Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = ascomycete phylogeny

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 13778 KiB  
Article
The Diversity of the Genus Tuber in Greece—A New Species to Science in the Maculatum Clade and Seven First National Records
by Vassileios Daskalopoulos, Elias Polemis, Georgios Konstantinidis, Vasileios Kaounas, Nikolaos Tsilis, Vassiliki Fryssouli, Vassili N. Kouvelis and Georgios I. Zervakis
J. Fungi 2025, 11(5), 358; https://doi.org/10.3390/jof11050358 - 5 May 2025
Viewed by 3784
Abstract
Ectomycorrhizal fungi of the genus Tuber (Ascomycota) produce hypogeous ascomata commonly known as truffles. Despite their high ecological and economic importance, a considerable gap of knowledge exists concerning the diversity of Tuber species in the eastern Mediterranean region. In the frame of this [...] Read more.
Ectomycorrhizal fungi of the genus Tuber (Ascomycota) produce hypogeous ascomata commonly known as truffles. Despite their high ecological and economic importance, a considerable gap of knowledge exists concerning the diversity of Tuber species in the eastern Mediterranean region. In the frame of this study, more than 200 Tuber collections, originating from various regions of Greece, were examined. A new species to science, i.e., Tuber leptodermum, is formally described. Tuber leptodermum is grouped in the Maculatum clade, as revealed by the ITS and LSU rDNA concatenated phylogenetic tree, and appears as sister to T. foetidum. In addition, T. leptodermum exhibits distinct morphoanatomic features: it produces medium-sized, dark-brown ascomata with a thin pseudoparenchymatous peridium, composed of globose-to-angular cells and forms one-to-four-spored asci containing reticulate–alveolate, ellipsoid ascospores with broad meshes. Thirty other phylogenetic species are identified: seven of them (i.e., T. anniae, T. buendiae, T. conchae, T. dryophilum, T. monosporum, T. regianum and T. zambonelliae) constitute new records for the Greek mycobiota, while the presence of five other species is molecularly confirmed for the first time. Moreover, the existence of ten undescribed phylogenetic species is revealed, six of which are reported for the first time in Greece. Several taxonomic and phylogenetic issues and discrepancies in the genus Tuber are discussed in relation to the new findings. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

34 pages, 50154 KiB  
Article
Recticladiella inexpectata gen. et sp. nov. (Nectriaceae) Pathogenic to Native Cinnamomum camphora (Lauraceae) Trees in Southeastern China
by Fangying Han and Shuaifei Chen
J. Fungi 2024, 10(12), 894; https://doi.org/10.3390/jof10120894 - 23 Dec 2024
Viewed by 728
Abstract
The ascomycete family Nectriaceae includes soil-borne saprobes, plant pathogens and human pathogens, biodegraders, and biocontrol agents for industrial and commercial applications. Cinnamomum camphora is a native tree species that is widely planted in southern China for landscaping purposes. During a routine survey of [...] Read more.
The ascomycete family Nectriaceae includes soil-borne saprobes, plant pathogens and human pathogens, biodegraders, and biocontrol agents for industrial and commercial applications. Cinnamomum camphora is a native tree species that is widely planted in southern China for landscaping purposes. During a routine survey of Eucalyptus diseases in southern China, disease spots were frequently observed on the leaves of Ci. camphora trees planted close to Eucalyptus. The asexual fungal structures on the leaf spots presented morphological characteristics typical of the Nectriaceae. The aim of this study is to identify these fungi and determine their pathogenic effect on Ci. camphora. Of the isolates obtained from 13 sites in the Fujian and Guangdong Provinces, 54 isolates were identified based on the DNA phylogeny of the tef1, tub2, cmdA, and his3 regions and morphological features. Two isolates were identified as Calonectria crousiana, and fifty-two isolates were described as a new genus, including a single species. These fungi were named Recticladiella inexpectata gen. et sp. nov. The identification of the new genus was based on strong DNA base differences in each of the four sequenced gene regions. The conidiophores of this fungus had several avesiculate stipe extensions tapering toward a straight, occasionally slightly curved terminal cell, distinguishing it from other phylogenetically close Nectriaceae genera. The results indicate that R. inexpectata is distributed in wide geographic regions in southern China. Inoculation showed that R. inexpectata and Ca. crousiana caused lesions on the leaves of Ci. camphora seedlings within 6 days of inoculation, indicating that they are pathogenic to native Ci. camphora in China. Full article
(This article belongs to the Special Issue Diversity of Microscopic Fungi)
Show Figures

Figure 1

25 pages, 16303 KiB  
Article
Assembly, Annotation, and Comparative Analysis of Mitochondrial Genomes in Trichoderma
by Xiaoting Wang, Zhiyin Wang, Fanxing Yang, Runmao Lin and Tong Liu
Int. J. Mol. Sci. 2024, 25(22), 12140; https://doi.org/10.3390/ijms252212140 - 12 Nov 2024
Viewed by 1703
Abstract
Trichoderma is a widely studied ascomycete fungal genus, including more than 400 species. However, genetic information on Trichoderma is limited, with most species reporting only DNA barcodes. Mitochondria possess their own distinct DNA that plays a pivotal role in molecular function and evolution. [...] Read more.
Trichoderma is a widely studied ascomycete fungal genus, including more than 400 species. However, genetic information on Trichoderma is limited, with most species reporting only DNA barcodes. Mitochondria possess their own distinct DNA that plays a pivotal role in molecular function and evolution. Here, we report 42 novel mitochondrial genomes (mitogenomes) combined with 18 published mitogenomes of Trichoderma. These circular mitogenomes exhibit sizes of 26,276–94,608 bp, typically comprising 15 core protein-coding genes (PCGs), 2 rRNAs, and 16–30 tRNAs; however, the number of endonucleases and hypothetical proteins encoded in the introns of PCGs increases with genome size enlargement. According to the result of phylogenetic analysis of the whole mitogenome, these strains diverged into six distinct evolutionary branches, supported by the phylogeny based on 2830 single-copy nuclear genes. Comparative analysis revealed that dynamic Trichoderma mitogenomes exhibited variations in genome size, gene number, GC content, tRNA copy, and intron across different branches. We identified three mutation hotspots near the regions encoding nad3, cox2, and nad5 that caused major changes in the mitogenomes. Evolutionary analysis revealed that atp9, cob, nad4L, nad5, and rps3 have been influenced by positive selection during evolution. This study provides a valuable resource for exploring the important roles of the genetic and evolutionary dynamics of Trichoderma mitogenome in the adaptive evolution of biocontrol fungi. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2340 KiB  
Article
Morphological and Phylogenetic Analyses Reveal Three New Species of Didymella (Didymellaceae, Pleosporales) from Jiangxi, China
by Xingxing Luo, Yafen Hu, Jiwen Xia, Kai Zhang, Liguo Ma, Zhaohuan Xu and Jian Ma
J. Fungi 2024, 10(1), 75; https://doi.org/10.3390/jof10010075 - 18 Jan 2024
Cited by 5 | Viewed by 3283
Abstract
Didymella contains numerous plant pathogenic and saprobic species associated with a wide range of hosts. Over the course of our mycological surveys of plant pathogens from terrestrial plants in Jiangxi Province, China, eight strains isolated from diseased leaves of four host genera represented [...] Read more.
Didymella contains numerous plant pathogenic and saprobic species associated with a wide range of hosts. Over the course of our mycological surveys of plant pathogens from terrestrial plants in Jiangxi Province, China, eight strains isolated from diseased leaves of four host genera represented three new species of Didymella, D. bischofiae sp. nov., D. clerodendri sp. nov., and D. pittospori sp. nov. Phylogenetic analyses of combined ITS, LSU, RPB2, and TUB2 sequence data, using maximum-likelihood (ML) and Bayesian inference (BI), revealed their taxonomic placement within Didymella. Both morphological examinations and molecular phylogenetic analyses supported D. bischofiae, D. clerodendri, and D. pittospori as three new taxa within Didymella. Illustrations and descriptions of these three taxa were provided, along with comparisons with closely related taxa in the genus. Full article
(This article belongs to the Special Issue Plant Pathogenic Fungi: Taxonomy, Phylogeny and Morphology)
Show Figures

Figure 1

21 pages, 6671 KiB  
Article
Taxonomic and Phylogenetic Updates on Apiospora: Introducing Four New Species from Wurfbainia villosa and Grasses in China
by Chunfang Liao, Indunil Chinthani Senanayake, Wei Dong, Kandawatte Wedaralalage Thilini Chethana, Khanobporn Tangtrakulwanich, Yunxia Zhang and Mingkwan Doilom
J. Fungi 2023, 9(11), 1087; https://doi.org/10.3390/jof9111087 - 6 Nov 2023
Cited by 13 | Viewed by 3347
Abstract
Apiospora, an ascomycetous genus in Apiosporaceae, comprises saprobes, endophytes, and pathogens of humans and plants. They have a cosmopolitan distribution with a wide range of hosts reported from Asia. In the present study, we collected and isolated Apiospora species from Wurfbainia villosa [...] Read more.
Apiospora, an ascomycetous genus in Apiosporaceae, comprises saprobes, endophytes, and pathogens of humans and plants. They have a cosmopolitan distribution with a wide range of hosts reported from Asia. In the present study, we collected and isolated Apiospora species from Wurfbainia villosa and grasses in Guangdong and Yunnan provinces in China. Multi-locus phylogeny based on the internal transcribed spacer, the large subunit nuclear rDNA, the partial translation elongation factor 1-α, and β-tubulin was performed to clarify the phylogenetic affinities of the Apiospora species. Based on the distinctive morphological characteristics and molecular evidence, Ap. endophytica, Ap. guangdongensis, Ap. wurfbainiae, and Ap. yunnanensis are proposed. Descriptions, illustrations, and notes for the newly discovered species are provided and compared with closely related Apiospora species. An updated phylogeny of Apiospora is presented, along with a discussion on the phylogenetic affinities of ambiguous taxa. Full article
(This article belongs to the Special Issue Recent Advances in Taxonomy, Phylogeny and Evolution of Fungi)
Show Figures

Figure 1

14 pages, 2900 KiB  
Article
Additions to the Genus Helicosporium (Tubeufiaceae, Tubeufiales) from China with an Identification Key for Helicosporium Taxa
by Xing-Juan Xiao, Jian Ma, Li-Juan Zhang, Ning-Guo Liu, Yuan-Pin Xiao, Xing-Guo Tian, Zong-Long Luo and Yong-Zhong Lu
J. Fungi 2023, 9(7), 775; https://doi.org/10.3390/jof9070775 - 22 Jul 2023
Cited by 7 | Viewed by 2109
Abstract
Helicosporous hyphomycetes is a group of filamentous fungi that shows promising application prospects in metabolizing bioactive natural compounds. During a study of helicosporous fungi in China, six new helicosporous taxa were collected and isolated from decaying wood in Guangxi Zhuang Autonomous Region, China. [...] Read more.
Helicosporous hyphomycetes is a group of filamentous fungi that shows promising application prospects in metabolizing bioactive natural compounds. During a study of helicosporous fungi in China, six new helicosporous taxa were collected and isolated from decaying wood in Guangxi Zhuang Autonomous Region, China. Morphological comparisons with multi-gene phylogenetic analyses revealed that these six taxa belong to Helicosporium (Tubeufiaceae, Tubeufiales), and they were recognized as three novel species and were named Helicosporium liuzhouense, H. multidentatum, and H. nanningense. Detailed descriptions and illustrations of the newly discovered taxa and comparisons with similar fungi are provided. In addition, a list and a key to accepted Helicosporium species are provided. Full article
(This article belongs to the Special Issue Polyphasic Identification of Fungi 3.0)
Show Figures

Figure 1

20 pages, 2216 KiB  
Article
Morphological and Phylogenetic Analyses Reveal Three New Species of Distoseptispora (Distoseptisporaceae, Distoseptisporales) from Yunnan, China
by Jingwen Liu, Yafen Hu, Xingxing Luo, Zhaohuan Xu, Rafael F. Castañeda-Ruíz, Jiwen Xia, Xiuguo Zhang, Lianhu Zhang, Ruqiang Cui and Jian Ma
J. Fungi 2023, 9(4), 470; https://doi.org/10.3390/jof9040470 - 14 Apr 2023
Cited by 8 | Viewed by 2535
Abstract
Three new species of Distoseptispora, viz. D. mengsongensis, D. nabanheensis, and D. sinensis, are described and illustrated from specimens collected on dead branches of unidentified plants in Yunnan Province, China. Phylogenetic analyses of LSU, ITS, and [...] Read more.
Three new species of Distoseptispora, viz. D. mengsongensis, D. nabanheensis, and D. sinensis, are described and illustrated from specimens collected on dead branches of unidentified plants in Yunnan Province, China. Phylogenetic analyses of LSU, ITS, and TEF1 sequence data, using maximum-likelihood (ML) and Bayesian inference (BI), reveal the taxonomic placement of D. mengsongensis, D. nabanheensis, and D. sinensis within Distoseptispora. Both morphological observations and molecular phylogenetic analyses supported D. mengsongensis, D. nabanheensis, and D. sinensis as three new taxa. To extend our knowledge of the diversity of Distoseptispora-like taxa, a list of recognized species of Distoseptispora with major morphological features, habitat, host, and locality is also provided. Full article
(This article belongs to the Special Issue Phylogeny and Taxonomy of Ascomycete Fungi)
Show Figures

Figure 1

28 pages, 10971 KiB  
Article
Novel Freshwater Ascomycetes from Spain
by Viridiana Magaña-Dueñas, José Francisco Cano-Lira and Alberto Miguel Stchigel
J. Fungi 2022, 8(8), 849; https://doi.org/10.3390/jof8080849 - 14 Aug 2022
Cited by 4 | Viewed by 3601
Abstract
Freshwater ascomycetes are a group of fungi of great ecological importance because they are involved in decomposition processes and the recycling of organic matter in aquatic ecosystems. The taxonomy of these fungi is complex, with representatives in several orders of the phylum Ascomycota. [...] Read more.
Freshwater ascomycetes are a group of fungi of great ecological importance because they are involved in decomposition processes and the recycling of organic matter in aquatic ecosystems. The taxonomy of these fungi is complex, with representatives in several orders of the phylum Ascomycota. In the present study, we collected ninety-two samples of plant debris submerged in freshwater in different locations in Spain. The plant specimens were placed in wet chambers and developed several fungi that were later isolated in pure culture. A main phylogenetic tree using the nucleotide sequences of D1–D2 domains of the 28S nrRNA gene (LSU) was built to show the taxonomic placement of all our fungal strains, and, later, individual phylogenies for the different families were built using single or concatenated nucleotide sequences of the most suitable molecular markers. As a result, we found a new species of Amniculicola that produces a coelomycetous asexual state, a new species of Elongatopedicellata that produces an asexual state, a new species of Neovaginatispora that forms both sexual and asexual states in vitro, and the sexual states of two species of Pyrenochaetopsis, none of which have been reported before for these genera. In addition, we describe a new species of Pilidium characterized by the production of copper-colored globose conidiomata, and of Pseudosigmoidea, which produces well-developed conidiophores. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

39 pages, 7480 KiB  
Article
Morpho-Molecular Characterization of Microfungi Associated with Phyllostachys (Poaceae) in Sichuan, China
by Qian Zeng, Yi-Cong Lv, Xiu-Lan Xu, Yu Deng, Fei-Hu Wang, Si-Yi Liu, Li-Juan Liu, Chun-Lin Yang and Ying-Gao Liu
J. Fungi 2022, 8(7), 702; https://doi.org/10.3390/jof8070702 - 1 Jul 2022
Cited by 18 | Viewed by 3483
Abstract
In the present study, we surveyed the ascomycetes from bamboo of Phyllostachys across Sichuan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny confirmed seven species, including one new genus, two new species, and five new host record species. A [...] Read more.
In the present study, we surveyed the ascomycetes from bamboo of Phyllostachys across Sichuan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny confirmed seven species, including one new genus, two new species, and five new host record species. A novel genus Paralloneottiosporina is introduced to accommodate Pa. sichuanensis that was collected from leaves of Phyllostachys violascens. Moreover, the newly introduced species Bifusisporella sichuanensis was isolated from leaves of P. edulis, and five species were newly recorded on bamboos, four species belonging to Apiospora, viz. Ap. yunnana, Ap. neosubglobosa, Ap. jiangxiensis, and Ap. hydei, and the last species, Seriascoma yunnanense, isolated from dead culms of P. heterocycla. Morphologically similar and phylogenetically related taxa were compared. Comprehensive descriptions, color photo plates of micromorphology are provided. Full article
(This article belongs to the Special Issue Ascomycota: Diversity, Taxonomy and Phylogeny)
Show Figures

Figure 1

28 pages, 7556 KiB  
Article
Taxonomic and Phylogenetic Characterizations Reveal Four New Species, Two New Asexual Morph Reports, and Six New Country Records of Bambusicolous Roussoella from China
by Dong-Qin Dai, Nalin N. Wijayawardene, Monika C. Dayarathne, Jaturong Kumla, Li-Su Han, Gui-Qing Zhang, Xian Zhang, Ting-Ting Zhang and Huan-Huan Chen
J. Fungi 2022, 8(5), 532; https://doi.org/10.3390/jof8050532 - 20 May 2022
Cited by 25 | Viewed by 3193
Abstract
During the ongoing investigation of bambusicolous ascomycetous fungi in Yunnan, China, 24 specimens belonging to the family Roussoellaceae were collected and identified based on morphological features and phylogenetic support. Maximum-likelihood (ML) analyses and Bayesian analyses were generated based on the combined data set [...] Read more.
During the ongoing investigation of bambusicolous ascomycetous fungi in Yunnan, China, 24 specimens belonging to the family Roussoellaceae were collected and identified based on morphological features and phylogenetic support. Maximum-likelihood (ML) analyses and Bayesian analyses were generated based on the combined data set of ITS, LSU, tef1, and rpb2 loci. The phylogenetic analyses revealed four novel lineages in Roussoella s. str.; thus, we introduced four new species viz., Roussoella multiloculate sp. nov., R. papillate sp. nov., R. sinensis sp. nov., and R. uniloculata sp. nov. Their morphological characters were compared with the known Roussoella taxa, which lack sequence data in the GenBank. Asexual morphs of R. kunmingensis and R. padinae were recorded from dead bamboo culms in China (from the natural substrates) for the first time. Neoroussoella bambusae, Roussoella japanensis, R. nitidula, R. padinae, R. scabrispora, and R. tuberculate were also reported as the first records from China. All new taxa are described and illustrated in detail. Plates are provided for new reports. Full article
Show Figures

Figure 1

17 pages, 2664 KiB  
Article
Morpho-Molecular Characterization of Five Novel Taxa in Parabambusicolaceae (Massarineae, Pleosporales) from Yunnan, China
by Ning Xie, Rungtiwa Phookamsak, Hongbo Jiang, Yu-Jia Zeng, Haoxing Zhang, Fangfang Xu, Saisamorn Lumyong, Jianchu Xu and Sinang Hongsanan
J. Fungi 2022, 8(2), 108; https://doi.org/10.3390/jof8020108 - 24 Jan 2022
Cited by 17 | Viewed by 3492
Abstract
Parabambusicolaceae is a well-studied family in Massarineae, Pleosporales, comprising nine genera and approximately 16 species. The family was introduced to accommodate saprobic bambusicola-like species in both freshwater and terrestrial environments that mostly occur on bamboos and grasses but are also found on different [...] Read more.
Parabambusicolaceae is a well-studied family in Massarineae, Pleosporales, comprising nine genera and approximately 16 species. The family was introduced to accommodate saprobic bambusicola-like species in both freshwater and terrestrial environments that mostly occur on bamboos and grasses but are also found on different host substrates. In the present study, we surveyed and collected ascomycetes from bamboo and submerged grass across Yunnan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny demonstrated five new taxa in Parabambusicolaceae. A novel genus Scolecohyalosporium is introduced as a monotypic genus to accommodate S. submersum sp. nov., collected from dead culms of grass submerged in a freshwater stream. The genus is unique in forming filiform ascospores, which differ from other known genera in Parabambusicolaceae. Multigene phylogeny showed that the genus has a close relationship with Multiseptospora. Moreover, the novel monotypic genus Neomultiseptospora, isolated from bamboo, was introduced to accommodate N. yunnanensis sp. nov. Neomultiseptospora yunnanensis formed a separated branch basal to Scolecohyalosporium submersum and Multiseptospora thailandica with high support (100% ML, 1.00 PP). Furthermore, the newly introduced species, Parabambusicola hongheensis sp. nov. was also isolated from bamboo in terrestrial habitats. Parabambusicola hongheensis clustered with the other three described Parabambusicola species and has a close relationship with P. bambusina with significant support (88% ML, 1.00 PP). Parabambusicola hongheensis was reported as the fourth species in this genus. Detailed description, illustration, and updated phylogeny of Parabambusicolaceae were provided. Full article
(This article belongs to the Special Issue Polyphasic Identification of Fungi)
Show Figures

Figure 1

26 pages, 5742 KiB  
Article
Diversity and Evolution of Entomocorticium (Russulales, Peniophoraceae), a Genus of Bark Beetle Mutualists Derived from Free-Living, Wood Rotting Peniophora
by João P. M. Araújo, You Li, Diana Six, Mario Rajchenberg, Matthew E. Smith, Andrew J. Johnson, Kier D. Klepzig, Pedro W. Crous, Caio A. Leal-Dutra, James Skelton, Sawyer N. Adams and Jiri Hulcr
J. Fungi 2021, 7(12), 1043; https://doi.org/10.3390/jof7121043 - 6 Dec 2021
Cited by 5 | Viewed by 5993
Abstract
Symbiosis between insects and fungi arose multiple times during the evolution of both groups, and some of the most biologically diverse and economically important are mutualisms in which the insects cultivate and feed on fungi. Among these are bark beetles, whose ascomycetous cultivars [...] Read more.
Symbiosis between insects and fungi arose multiple times during the evolution of both groups, and some of the most biologically diverse and economically important are mutualisms in which the insects cultivate and feed on fungi. Among these are bark beetles, whose ascomycetous cultivars are better known and studied than their frequently-overlooked and poorly understood basidiomycetous partners. In this study, we propose five new species of Entomocorticium, fungal mutualists in the Russulales (Basidiomycota) that are mutualistic symbionts of scolytine beetles. We have isolated these fungi from the beetle mycangia, which are structures adapted for the selective storage and transportation of fungal mutualists. Herein, we present the most complete phylogeny of the closely related genera Entomocorticium and Peniophora and provide insights into how an insect-associated taxon (Entomocorticium) evolved from within a wood-decaying, wind-dispersed lineage (Peniophora). Our results indicate that following a transition from angiosperms to gymnosperms, fungal domestication by beetles facilitated the evolution and diversification of Entomocorticium. We additionally propose four new species: Entomocorticium fibulatum Araújo, Li & Hulcr, sp. nov.; E. belizense Araújo, Li & Hulcr, sp. nov.; E. perryae Araújo, Li & Hulcr, sp. nov.; and E. macrovesiculatum Araújo, Li, Six & Hulcr, sp. nov. Our findings highlight the fact that insect-fungi associations remain an understudied field and that these associations harbor a large reservoir of novel fungal species. Full article
(This article belongs to the Special Issue Dimensions of Tropical Fungal Diversity)
Show Figures

Figure 1

23 pages, 31180 KiB  
Article
An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand
by Supakorn Nundaeng, Nakarin Suwannarach, Savitree Limtong, Surapong Khuna, Jaturong Kumla and Saisamorn Lumyong
J. Fungi 2021, 7(11), 957; https://doi.org/10.3390/jof7110957 - 11 Nov 2021
Cited by 9 | Viewed by 3425
Abstract
Ascomycetous yeast species in the genus Wickerhamomyces (Saccharomycetales, Wickerhamomycetaceae) are isolated from various habitats and distributed throughout the world. Prior to this study, 35 species had been validly published and accepted into this genus. Beneficially, Wickerhamomyces species have been used in a number [...] Read more.
Ascomycetous yeast species in the genus Wickerhamomyces (Saccharomycetales, Wickerhamomycetaceae) are isolated from various habitats and distributed throughout the world. Prior to this study, 35 species had been validly published and accepted into this genus. Beneficially, Wickerhamomyces species have been used in a number of biotechnologically applications of environment, food, beverage industries, biofuel, medicine and agriculture. However, in some studies, Wickerhamomyces species have been identified as an opportunistic human pathogen. Through an overview of diversity, taxonomy and recently published literature, we have updated a brief review of Wickerhamomyces. Moreover, two new Wickerhamomyces species were isolated from the soil samples of Assam tea (Camellia sinensis var. assamica) that were collected from plantations in northern Thailand. Herein, we have identified these species as W. lannaensis and W. nanensis. The identification of these species was based on phenotypic (morphological, biochemical and physiological characteristics) and molecular analyses. Phylogenetic analyses of a combination of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) of ribosomal DNA genes support that W. lannaensis and W. nanensis are distinct from other species within the genus Wickerhamomyces. A full description, illustrations and a phylogenetic tree showing the position of both new species have been provided. Accordingly, a new combination species, W. myanmarensis has been proposed based on the phylogenetic results. A new key for species identification is provided. Full article
Show Figures

Figure 1

14 pages, 3242 KiB  
Article
Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites
by Kevin Becker, Christopher Lambert, Jörg Wieschhaus and Marc Stadler
Microorganisms 2020, 8(9), 1397; https://doi.org/10.3390/microorganisms8091397 - 11 Sep 2020
Cited by 15 | Viewed by 3917
Abstract
The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H.fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H.invadens an interesting target in our efforts to [...] Read more.
The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H.fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H.invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H.invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H.invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This approach led to the identification of the known flaviolin (1) and 3,3-biflaviolin (2) as the main components, which had never been reported from the order Xylariales before. Assessment of their antimicrobial and cytotoxic effects via a panel of commonly used microorganisms and cell lines in our laboratory did not yield any effects of relevance. Concurrently, genomic DNA from the fungus was used to construct a multigene phylogeny using ribosomal sequence information from the internal transcribed spacer region (ITS), the 28S large subunit of ribosomal DNA (LSU), and proteinogenic nucleotide sequences from the second largest subunit of the DNA-directed RNA polymerase II (RPB2) and β-tubulin (TUB2) genes. A placement in a newly formed clade with H.trugodes was strongly supported in a maximum-likelihood (ML) phylogeny using sequences derived from well characterized strains, but the exact position of said clade remains unclear. Both, the chemical and the phylogenetic results suggest further inquiries into the lifestyle of this unique fungus to get a better understanding of both, its ecological role and function of its produced secondary metabolites hitherto unique to the Xylariales. Full article
(This article belongs to the Special Issue New Methods in Microbial Research)
Show Figures

Graphical abstract

20 pages, 3195 KiB  
Article
Biocontrol and Plant-Growth-Promoting Traits of Talaromyces apiculatus and Clonostachys rosea Consortium against Ganoderma Basal Stem Rot Disease of Oil Palm
by Yit Kheng Goh, Nurul Fadhilah Marzuki, Tuan Nur Fatihah Tuan Pa, Teik-Khiang Goh, Zeng Seng Kee, You Keng Goh, Mohd Termizi Yusof, Vladimir Vujanovic and Kah Joo Goh
Microorganisms 2020, 8(8), 1138; https://doi.org/10.3390/microorganisms8081138 - 28 Jul 2020
Cited by 33 | Viewed by 5325
Abstract
Basal stem rot (BSR) disease caused by Ganoderma boninense basidiomycetous fungus is the most economically important disease in oil palms in South East Asia. Unfortunately, there is no single most effective control measure available. Tremendous efforts have been directed in incorporation of environmentally [...] Read more.
Basal stem rot (BSR) disease caused by Ganoderma boninense basidiomycetous fungus is the most economically important disease in oil palms in South East Asia. Unfortunately, there is no single most effective control measure available. Tremendous efforts have been directed in incorporation of environmentally friendly biocontrol approaches in minimizing BSR disease. This study investigated the performance of two potential biocontrol agents (BCAs), AAT0115 and AAB0114 strains recovered from oil palm on suppression of BSR in planta, and also assessed their plant-growth-promoting (PGP) performance. ITS rRNA-sequence phylogeny discriminated the two ascomycetous Talaromyces apiculatus (Ta) AT0115 and Clonostachys rosea (Cr) AAB0114 biocontrol species with PGP characteristics. In vitro studies have demonstrated both Ta and Cr are capable of reducing linear mycelial growth of G. boninense. Inoculation of individual Cr and Ta—as well as Cr+Ta consortium—induced a significant increment in leaf area and bole girth of oil-palm seedlings five months post-inoculation (MPI) under nursery conditions. At five months post-inoculation, shoot and root biomass, and nutrient contents (nitrogen, phosphorus, potassium, calcium, magnesium and boron) were significantly higher in Ta-inoculated seedlings compared to control treated with non-Ta-inoculated maize. Chlorophyll and carotenoids contents in rapidly growing oil-palm seedlings challenged with Cr, Ta or a combination of both were not negatively affected. Cr, Ta and Cr+Ta consortium treated seedlings had 4.9–60% BSR disease reduction compared to the untreated control. Co-inoculation of Cr and Ta resulted in increased BSR control efficiencies by 18–26% (compared with Cr only) and 48–55% (compared with Ta only). Collectively, Cr and Ta, either individually or in consortium showed potential as BSR biocontrol agents while also possess PGP traits in oil palm. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Graphical abstract

Back to TopTop