Pangyue Li, Xinyan Zheng, Huachen Liu, Yiran Zhao, Xueping Sun, Weiguo Liu and Shun Zhou
Micromachines 2024, 15(9), 1166; https://doi.org/10.3390/mi15091166 - 21 Sep 2024
Cited by 2 | Viewed by 3444
Abstract
Light field cameras are unsuitable for further acquisition of high-quality images due to their small depth of field, insufficient spatial resolution, and poor imaging quality. To address these issues, we proposed a novel four-focal-square microlens and light field system. A square aspheric microlens [...] Read more.
Light field cameras are unsuitable for further acquisition of high-quality images due to their small depth of field, insufficient spatial resolution, and poor imaging quality. To address these issues, we proposed a novel four-focal-square microlens and light field system. A square aspheric microlens array with four orthogonal focal lengths was designed, in which the aperture of a single lens was 100 μm. The square arrangement improves pixel utilization, the four focal lengths increase the depth of field, and the aspheric improves image quality. The simulations demonstrate pixel utilization rates exceeding 90%, depth-of-field ranges 6.57 times that of a single focal length, and image quality is significantly improved. We have provided a potential solution for improving the depth of field and image quality of the light field imaging system. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

12 pages, 12643 KiB  
Communication
Power Testing of Aspheric Lenses Based on Transmission Phase Deflectometric Method
by Qiong Wu, Xiaokun Wang, Shuangshuang Zhang, Wenhan Li, Yingjing Zhao, Chengchen Zhou, Donglin Xue and Xuejun Zhang
Photonics 2024, 11(8), 756; https://doi.org/10.3390/photonics11080756 - 13 Aug 2024
Viewed by 1285
Abstract
Traditional methods for testing aspheric optical lenses struggle to achieve point-by-point testing across the full aperture of the lens. To facilitate the full-aperture, high-precision, and rapid testing of aspheric optical lenses, a power testing method of lenses based on the transmission phase deflectometric [...] Read more.
Traditional methods for testing aspheric optical lenses struggle to achieve point-by-point testing across the full aperture of the lens. To facilitate the full-aperture, high-precision, and rapid testing of aspheric optical lenses, a power testing method of lenses based on the transmission phase deflectometric technique was employed. This method determines the phase deviation of light caused by the lens, thereby fitting the transmission wavefront and quickly detecting the power distribution information of the lens. This paper constructs a power testing model based on the phase deflectometric technique, proposes a calibration method that combines DLT (direct linear transformation) and pinhole models to reduce system errors, and combines phase extraction and wavefront fitting for experimental verification. The experimental results are compared with those obtained from the commercial visual lens mapper (VM-2000). The central errors of spherical power and cylindrical power are 1% and 0.7%, respectively. This provides a reliable method for the full-aperture, high-precision, and rapid testing of aspheric optical lenses. Full article
(This article belongs to the Special Issue Optical Precision Manufacturing and Testing: Technologies and Trends)
Show Figures

Figure 1

10 pages, 6832 KiB  
Communication
Simultaneous Multifocal Plane Fourier Ptychographic Microscopy Utilizing a Standard RGB Camera
by Giseok Oh and Hyun Choi
Sensors 2024, 24(14), 4426; https://doi.org/10.3390/s24144426 - 9 Jul 2024
Cited by 1 | Viewed by 1684
Abstract
Fourier ptychographic microscopy (FPM) is a computational imaging technology that can acquire high-resolution large-area images for applications ranging from biology to microelectronics. In this study, we utilize multifocal plane imaging to enhance the existing FPM technology. Using an RGB light emitting diode (LED) [...] Read more.
Fourier ptychographic microscopy (FPM) is a computational imaging technology that can acquire high-resolution large-area images for applications ranging from biology to microelectronics. In this study, we utilize multifocal plane imaging to enhance the existing FPM technology. Using an RGB light emitting diode (LED) array to illuminate the sample, raw images are captured using a color camera. Then, exploiting the basic optical principle of wavelength-dependent focal length variation, three focal plane images are extracted from the raw image through simple R, G, and B channel separation. Herein, a single aspherical lens with a numerical aperture (NA) of 0.15 was used as the objective lens, and the illumination NA used for FPM image reconstruction was 0.08. Therefore, simultaneous multifocal plane FPM with a synthetic NA of 0.23 was achieved. The multifocal imaging performance of the enhanced FPM system was then evaluated by inspecting a transparent organic light-emitting diode (OLED) sample. The FPM system was able to simultaneously inspect the individual OLED pixels as well as the surface of the encapsulating glass substrate by separating R, G, and B channel images from the raw image, which was taken in one shot. Full article
(This article belongs to the Collection Computational Imaging and Sensing)
Show Figures

Figure 1

14 pages, 9113 KiB  
Article
Design of Lidar Receiving Optical System with Large FoV and High Concentration of Light to Resist Background Light Interference
by Qingyan Li, Shuo Wang, Jiajie Wu, Feiyue Chen, Han Gao and Hai Gong
Micromachines 2024, 15(6), 712; https://doi.org/10.3390/mi15060712 - 28 May 2024
Cited by 3 | Viewed by 4476
Abstract
Lidar has the advantages of high accuracy, high resolution, and is not affected by sunlight. It has been widely used in many fields, such as autonomous driving, remote sensing detection, and intelligent robots. However, the current lidar detection system belongs to weak signal [...] Read more.
Lidar has the advantages of high accuracy, high resolution, and is not affected by sunlight. It has been widely used in many fields, such as autonomous driving, remote sensing detection, and intelligent robots. However, the current lidar detection system belongs to weak signal detection and generally uses avalanche photoelectric detector units as detectors. Limited by the current technology, the photosensitive surface is small, the receiving field of view is limited, and it is easy to cause false alarms due to background light. This paper proposes a method based on a combination of image-side telecentric lenses, microlens arrays, and interference filters. The small-area element detector achieves the high-concentration reception of echo beams in a large field of view while overcoming the interference of ambient background light. The image-side telecentric lens realizes that the center lines of the echo beams at different angles are parallel to the central axis, and the focus points converge on the same focal plane. The microlens array collimates the converged light beams one by one into parallel light beams. Finally, a high-quality aspherical focusing lens is used to focus the light on the small-area element detector to achieve high-concentration light reception over a large field of view. The system achieves a receiving field of view greater than 40° for a photosensitive surface detector with a diameter of 75 μm and is resistant to background light interference. Full article
Show Figures

Figure 1

7 pages, 2613 KiB  
Communication
High-Power External Spatial Beam Combining of 7-Channel Quantum Cascade Lasers Emitting at ~8.5 μm
by Haibo Dong, Xuyan Zhou, Man Hu, Yuan Ma, Aiyi Qi, Weiqiao Zhang and Wanhua Zheng
Photonics 2024, 11(6), 513; https://doi.org/10.3390/photonics11060513 - 27 May 2024
Cited by 1 | Viewed by 1329
Abstract
Based on the demand for high-power output, a spatial beam combining 7-channel quantum cascade lasers (QCLs) is demonstrated in this paper. A “2 + 3 + 2” stepped structure is designed to convert the seven beam spots into a circular arrangement. An aspherical [...] Read more.
Based on the demand for high-power output, a spatial beam combining 7-channel quantum cascade lasers (QCLs) is demonstrated in this paper. A “2 + 3 + 2” stepped structure is designed to convert the seven beam spots into a circular arrangement. An aspherical lens with a large numerical aperture (NA) of 0.85 and a focal length of 1.873 mm is used in each single QCL for collimation, and seven reflectors are utilized in the 7-channel QCLs combined in the spatial beam. After combining the spatial beam, the maximum continuous output power of the system is 3.6 W, and the beam quality M2 is 5.59 in the fast axis and 8.3 in the slow axis, respectively. Full article
(This article belongs to the Special Issue High Power Lasers: Technology and Applications)
Show Figures

Figure 1

13 pages, 3573 KiB  
Article
High-Density Polyethylene Custom Focusing Lenses for High-Resolution Transient Terahertz Biomedical Imaging Sensors
by Debamitra Chakraborty, Robert Boni, Bradley N. Mills, Jing Cheng, Ivan Komissarov, Scott A. Gerber and Roman Sobolewski
Sensors 2024, 24(7), 2066; https://doi.org/10.3390/s24072066 - 24 Mar 2024
Cited by 6 | Viewed by 2117
Abstract
Transient terahertz time-domain spectroscopy (THz-TDS) imaging has emerged as a novel non-ionizing and noninvasive biomedical imaging modality, designed for the detection and characterization of a variety of tissue malignancies due to their high signal-to-noise ratio and submillimeter resolution. We report our design of [...] Read more.
Transient terahertz time-domain spectroscopy (THz-TDS) imaging has emerged as a novel non-ionizing and noninvasive biomedical imaging modality, designed for the detection and characterization of a variety of tissue malignancies due to their high signal-to-noise ratio and submillimeter resolution. We report our design of a pair of aspheric focusing lenses using a commercially available lens-design software that resulted in about 200 × 200-μm2 focal spot size corresponding to the 1-THz frequency. The lenses are made of high-density polyethylene (HDPE) obtained using a lathe fabrication and are integrated into a THz-TDS system that includes low-temperature GaAs photoconductive antennae as both a THz emitter and detector. The system is used to generate high-resolution, two-dimensional (2D) images of formalin-fixed, paraffin-embedded murine pancreas tissue blocks. The performance of these focusing lenses is compared to the older system based on a pair of short-focal-length, hemispherical polytetrafluoroethylene (TeflonTM) lenses and is characterized using THz-domain measurements, resulting in 2D maps of the tissue refractive index and absorption coefficient as imaging markers. For a quantitative evaluation of the lens effect on the image resolution, we formulated a lateral resolution parameter, R2080, defined as the distance required for a 20–80% transition of the imaging marker from the bare paraffin region to the tissue region in the same image frame. The R2080 parameter clearly demonstrates the advantage of the HDPE lenses over TeflonTM lenses. The lens-design approach presented here can be successfully implemented in other THz-TDS setups with known THz emitter and detector specifications. Full article
(This article belongs to the Special Issue Research Development in Terahertz and Infrared Sensing Technology)
Show Figures

Figure 1

11 pages, 3643 KiB  
Article
Wide Field of View Under-Panel Optical Lens Design for Fingerprint Recognition of Smartphone
by Cheng-Mu Tsai, Sung-Jr Wu, Yi-Chin Fang and Pin Han
Micromachines 2024, 15(3), 386; https://doi.org/10.3390/mi15030386 - 13 Mar 2024
Viewed by 1760
Abstract
Fingerprint recognition is a widely used biometric authentication method in LED-backlight smartphones. Due to the increasing demand for full-screen smartphones, under-display fingerprint recognition has become a popular trend. In this paper, we propose a design of an optical fingerprint recognition lens for under-display [...] Read more.
Fingerprint recognition is a widely used biometric authentication method in LED-backlight smartphones. Due to the increasing demand for full-screen smartphones, under-display fingerprint recognition has become a popular trend. In this paper, we propose a design of an optical fingerprint recognition lens for under-display smartphones. The lens is composed of three plastic aspheric lenses, with an effective focal length (EFL) of 0.61 mm, a field of view (FOV) of 126°, and a total track length (TTL) of 2.54 mm. The image quality of the lens meets the target specifications, with MTF over 80% in the center FOV and over 70% in the 0.7 FOV, distortion less than 8% at an image height of 1.0 mm, and relative illumination (RI) greater than 25% at an image height of 1.0 mm. The lens also meets the current industry standards in terms of tolerance sensitivity and Monte Carlo analysis. Full article
Show Figures

Figure 1

15 pages, 4064 KiB  
Article
Determination Position and Initial Value of Aspheric Surface for Fisheye Lens Design
by Lirong Fan, Ketao Yan, Guodong Qiao, Lijun Lu, Shuyuan Gao and Huadong Zheng
Photonics 2023, 10(12), 1381; https://doi.org/10.3390/photonics10121381 - 15 Dec 2023
Viewed by 1947
Abstract
The aspheric surface is a commonly used method to improve the imaging quality of the fisheye lens, but it is difficult to determine the position and initial value. Based on the wave aberration theory of the plane-symmetric optical system, a method of using [...] Read more.
The aspheric surface is a commonly used method to improve the imaging quality of the fisheye lens, but it is difficult to determine the position and initial value. Based on the wave aberration theory of the plane-symmetric optical system, a method of using an aspheric surface to design a fisheye lens is proposed, which can quickly determine the appropriate aspheric surface to improve the imaging performance. First, the wave aberration of each optical surface of the fisheye lens is calculated and its aberration characteristics are analyzed. Then, a numerical evaluation function is reported based on the aberration distribution of the fisheye lens on the image plane. According to the functional relationship between the evaluation function and the aspheric coefficient, the position of the aspheric surface and the initial value of the aspheric coefficient can be calculated. Finally, the adaptive and normalized real-coded genetic algorithm is used as the evaluation function to optimize the fisheye lens using an aspheric surface. The proposed method can provide an effective solution for designing a fisheye lens using an aspheric surface. Full article
Show Figures

Figure 1

Back to TopTop