Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,572)

Search Parameters:
Keywords = artificial regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 1950 KiB  
Article
Redefining Energy Management for Carbon-Neutral Supply Chains in Energy-Intensive Industries: An EU Perspective
by Tadeusz Skoczkowski, Sławomir Bielecki, Marcin Wołowicz and Arkadiusz Węglarz
Energies 2025, 18(15), 3932; https://doi.org/10.3390/en18153932 - 23 Jul 2025
Abstract
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth [...] Read more.
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth from fossil energy consumption. This study proposes a redefinition of EM to support carbon-neutral supply chains within the European Union’s EIIs, addressing critical limitations of conventional EM frameworks under increasingly stringent carbon regulations. Using a modified systematic literature review based on PRISMA methodology, complemented by expert insights from EU Member States, this research identifies structural gaps in current EM practices and highlights opportunities for integrating sustainable innovations across the whole industrial value chain. The proposed EM concept is validated through an analysis of 24 EM definitions, over 170 scientific publications, and over 80 EU legal and strategic documents. The framework incorporates advanced digital technologies—including artificial intelligence (AI), the Internet of Things (IoT), and big data analytics—to enable real-time optimisation, predictive control, and greater system adaptability. Going beyond traditional energy efficiency, the redefined EM encompasses the entire energy lifecycle, including use, transformation, storage, and generation. It also incorporates social dimensions, such as corporate social responsibility (CSR) and stakeholder engagement, to cultivate a culture of environmental stewardship within EIIs. This holistic approach provides a strategic management tool for optimising energy use, reducing emissions, and strengthening resilience to regulatory, environmental, and market pressures, thereby promoting more sustainable, inclusive, and transparent supply chain operations. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

28 pages, 1858 KiB  
Article
Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network
by Alexis Barrios-Ulloa, Andrés Solano-Barliza, Wilson Arrubla-Hoyos, Adelaida Ojeda-Beltrán, Dora Cama-Pinto, Francisco Manuel Arrabal-Campos and Alejandro Cama-Pinto
Sustainability 2025, 17(15), 6664; https://doi.org/10.3390/su17156664 - 22 Jul 2025
Viewed by 75
Abstract
Agriculture 5.0 represents a shift towards a more sustainable agricultural model, integrating Artificial Intelligence (AI), the Internet of Things (IoT), robotics, and blockchain technologies to enhance productivity and resource management, with an emphasis on social and environmental resilience. This article explores how the [...] Read more.
Agriculture 5.0 represents a shift towards a more sustainable agricultural model, integrating Artificial Intelligence (AI), the Internet of Things (IoT), robotics, and blockchain technologies to enhance productivity and resource management, with an emphasis on social and environmental resilience. This article explores how the evolution of wireless technologies to sixth-generation networks (6G) can support innovation in Colombia’s agricultural sector and foster rural advancement. The study follows three main phases: search, analysis, and selection of information. In the search phase, key government policies, spectrum management strategies, and the relevant literature from 2020 to 2025 were reviewed. The analysis phase addresses challenges such as spectrum regulation and infrastructure deployment within the context of a developing country. Finally, the selection phase evaluates technological readiness and policy frameworks. Findings suggest that 6G could revolutionize Colombian agriculture by improving connectivity, enabling real-time monitoring, and facilitating precision farming, especially in rural areas with limited infrastructure. Successful 6G deployment could boost agricultural productivity, reduce socioeconomic disparities, and foster sustainable rural development, contingent on aligned public policies, infrastructure investments, and human capital development. Full article
(This article belongs to the Special Issue Sustainable Precision Agriculture: Latest Advances and Prospects)
Show Figures

Figure 1

23 pages, 740 KiB  
Article
A Multi-Paradigm Ethical Framework for Hybrid Intelligence in Blockchain Technology and Cryptocurrency Systems Governance
by Haris Alibašić
FinTech 2025, 4(3), 34; https://doi.org/10.3390/fintech4030034 - 22 Jul 2025
Viewed by 68
Abstract
The integration of artificial intelligence and human decision-making within blockchain systems has raised complex ethical considerations, necessitating the development of comprehensive theoretical frameworks. This research develops a multi-paradigm ethical framework addressing the ethical dimensions of hybrid intelligence—the dynamic interplay between human judgment and [...] Read more.
The integration of artificial intelligence and human decision-making within blockchain systems has raised complex ethical considerations, necessitating the development of comprehensive theoretical frameworks. This research develops a multi-paradigm ethical framework addressing the ethical dimensions of hybrid intelligence—the dynamic interplay between human judgment and artificial intelligence—in the governance of blockchain technology and cryptocurrency systems. Drawing upon complexity theory and institutional theory, this study employs a theory synthesis methodology to investigate inherent paradoxes within hybrid intelligence systems, including how transparency creates new opacities in AI decision-making, decentralization enables centralized control, and algorithmic efficiency undermines ethical sensitivity. Through PRISMA-compliant systematic literature analysis of 50 relevant publications and theoretical synthesis, this research demonstrates how blockchain technology fundamentally redefines hybrid intelligence by establishing novel forms of trust, accountability, and collective decision-making. The framework advances three testable propositions regarding emergent intelligence properties, adaptive capacity, and institutional legitimacy while providing practical governance principles and implementation methodologies for blockchain developers, regulators, and participants. This study contributes theoretically by bridging the fields of complex systems and institutional analysis, integrating complex adaptive systems with institutional legitimacy processes through a multi-paradigm integration methodology. It delivers an ethical framework that addresses accountability distribution in Decentralized Autonomous Organizations, quantifies ethical challenges across major platforms, and offers empirically validated guidelines for balancing algorithmic autonomy with human oversight in decentralized systems. Full article
Show Figures

Figure 1

15 pages, 2775 KiB  
Article
Quantifying the Complexity of Rough Surfaces Using Multiscale Entropy: The Critical Role of Binning in Controlling Amplitude Effects
by Alex Kondi, Vassilios Constantoudis, Panagiotis Sarkiris and Evangelos Gogolides
Mathematics 2025, 13(15), 2325; https://doi.org/10.3390/math13152325 - 22 Jul 2025
Viewed by 112
Abstract
A salient feature of modern material surfaces used in cutting-edge technologies is their structural and spatial complexity, which endows them with novel properties and multifunctionality. The quantitative characterization of material complexity is a challenge that must be addressed to optimize their production and [...] Read more.
A salient feature of modern material surfaces used in cutting-edge technologies is their structural and spatial complexity, which endows them with novel properties and multifunctionality. The quantitative characterization of material complexity is a challenge that must be addressed to optimize their production and performance. While numerous metrics exist to quantify the complexity of spatial structures in various scientific domains, methods specifically tailored for characterizing the spatial complexity of material surface morphologies at the micro- and nanoscale are relatively scarce. In this paper, we utilize the concept of multiscale entropy to quantify the complexity of surface morphologies of rough surfaces across different scales and investigate the effects of amplitude fluctuations (i.e., surface height distribution) in both stepwise and smooth self-affine rough surfaces. The crucial role of the binning scheme in regulating amplitude effects on entropy and complexity measurements is highlighted and explained. Furthermore, by selecting an appropriate binning strategy, we analyze the impact of 2D imaging on the complexity of a rough surface and demonstrate that imaging can artificially introduce peaks in the relationship between complexity and surface amplitude. The results demonstrate that entropy-based spatial complexity effectively captures the scale-dependent heterogeneity of stepwise rough surfaces, providing valuable insights into their structural properties. Full article
(This article belongs to the Special Issue Chaos Theory and Complexity)
Show Figures

Figure 1

51 pages, 4910 KiB  
Review
The Impact of Building Windows on Occupant Well-Being: A Review Integrating Visual and Non-Visual Pathways with Multi-Objective Optimization
by Siqi He, Wenli Zhang and Yang Guan
Buildings 2025, 15(14), 2577; https://doi.org/10.3390/buildings15142577 - 21 Jul 2025
Viewed by 226
Abstract
This review investigates the role of building windows in supporting occupant well-being through access to natural views and daylight. This review synthesizes recent interdisciplinary research from environmental psychology, building science, and human physiology to examine how windows impact cognitive performance, psychological restoration, and [...] Read more.
This review investigates the role of building windows in supporting occupant well-being through access to natural views and daylight. This review synthesizes recent interdisciplinary research from environmental psychology, building science, and human physiology to examine how windows impact cognitive performance, psychological restoration, and circadian health. Drawing on 304 peer-reviewed studies from 2000 to 2024, the review identifies two core pathways: visual effects—related to daylight availability, glare control, and view quality—and non-visual effects—linked to circadian entrainment and neuroendocrine regulation via ipRGCs. These effects interact yet compete, necessitating a multi-objective optimization approach. This paper evaluates commonly used metrics for visual comfort, circadian-effective lighting, and view quality and discusses their integration in design frameworks. The review also highlights the potential of adaptive facade technologies and artificial window systems to balance human-centered lighting goals with energy efficiency. A research roadmap is proposed to support future integrative design strategies that optimize both visual and non-visual outcomes in diverse architectural contexts. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 627 KiB  
Review
Mapping the Impact of Generative AI on Disinformation: Insights from a Scoping Review
by Alexandre López-Borrull and Carlos Lopezosa
Publications 2025, 13(3), 33; https://doi.org/10.3390/publications13030033 - 21 Jul 2025
Viewed by 279
Abstract
This article presents a scoping review of the academic literature published between 2021 and 2024 on the intersection of generative artificial intelligence (AI) and disinformation. Drawing from 64 peer-reviewed studies, the review examines the current research landscape and identifies six key thematic areas: [...] Read more.
This article presents a scoping review of the academic literature published between 2021 and 2024 on the intersection of generative artificial intelligence (AI) and disinformation. Drawing from 64 peer-reviewed studies, the review examines the current research landscape and identifies six key thematic areas: political disinformation and propaganda; scientific disinformation; fact-checking; journalism and the media; media literacy and education; and deepfakes. The findings reveal that generative AI plays a dual role: it enables the rapid creation and targeted dissemination of synthetic content but also offers new opportunities for detection, verification, and public education. Beyond summarizing research trends, this review highlights the broader societal and practical implications of generative AI in the context of information disorder. It outlines how AI tools are already reshaping journalism, challenging scientific communication, and transforming strategies for media literacy and fact-checking. The analysis also identifies key policy and governance challenges, particularly the need for coordinated responses from governments, platforms, educators, and civil society actors. By offering a structured overview of the field, the article enhances our understanding of how generative AI can both exacerbate and help mitigate disinformation, and proposes directions for research, regulation, and public engagement. Full article
Show Figures

Figure 1

20 pages, 1791 KiB  
Review
Regulation of Bombyx mori–BmNPV Protein Interactions: Study Strategies and Molecular Mechanisms
by Dan Guo, Bowen Liu, Mingxing Cui, Heying Qian and Gang Li
Viruses 2025, 17(7), 1017; https://doi.org/10.3390/v17071017 - 20 Jul 2025
Viewed by 260
Abstract
As a pivotal model organism in Lepidoptera research, the silkworm (Bombyx mori) holds significant importance in life science due to its economic value and biotechnological applications. Advancements in proteomics and bioinformatics have enabled substantial progress in characterizing the B. mori proteome. [...] Read more.
As a pivotal model organism in Lepidoptera research, the silkworm (Bombyx mori) holds significant importance in life science due to its economic value and biotechnological applications. Advancements in proteomics and bioinformatics have enabled substantial progress in characterizing the B. mori proteome. Systematic screening and identification of protein–protein interactions (PPIs) have progressively elucidated the molecular mechanisms governing key biological processes, including viral infection, immune regulation, and growth development. This review comprehensively summarizes traditional PPI detection techniques, such as yeast two-hybrid (Y2H) and immunoprecipitation (IP), alongside emerging methodologies such as mass spectrometry-based interactomics and artificial intelligence (AI)-driven PPI prediction. We critically analyze the strengths, limitations, and technological integration strategies for each approach, highlighting current field challenges. Furthermore, we elaborate on the molecular regulatory networks of Bombyx mori nucleopolyhedrovirus (BmNPV) from multiple perspectives: apoptosis and cell cycle regulation; viral protein invasion and trafficking; non-coding RNA-mediated modulation; metabolic reprogramming; and host immune evasion. These insights reveal the dynamic interplay between viral replication and host defense mechanisms. Collectively, this synthesis aims to provide a robust theoretical foundation and technical guidance for silkworm genetic improvement, infectious disease management, and the advancement of related biotechnological applications. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

22 pages, 1446 KiB  
Review
Integrating Redox Proteomics and Computational Modeling to Decipher Thiol-Based Oxidative Post-Translational Modifications (oxiPTMs) in Plant Stress Physiology
by Cengiz Kaya and Francisco J. Corpas
Int. J. Mol. Sci. 2025, 26(14), 6925; https://doi.org/10.3390/ijms26146925 - 18 Jul 2025
Viewed by 158
Abstract
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. [...] Read more.
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. Advances in mass spectrometry-based redox proteomics have greatly enhanced the identification and quantification of oxiPTMs, enabling a more refined understanding of redox dynamics in plant cells. In parallel, the emergence of computational modeling, artificial intelligence (AI), and machine learning (ML) has revolutionized the ability to predict redox-sensitive residues and characterize redox-dependent signaling networks. This review provides a comprehensive synthesis of methodological advancements in redox proteomics, including enrichment strategies, quantification techniques, and real-time redox sensing technologies. It also explores the integration of computational tools for predicting S-nitrosation, sulfenylation, S-glutathionylation, persulfidation, and disulfide bond formation, highlighting key models such as CysQuant, BiGRUD-SA, DLF-Sul, and Plant PTM Viewer. Furthermore, the functional significance of redox modifications is examined in plant development, seed germination, fruit ripening, and pathogen responses. By bridging experimental proteomics with AI-driven prediction platforms, this review underscores the future potential of integrated redox systems biology and emphasizes the importance of validating computational predictions, through experimental proteomics, for enhancing crop resilience, metabolic efficiency, and precision agriculture under climate variability. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 1420 KiB  
Article
Disaster Preparedness in Saudi Arabia’s Primary Healthcare Workers for Human Well-Being and Sustainability
by Mona Raif Alrowili, Alia Mohammed Almoajel, Fahad Magbol Alneam and Riyadh A. Alhazmi
Sustainability 2025, 17(14), 6562; https://doi.org/10.3390/su17146562 - 18 Jul 2025
Viewed by 262
Abstract
The preparedness of healthcare workers for disaster situations depends on their technical skills, disaster knowledge, and psychosocial strength, including teamwork and emotional regulation. This study aims to assess disaster preparedness among healthcare professionals in primary healthcare centers (PHCs) in Alqurayat, Saudi Arabia, with [...] Read more.
The preparedness of healthcare workers for disaster situations depends on their technical skills, disaster knowledge, and psychosocial strength, including teamwork and emotional regulation. This study aims to assess disaster preparedness among healthcare professionals in primary healthcare centers (PHCs) in Alqurayat, Saudi Arabia, with a specific focus on evaluating technical competencies, psychosocial readiness, and predictive modeling of preparedness levels. A mixed-methods approach was employed, incorporating structured questionnaires, semi-structured interviews, and observational data from disaster drills to evaluate the preparedness levels of 400 healthcare workers, including doctors, nurses, and administrative staff. The results showed that while knowledge (mean: 3.9) and skills (mean: 4.0) were generally moderate to high, notable gaps in overall preparedness remained. Importantly, 69.5% of participants reported enhanced readiness following simulation drills. Machine learning models, including Random Forest and Artificial Neural Networks, were used to predict preparedness outcomes based on psychosocial variables such as emotional intelligence, teamwork, and stress management. Sentiment analysis and topic modeling of qualitative responses revealed key themes including communication barriers, psychological safety, and the need for ongoing training. The findings highlight the importance of integrating both technical competencies and psychosocial resilience into disaster management programs. This study contributes an innovative framework for evaluating preparedness and offers practical insights for policymakers, disaster planners, and health training institutions aiming to strengthen the sustainability and responsiveness of primary healthcare systems. Full article
(This article belongs to the Special Issue Occupational Mental Health)
Show Figures

Figure 1

15 pages, 1599 KiB  
Article
Visual Representations in AI: A Study on the Most Discriminatory Algorithmic Biases in Image Generation
by Yazmina Vargas-Veleda, María del Mar Rodríguez-González and Iñigo Marauri-Castillo
Journal. Media 2025, 6(3), 110; https://doi.org/10.3390/journalmedia6030110 - 18 Jul 2025
Viewed by 206
Abstract
This study analyses algorithmic biases in AI-generated images, focusing on aesthetic violence, gender stereotypes, and weight discrimination. By examining images produced by the DALL-E Nature and Flux 1 systems, it becomes evident how these tools reproduce and amplify hegemonic beauty standards, excluding bodily [...] Read more.
This study analyses algorithmic biases in AI-generated images, focusing on aesthetic violence, gender stereotypes, and weight discrimination. By examining images produced by the DALL-E Nature and Flux 1 systems, it becomes evident how these tools reproduce and amplify hegemonic beauty standards, excluding bodily diversity. Likewise, gender representations reinforce traditional roles, sexualising women and limiting the presence of non-normative bodies in positive contexts. The results show that training data and the algorithms used significantly influence these trends, perpetuating exclusionary visual narratives. The research highlights the need to develop more inclusive and ethical AI models, with diverse data that reflect the plurality of bodies and social realities. The study concludes that artificial intelligence (AI), far from being neutral, actively contributes to the reproduction of power structures and inequality, posing an urgent challenge for the development and regulation of these technologies. Full article
Show Figures

Figure 1

16 pages, 2108 KiB  
Article
Decoding the JAK-STAT Axis in Colorectal Cancer with AI-HOPE-JAK-STAT: A Conversational Artificial Intelligence Approach to Clinical–Genomic Integration
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Cancers 2025, 17(14), 2376; https://doi.org/10.3390/cancers17142376 - 17 Jul 2025
Viewed by 215
Abstract
Background/Objectives: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is a critical mediator of immune regulation, inflammation, and cancer progression. Although implicated in colorectal cancer (CRC) pathogenesis, its molecular heterogeneity and clinical significance remain insufficiently characterized—particularly within early-onset CRC [...] Read more.
Background/Objectives: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is a critical mediator of immune regulation, inflammation, and cancer progression. Although implicated in colorectal cancer (CRC) pathogenesis, its molecular heterogeneity and clinical significance remain insufficiently characterized—particularly within early-onset CRC (EOCRC) and across diverse treatment and demographic contexts. We present AI-HOPE-JAK-STAT, a novel conversational artificial intelligence platform built to enable the real-time, natural language-driven exploration of JAK/STAT pathway alterations in CRC. The platform integrates clinical, genomic, and treatment data to support dynamic, hypothesis-generating analyses for precision oncology. Methods: AI-HOPE-JAK-STAT combines large language models (LLMs), a natural language-to-code engine, and harmonized public CRC datasets from cBioPortal. Users define analytical queries in plain English, which are translated into executable code for cohort selection, survival analysis, odds ratio testing, and mutation profiling. To validate the platform, we replicated known associations involving JAK1, JAK3, and STAT3 mutations. Additional exploratory analyses examined age, treatment exposure, tumor stage, and anatomical site. Results: The platform recapitulated established trends, including improved survival among EOCRC patients with JAK/STAT pathway alterations. In FOLFOX-treated CRC cohorts, JAK/STAT-altered tumors were associated with significantly enhanced overall survival (p < 0.0001). Stratification by age revealed survival advantages in younger (age < 50) patients with JAK/STAT mutations (p = 0.0379). STAT5B mutations were enriched in colon adenocarcinoma and correlated with significantly more favorable trends (p = 0.0000). Conversely, JAK1 mutations in microsatellite-stable tumors did not affect survival, emphasizing the value of molecular context. Finally, JAK3-mutated tumors diagnosed at Stage I–III showed superior survival compared to Stage IV cases (p = 0.00001), reinforcing stage as a dominant clinical determinant. Conclusions: AI-HOPE-JAK-STAT establishes a new standard for pathway-level interrogation in CRC by empowering users to generate and test clinically meaningful hypotheses without coding expertise. This system enhances access to precision oncology analyses and supports the scalable, real-time discovery of survival trends, mutational associations, and treatment-response patterns across stratified patient cohorts. Full article
(This article belongs to the Special Issue AI-Based Applications in Cancers)
Show Figures

Figure 1

21 pages, 1186 KiB  
Article
How Digital Technology and Business Innovation Enhance Economic–Environmental Sustainability in Legal Organizations
by Linhua Xia, Zhen Cao and Muhammad Bilawal Khaskheli
Sustainability 2025, 17(14), 6532; https://doi.org/10.3390/su17146532 - 17 Jul 2025
Viewed by 340
Abstract
This study discusses the role of organizational pro-environmental behavior in driving sustainable development. Studies of green practices highlight their capacity to achieve ecological goals while delivering economic sustainability with business strategies for sustainable businesses and advancing environmental sustainability law. It also considers how [...] Read more.
This study discusses the role of organizational pro-environmental behavior in driving sustainable development. Studies of green practices highlight their capacity to achieve ecological goals while delivering economic sustainability with business strategies for sustainable businesses and advancing environmental sustainability law. It also considers how the development of artificial intelligence, resource management, big data analysis, blockchain, and the Internet of Things enables companies to maximize supply efficiency and address evolving environmental regulations and sustainable decision-making. Through digital technology, businesses can facilitate supply chain transparency, adopt circular economy practices, and produce in an equitable and environmentally friendly manner. Additionally, intelligent business management practices, such as effective decision-making and sustainability reporting, enhance compliance with authorities while ensuring long-term profitability from a legal perspective. Integrating business innovation and digital technology within legal entities enhances economic efficiency, reduces operational costs, improves environmental sustainability, reduces paper usage, and lowers the carbon footprint, creating a double-benefit model of long-term resilience. The policymakers’ role in formulating policy structures that lead to green digital innovation is also to ensure that economic development worldwide is harmonized with environmental protection and international governance. Using example studies and empirical research raises awareness about best practices in technology-based sustainability initiatives across industries and nations, aligning with the United Nations Sustainable Development Goals. Full article
Show Figures

Figure 1

33 pages, 534 KiB  
Review
Local AI Governance: Addressing Model Safety and Policy Challenges Posed by Decentralized AI
by Bahrad A. Sokhansanj
AI 2025, 6(7), 159; https://doi.org/10.3390/ai6070159 - 17 Jul 2025
Viewed by 641
Abstract
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly [...] Read more.
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly advancing software and hardware technologies. Open-source AI models now run on personal computers and devices, invisible to regulators and stripped of safety constraints. The capabilities of local-scale AI models now lag just months behind those of state-of-the-art proprietary models. Wider adoption of local AI promises significant benefits, such as ensuring privacy and autonomy. However, adopting local AI also threatens to undermine the current approach to AI safety. In this paper, we review how technical safeguards fail when users control the code, and regulatory frameworks cannot address decentralized systems as deployment becomes invisible. We further propose ways to harness local AI’s democratizing potential while managing its risks, aimed at guiding responsible technical development and informing community-led policy: (1) adapting technical safeguards for local AI, including content provenance tracking, configurable safe computing environments, and distributed open-source oversight; and (2) shaping AI policy for a decentralized ecosystem, including polycentric governance mechanisms, integrating community participation, and tailored safe harbors for liability. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

26 pages, 2018 KiB  
Review
Influence of Light Regimes on Production of Beneficial Pigments and Nutrients by Microalgae for Functional Plant-Based Foods
by Xiang Huang, Feng Wang, Obaid Ur Rehman, Xinjuan Hu, Feifei Zhu, Renxia Wang, Ling Xu, Yi Cui and Shuhao Huo
Foods 2025, 14(14), 2500; https://doi.org/10.3390/foods14142500 - 17 Jul 2025
Viewed by 325
Abstract
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic [...] Read more.
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic microalgae are particularly important as a source of food products due to their ability to biosynthesize high-value compounds. Their photosynthetic efficiency and biosynthetic activity are directly influenced by light conditions. The primary goal of this study is to track the changes in the light requirements of various high-value microalgae species and use advanced systems to regulate these conditions. Artificial intelligence (AI) and machine learning (ML) models have emerged as pivotal tools for intelligent microalgal cultivation. This approach involves the continuous monitoring of microalgal growth, along with the real-time optimization of environmental factors and light conditions. By accumulating data through cultivation experiments and training AI models, the development of intelligent microalgae cell factories is becoming increasingly feasible. This review provides a concise overview of the regulatory mechanisms that govern microalgae growth in response to light conditions, explores the utilization of microalgae-based products in plant-based foods, and highlights the potential for future research on intelligent microalgae cultivation systems. Full article
Show Figures

Graphical abstract

27 pages, 1666 KiB  
Article
Artificial Intelligence and Environmental Sustainability Playbook for Energy Sector Leaders
by Abdullah Abonamah, Salah Hassan and Tena Cale
Sustainability 2025, 17(14), 6529; https://doi.org/10.3390/su17146529 - 17 Jul 2025
Viewed by 340
Abstract
The energy sector uses artificial intelligence (AI) as a crucial instrument to achieve environmental sustainability targets by improving resource efficiency and decreasing emissions while minimizing waste production. This paper establishes an industry-specific executive playbook that guides energy sector leaders by implementing AI technologies [...] Read more.
The energy sector uses artificial intelligence (AI) as a crucial instrument to achieve environmental sustainability targets by improving resource efficiency and decreasing emissions while minimizing waste production. This paper establishes an industry-specific executive playbook that guides energy sector leaders by implementing AI technologies for sustainability management with approaches suitable for industrial needs. The playbook provides an industry-specific framework along with strategies and AI-based solutions to help organizations overcome their sustainability challenges. Predictive analytics combined with smart grid management implemented through AI applications produced 15% less energy waste and reduced carbon emissions by 20% according to industry pilot project data. AI has proven its transformative capabilities by optimizing energy consumption while detecting inefficiencies to create both operational improvements and cost savings. The real-time monitoring capabilities of AI systems help companies meet strict environmental regulations and international climate goals by optimizing resource use and waste reduction, supporting circular economy practices for sustainable operations and enduring profitability. Leaders can establish impactful technology-based sustainability initiatives through the playbook which addresses the energy sector requirements for corporate goals and regulatory standards. Full article
Show Figures

Figure 1

Back to TopTop