Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = armour protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6795 KB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 363
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 2580 KB  
Article
Dual-Particle Synergy in Bio-Based Linseed Oil Pickering Emulsions: Optimising ZnO–Silica Networks for Greener Mineral Sunscreens
by Marina Barquero, Luis A. Trujillo-Cayado and Jenifer Santos
Materials 2025, 18(13), 3030; https://doi.org/10.3390/ma18133030 - 26 Jun 2025
Viewed by 442
Abstract
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect [...] Read more.
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect of incorporating fumed silica/alumina (Aerosil COK 84) was evaluated. A central composite response surface design was used to ascertain the oil/ZnO ratio that maximised the in vitro sun protection factor at sub-300 nm droplet size. The incorporation of Aerosil at concentrations ranging from 0 to 2 wt.% resulted in a transformation of the dispersion from a nearly Newtonian state to a weak-gel behaviour. This alteration was accompanied by a reduction in the Turbiscan Stability Index. Microscopic analysis has revealed a hierarchical particle architecture, in which ZnO forms Pickering shells around each droplet, while Aerosil aggregates bridge neighboring interfaces, creating a percolated silica scaffold that immobilises droplets and amplifies multiple UV scattering. The findings demonstrate that coupling interfacial Pickering armour with a continuous silica network yields a greener, physically robust mineral sunscreen and offers a transferable strategy for stabilising plant-oil emulsions containing inorganic actives. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

24 pages, 9533 KB  
Article
Determination of Fracture Toughness and Resistance Curves by Three Methods on Armoured Steel
by Mirza Manjgo, Srečko Glodež, Gorazd Lojen and Tomaž Vuherer
J. Manuf. Mater. Process. 2025, 9(7), 212; https://doi.org/10.3390/jmmp9070212 - 24 Jun 2025
Viewed by 844
Abstract
Parameters of EPFM are used as relevant parameters in structural integrity assessments. In this research, the fracture toughness of armoured steel was determined. The resulting resistance curves and KJIC obtained according to the ASTM E1820 standard with normalization, compliance and multi-specimen methods [...] Read more.
Parameters of EPFM are used as relevant parameters in structural integrity assessments. In this research, the fracture toughness of armoured steel was determined. The resulting resistance curves and KJIC obtained according to the ASTM E1820 standard with normalization, compliance and multi-specimen methods were compared. Also, the KIC was verified according to the ASTM E399 standard as the most precise method for obtaining the KIC, which also requires a lot of knowledge. For the experiment, the multi-specimen method was used, which is the most expensive and most accurate method, where the least assumption and crack size is measured on the specimen. A fractographic analysis was also presented, and this heat-treated high-strength steel, which is used for anti-ballistic protection, was fully characterized. Full article
Show Figures

Figure 1

7 pages, 655 KB  
Proceeding Paper
Fish Scale-Inspired Stab-Resistant Body Armour
by Sidharath Sharma and Parvez Alam
Mater. Proc. 2025, 20(1), 6; https://doi.org/10.3390/materproc2025020006 - 12 Mar 2025
Viewed by 768
Abstract
While commercially available lightweight “stab-proof” apparel exists, it offers little resistance to true stabbing as it is primarily designed to withstand slash attacks. Yet, crimes involving the use of a knife or sharp instrument have consistently been rising in the UK over several [...] Read more.
While commercially available lightweight “stab-proof” apparel exists, it offers little resistance to true stabbing as it is primarily designed to withstand slash attacks. Yet, crimes involving the use of a knife or sharp instrument have consistently been rising in the UK over several decades. For the most part, the various proposed solutions to stab-proofing are based on speciality textiles and while these have shown success in slash-proofing, their utility for stab-proofing is still somewhat of a misnomer. Nature showcases a plethora of puncture-resisting materials and structures. At the macro-scale, these include carapaces, egg cases, toughened skin, and more. One of the most effective protective mechanisms known comes through surface scaling, present on animals such as reptiles and fish. Scaled protective armours present in extant fish species include overlapping elasmoid scales, interlocking ganoid scales, placoid scales, tessellating carapace scutes, and interlocking plates. Here, we research overlapping and interlocking scaled structures to ascertain the stab penetration resistance of biomimetic scaled structures against continuum material to obtain the force–time relationship of the impact event as well as ascertaining the penetration depth. We use additive manufacturing methods to manufacture biomimetic armour made of nylon, a common protective artificial material used in slash-proofing textiles. Stab testing to the closely replicated HOSDB body armour standard 2017, we find that biomimetic scales made of nylon offer greater protection against direct stabbing than continuum nylon material sheets. This can be attributed to (a) the heightened flexibility in an interlocked fish scale structure that does not exist in a continuum sheet of the same material; (b) the effect of overlapping of the fish scales, resulting in a greater penetration depth requirement before the structure undergoes perforation; and (c) segmentation into smaller armour plates (of the same thickness) rather than continuum sheets provides a lower span-to-depth ratio, therefore leading to a smaller deflection of the plate upon impact and a greater deceleration and, hence, a greater impact force. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
Show Figures

Figure 1

14 pages, 2911 KB  
Article
Armoured Lepidopteran Caterpillars Preserved in Non-Fossil Resins and What They Tell Us about the Fossil Preservation of Caterpillars
by Joshua Gauweiler, André P. Amaral, Carolin Haug and Joachim T. Haug
Insects 2024, 15(6), 380; https://doi.org/10.3390/insects15060380 - 22 May 2024
Viewed by 1182
Abstract
Resin is a plastic-like product of trees. Older occurrences of such resin are referred to as amber and are considered fossil resin. Younger resins are termed copals. Even younger ones have been dubbed defaunation resins. Non-fossil resins remain in a terminological limbo, often [...] Read more.
Resin is a plastic-like product of trees. Older occurrences of such resin are referred to as amber and are considered fossil resin. Younger resins are termed copals. Even younger ones have been dubbed defaunation resins. Non-fossil resins remain in a terminological limbo, often referred to as “sub-fossils”. We report two lepidopteran caterpillars preserved in non-fossil resin: one from Madagascar, one from Brazil. Prominent hairs (=setae) and spines (=spine-like setae) of the specimens make it likely that they represent larvae of Erebidae (e.g., tussock moths and others). So far, most known caterpillars preserved in resins are either “naked” or bear protective cases; only few are armoured with spines or hairs. In particular, long-haired caterpillars such as the ones reported here are so far almost absent. Only one specimen with comparable setae has been reported from 15-million-year-old Dominican amber, but no significant details of this specimen are accessible. We briefly also review the record of caterpillars known from the Holocene, recognising that it is very sparse. The new specimens demonstrate that very hairy caterpillars can readily be preserved in resins in fine detail. Furthermore, the specimens increase the known size range of caterpillars preserved in resins, with one measuring more than 12 mm. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

18 pages, 6212 KB  
Article
Frequency Analysis of Vibrations in Terms of Human Exposure While Driving Military Armoured Personnel Carriers and Logistic Transportation Vehicles
by Daniela Voicu, Ramona Monica Stoica, Radu Vilău, Marin Marinescu, Angela Digulescu, Cristina Despina-Stoian and Florin Popescu
Electronics 2023, 12(14), 3152; https://doi.org/10.3390/electronics12143152 - 20 Jul 2023
Cited by 6 | Viewed by 2688
Abstract
Military heavy vehicle drivers experience low-frequency vibrations that are associated with fatigue, drowsiness, and other adverse health effects. The existing research papers focus on performing different types of analysis, but few use advance signal processing tools based on recurrence plot representation; therefore, the [...] Read more.
Military heavy vehicle drivers experience low-frequency vibrations that are associated with fatigue, drowsiness, and other adverse health effects. The existing research papers focus on performing different types of analysis, but few use advance signal processing tools based on recurrence plot representation; therefore, the main goal of this paper is to assess the whole-body vibration (WBV) and hand-arm vibration (HAV) exposure of a driver, comparing armoured personnel carriers and cargo destined vehicles. For this purpose, the power of a signal distributed over its frequency was analysed using power spectral density (PSD) and diagonal line quantification (DLQ) analysis. According to the results, in the case of the cargo vehicle, the driver experienced vibration dose values of frequency weighted acceleration above the limits during all three experimental tests, with a maximum value of 26.802 m/s2, whereas the results in the case of the armoured personnel carrier are below the 5 m/s2 limit imposed by the ISO 5349-2 standard. From the developed tests it was observed that, to protect the driver against the fatigue induced by the vibrations of the vehicle body, it is necessary to provide an elastic and also damping linkage between the vehicle and the driver’s seat. This is the only way to ensure the needed protection and it is, by far, the least expensive. Full article
(This article belongs to the Special Issue New Trends and Methods in Communication Systems)
Show Figures

Figure 1

18 pages, 9791 KB  
Article
A Numerical Modelling Framework for Investigating the Ballistic Performance of Bio-Inspired Body Armours
by Abdallah Ghazlan, Tuan Ngo, Ping Tan, Phuong Tran and Yi Min Xie
Biomimetics 2023, 8(2), 195; https://doi.org/10.3390/biomimetics8020195 - 8 May 2023
Cited by 5 | Viewed by 2962
Abstract
Biological structures possess excellent damage tolerance, which makes them attractive for ballistic protection applications. This paper develops a finite element modelling framework to investigate the performance of several biological structures that are most relevant for ballistic protection, including nacre, conch, fish scales, and [...] Read more.
Biological structures possess excellent damage tolerance, which makes them attractive for ballistic protection applications. This paper develops a finite element modelling framework to investigate the performance of several biological structures that are most relevant for ballistic protection, including nacre, conch, fish scales, and crustacean exoskeleton. Finite element simulations were conducted to determine the geometric parameters of the bio-inspired structures that can survive projectile impact. The performances of the bio-inspired panels were benchmarked against a monolithic panel with the same 4.5 mm overall thickness and projectile impact condition. It was found that the biomimetic panels that were considered possessed better multi-hit resistant capabilities compared to the selected monolithic panel. Certain configurations arrested a fragment simulating projectile with an initial impact velocity of 500 m/s, which was similar to the performance of the monolithic panel. Full article
Show Figures

Graphical abstract

13 pages, 3840 KB  
Article
Procedure of Numerical Modelling and Estimation of Sieve Curve Changes as a Tool to Define Riverbed’s Erodibility
by Jacek Florek and Maciej Wyrębek
Sustainability 2023, 15(2), 1468; https://doi.org/10.3390/su15021468 - 12 Jan 2023
Cited by 1 | Viewed by 2027
Abstract
The numerical 1-D HEC-RAS modelling tool was supported by the estimation of the sieve curve changes procedure to measure the scale of predicted discharges along a stretch of stream in southern Poland on the Olkusz Upland. The procedure was calibrated in southern Poland [...] Read more.
The numerical 1-D HEC-RAS modelling tool was supported by the estimation of the sieve curve changes procedure to measure the scale of predicted discharges along a stretch of stream in southern Poland on the Olkusz Upland. The procedure was calibrated in southern Poland on the mountain streams during high-stage events, using a radiotracer application in bedload transport. Particular terrain hypsometry, created by the dissolution of limestone, forced the deep erosion of the river valley bottom; it is here that the current shape of the riverbed of the Prądnik stream is placed. While numerical modelling is widely used in hydraulics, standards have been set for the estimation of flood risk zones; these estimations suggest that the densities of the measured cross-sections are less then optimal, and that the erosive processes are more frequent. This was proved by identifying a number of erosive sections. A new procedure proposed combining the prediction of grain size distribution with hydraulic modelling. Calculations using the estimation of sieve curves, based on the processes of creation and destruction in the armouring layer, have proven to be a challenge for the existing standards of hydraulic modelling. We believe that it is easy to expand the usefulness of the 1D model by utilising its results for this procedure. For the purpose of this type of analysis, dense cross-section measurements are involved, careful modelling is required and a wide range of additional in-field data has to be gathered. For the interpretation of the results, the relation between channel-forming discharge, bankfull discharge, present and critical shear stresses, as well as the mean diameter of the grain size and other estimated sieve curve parameters, were evaluated. Channel-forming discharge is smaller than the bankfull discharge in more than one third of the segment where the erosion process is more frequent and the stability of the riverbed is compromised. Channel-forming discharge was at least twice as high in the stable sections, compared to the erosive section. The presented method will help to find unstable riverbed sections, in order to mitigate the dimension of river training techniques and protect the natural state of the river. While we are in the period of development in this region of Europe, limiting the scope of interference in rivers and streams by applying this method may create an opportunity for the concept of river training close to nature. Full article
Show Figures

Graphical abstract

20 pages, 7173 KB  
Article
Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment
by Wen Jin, Hao Wang, Guotao Zhang, Dingzhu Liu and Jiao Wang
Remote Sens. 2022, 14(23), 6060; https://doi.org/10.3390/rs14236060 - 29 Nov 2022
Cited by 3 | Viewed by 2084
Abstract
Earthquakes–induced landslides generally provide abundant loose materials at hillslopes, possibly triggering morphological reshaping processes at river channels and riverbeds during the large flash flood hydrograph and bringing huge risk downstream. Therefore, in a Wenchuan earthquake-affected catchment, the collected hydro-meteorological data and high-precision small [...] Read more.
Earthquakes–induced landslides generally provide abundant loose materials at hillslopes, possibly triggering morphological reshaping processes at river channels and riverbeds during the large flash flood hydrograph and bringing huge risk downstream. Therefore, in a Wenchuan earthquake-affected catchment, the collected hydro-meteorological data and high-precision small Unmanned Aerial Vehicle (sUAV) data were used to quantitatively analyze channel evolution by a large flash flood event on 25 and 26 June 2018. It was found that the stable riverbed structure formed by the armour layer appeared in the tenth year after the Wenchuan earthquake. In a confined channel, the layer can protect the channel and resist the drastic change after the flash flood event with only a small bed elevation from 0.2 m to 2 m. Without the protection of the armour, the change could reach 6 m in the unconfined channel. Meanwhile, more materials with a deposition volume of about 7450 m3 from tributaries were generally taken to the main channel, and more intense erosion with a volume of 105 m3 mostly occurred downstream of tributaries. It was noted that, in the cross-section, the increased channel width could lead to a significant change with the large volume of 35 m3. Additionally, a conceptual diagram of the generalized channel response to large flash floods was provided during multi-stage periods after the Wenchuan earthquake. It determined the rebalance processes of channel evolution in the tenth year after the earthquake. This study will contribute to understanding the post-earthquake long-term channel evolutions and could provide decision-makers of assessing the mitigation strategies for higher-magnitude flood disasters triggered by channel change in earthquake-affected watersheds. Full article
Show Figures

Figure 1

24 pages, 953 KB  
Perspective
Global Coasts: A Baroque Embarrassment of Riches
by Thomas A. Schlacher, Brooke Maslo and Matthieu A. de Schipper
Coasts 2022, 2(4), 278-301; https://doi.org/10.3390/coasts2040014 - 8 Nov 2022
Cited by 4 | Viewed by 3486
Abstract
Coasts form the universal stage on which people interact with the global ocean. Our history is inextricably intertwined with the seashore, being a rich tapestry of archaeological sites that paint a vivid picture of people hunting, foraging, fishing and scavenging at the edge [...] Read more.
Coasts form the universal stage on which people interact with the global ocean. Our history is inextricably intertwined with the seashore, being a rich tapestry of archaeological sites that paint a vivid picture of people hunting, foraging, fishing and scavenging at the edge of the sea. Seascapes inspire diverse art forms celebrated through the ages. The world’s sandy beaches have a flummoxing duality of anthropocentric purpose—ranging from the horrors when being theatres of war to first love under a rising moon. ‘Man’s Love of the Sea’ continues to draw people towards the shore: the narrow coastal strip contains everything from holiday cottages to mega-cities. This coastal concentration of the human population is problematic when shorelines erode and move inland, a geological process fastened by climate change. Society’s response is often a heavy investment in coastal engineering to complement and enhance the natural storm protection capacity of beaches and dunes. The coast’s immense cultural, social, and economic significance are complemented by a wealth of natural riches. In the public’s eye, these ecological values can pale somewhat compared with more imminent ecosystem services, particularly protecting human properties from storm impacts. To re-balance the picture, here we illustrate how peer-reviewed science can be translated into ‘cool beach facts’, aimed at creating a broader environmental appreciation of ocean shores. The colourful kaleidoscope of coastal values faces a veritable array of anthropogenic stressors, from coastal armouring to environmental harm caused by off-road vehicles. Whilst these threats are not necessarily unique to coastal ecosystems, rarely do the winds of global change blow stiffer than at the edge of the sea, where millions of people have created their fragile homes on shifting sands now being increasingly eroded by rising seas. Natural shorelines accommodate such changing sea levels by moving landwards, a poignant and powerful reminder that protecting the remaining natural land is primus inter pares in coastal management. There is no doubt that coastal ecosystems and coastal communities face august trials to maintain essential ecosystem services in the face of global change. Whilst bureaucracies are not always well equipped to counteract environmental harm effectively, using measures carrying a social license, many communities and individuals have encouragingly deep values connected to living coastlines. Building on these values, and harnessing the fierce protective spirits of people, are pivotal to shaping fresh models that can enhance and re-build resilience for shores that will continue to be a ‘baroque embarrassment of coastal riches’. Full article
Show Figures

Figure 1

14 pages, 2214 KB  
Article
Field Campaign on Pressure on the Crown Wall at the Outer Port of Punta Langosteira Breakwater
by José Sande, Maria Graça Neves, José-Santos López-Gutiérrez, M. Dolores Esteban, Andrés Figuero and Vicente Negro
J. Mar. Sci. Eng. 2022, 10(10), 1377; https://doi.org/10.3390/jmse10101377 - 26 Sep 2022
Cited by 1 | Viewed by 2358
Abstract
Punta Langosteira port, located in A Coruña (Spain), was monitored during the winters of 2017 and 2018, measuring wave pressure in the crown wall structure. Furthermore, the metocean variables were measured on a buoy located very close to the breakwater. This paper presents [...] Read more.
Punta Langosteira port, located in A Coruña (Spain), was monitored during the winters of 2017 and 2018, measuring wave pressure in the crown wall structure. Furthermore, the metocean variables were measured on a buoy located very close to the breakwater. This paper presents the real pressures measured at the crown wall of the breakwater during different storm events. These values are compared with the results of the application of state-of-the-art equations for the calculation of pressures on crown walls. The results obtained show the behaviour of the pressures with a crown wall fully protected by the armour, as is the case of Langosteira breakwater. Finally, several conclusions are made on the methodology for measuring the pressures using physical models and the relevance of the armour roughness. Full article
(This article belongs to the Special Issue Coastal Engineering: Sustainability and New Technologies)
Show Figures

Figure 1

34 pages, 13769 KB  
Article
Efficiency of Different Cage Armour Systems
by Frederik Coghe
Appl. Sci. 2022, 12(10), 5064; https://doi.org/10.3390/app12105064 - 17 May 2022
Cited by 3 | Viewed by 10436
Abstract
Cage armour systems have been in use since the 1960s and are still being used extensively on many armoured vehicles up to this day to offer protection against mainly a number of RPG-7 shaped charge warheads. Nevertheless, many misunderstandings still exist up to [...] Read more.
Cage armour systems have been in use since the 1960s and are still being used extensively on many armoured vehicles up to this day to offer protection against mainly a number of RPG-7 shaped charge warheads. Nevertheless, many misunderstandings still exist up to this day as well as regarding their working principle as regarding their actual efficiency. This article will start by exploring the origins of the current cage armour systems and by explaining the working principle behind them. This will be followed by the development of a methodology to calculate the efficiency of different types of cage armour systems (slat, bar, net and inertial distributed weight systems) as a function of impact conditions for a specific RPG-7 shaped charge warhead. The results of the developed methodology will be compared to experimental results for four different cage armour systems, in order to validate the followed approach. It will then be applied to different cage armour systems in order to calculate their overall ballistic and mass efficiency as a function of the impact angle. The analysis will finally be refined taking into account the likely impact conditions for an RPG-7 shaped charge warhead, based on a simple trajectory model. Full article
(This article belongs to the Special Issue Armour and Protection Systems, Volume II)
Show Figures

Figure 1

19 pages, 3690 KB  
Article
Multi-Analytical Assessment of Bodied Drying Oil Varnishes and Their Use as Binders in Armour Paints
by Francesca Caterina Izzo, Arja Källbom and Austin Nevin
Heritage 2021, 4(4), 3402-3420; https://doi.org/10.3390/heritage4040189 - 14 Oct 2021
Cited by 12 | Viewed by 3444
Abstract
The characteristics of commercially available refined and bodied linseed and tung oils, used as binders in the production of armour paints after historic recipes, are explored. Employed as anticorrosive paints mainly from the 1920s to 1960s, armour paints are greener alternatives that can [...] Read more.
The characteristics of commercially available refined and bodied linseed and tung oils, used as binders in the production of armour paints after historic recipes, are explored. Employed as anticorrosive paints mainly from the 1920s to 1960s, armour paints are greener alternatives that can be used for protection in industrial heritage conservation. Using a multi-analytical approach, chemical and physical properties of the fresh oils and solid films before and after accelerated ageing (ISO 16474-2:2013) were investigated to better understand which features are beneficial for the technical function of armour paints. Tests included measurements of density, the refractive index, insoluble impurities, alkaline impurities, the water content, the iodine value, the saponification value, the free fatty acid concentration, the acid value, the peroxide value and colour (Lovibond) and cold tests. The characterisation of the fresh oils using molecular analysis with FTIR and GC-MS revealed the complexity of the commercial formulations, for which additions of semi- and non-drying oils were detected. The results show that organic paint binders follow complex chemical reactions (such as oxidation and decrease of unsaturation being variable or swelling following water-immersion tests), with implications for their suitability for use in protection. Full article
(This article belongs to the Special Issue Organic Materials in Heritage Science)
Show Figures

Figure 1

22 pages, 6936 KB  
Article
High-Velocity Impacts of Pyrophoric Alloy Fragments on Thin Armour Steel Plates
by Evaristo Santamaria Ferraro, Marina Seidl, Tom De Vuyst and Norbert Faderl
Materials 2021, 14(16), 4649; https://doi.org/10.3390/ma14164649 - 18 Aug 2021
Cited by 5 | Viewed by 3070
Abstract
The terminal ballistics effects of Intermetallic Reactive Materials (IRM) fragments have been the object of intense research in recent years. IRM fragments flying at velocities up to 2000 m/s represent a realistic threat in modern warfare scenarios as these materials are substituting conventional [...] Read more.
The terminal ballistics effects of Intermetallic Reactive Materials (IRM) fragments have been the object of intense research in recent years. IRM fragments flying at velocities up to 2000 m/s represent a realistic threat in modern warfare scenarios as these materials are substituting conventional solutions in defense applications. The IRM add Impact Induced Energy Release (IIER) to the mechanical interaction with a target. Therefore, the necessity of investigations on IIER to quantify potential threats to existing protection systems. In this study, Mixed Rare Earths (MRE) fragments were used due to the mechanical and pyrophoric affinity with IRM, the commercial availability and cost-effectiveness. High-Velocity Impacts (HVI) of MRE were performed at velocities ranging from 800 to 1600 m/s and recorded using a high-speed camera. 70 MREs cylindrical fragments and 24 steel fragments were shot on armour steel plates with thicknesses ranging from 2 mm to 3 mm. The influence of the impact pitch angle (α) on HVI outcomes was assessed, defining a threshold value at α of 20°. The influence of the failure modes of MRE and steel fragments on the critical impact velocities (CIV) and critical kinetic energy (Ekin crit) was evaluated. An energy-based model was developed and fitted with sufficient accuracy the Normalised EKin crit (E˜kincrit) determined from the experiments. IIER was observed in all the experiments involving MRE. From the analyses, it was observed that the IIER spreads behind the targets with velocities comparable to the residual velocities of plugs and shattered fragment. Full article
(This article belongs to the Special Issue Materials Dedicated for Armours and Protection Systems)
Show Figures

Figure 1

24 pages, 7547 KB  
Article
Multianalytical Assessment of Armour Paints—The Ageing Characteristics of Historic Drying Oil Varnish Paints for Protection of Steel and Iron Surfaces in Sweden
by Arja Källbom, Austin Nevin and Francesca C. Izzo
Heritage 2021, 4(3), 1141-1164; https://doi.org/10.3390/heritage4030063 - 7 Jul 2021
Cited by 4 | Viewed by 3211
Abstract
The characteristics of armour paints, historically used to protect ferrous industrial heritage, are explored. Amour paints contain lamellar and highly reflexive pigments of micaceous iron oxide (MIO) and metallic, leafing aluminium, bound in linseed oil and linseed oil–tung oil mixtures, on an inhibitive [...] Read more.
The characteristics of armour paints, historically used to protect ferrous industrial heritage, are explored. Amour paints contain lamellar and highly reflexive pigments of micaceous iron oxide (MIO) and metallic, leafing aluminium, bound in linseed oil and linseed oil–tung oil mixtures, on an inhibitive and soap-forming linseed oil primer (red lead). It is the first study of the binding media used for historical armour paints and investigates the chemical and physical ageing of armour paints using a multianalytical approach. Naturally aged examples are compared to accelerated aged replica armour paint, and to historical paints. The ageing and degradation reactions are assessed by complementary GC–MS and FTIR, together with measurements of wettability, hardness and surface colour. The historical paint formulations include linseed oils and alkyd binders. The results confirm that the leafing effect of aluminium pigments results in only a small concentration of binder at the surface: the paints studied reflect light and form a strong chemical and physical barrier. Linseed oils and tung oil mixtures have been proven to be suitable for the production of armour paints, but the evaluation of ageing and assessment of physical changes will require further investigation. Full article
(This article belongs to the Section Materials and Heritage)
Show Figures

Figure 1

Back to TopTop