Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = areal thermal resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2817 KiB  
Article
Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials
by Muhammad Shoaib, Hafsa Jamshaid, Rajesh Kumar Mishra, Kashif Iqbal, Miroslav Müller, Vijay Chandan and Tatiana Alexiou Ivanova
Materials 2024, 17(23), 5826; https://doi.org/10.3390/ma17235826 - 27 Nov 2024
Viewed by 2001
Abstract
Firefighters need personal protection equipment and protective clothing to be safe and protected when responding to fire incidents. At present, firefighters’ suits are developed by using inherently thermal-resistant fibers but pose serious problems related to comfort. In the present research, multilayered fire-fighting fabrics [...] Read more.
Firefighters need personal protection equipment and protective clothing to be safe and protected when responding to fire incidents. At present, firefighters’ suits are developed by using inherently thermal-resistant fibers but pose serious problems related to comfort. In the present research, multilayered fire-fighting fabrics were developed with different fiber blends. Multilayer fire retardant (FR) fabrics with phase change materials (PCMs) inserts were developed and compared with reference multilayer fabrics without PCM. In this context, four fabric samples were chosen to fabricate the multilayer FR fabrics. Properties of multilayer fabrics were investigated, which include physical, thermo–physiological comfort, and flame-resistant performance. The heating process of the clothing was examined using infrared (IR) thermography, differential scanning calorimetry (DSC), thermal protective testing (TPP), and steady-state (Convective and Radiant) heat resistance tests. Areal density and thickness were measured as physical parameters, and air permeability (AP), overall moisture management capacity (OMMC), and thermal conductivity were measured as thermo–physiological comfort characteristics. The inclusion of PCM improved the thermal protection as well as flame resistance significantly. Sample S1 (Nomex + PTFE + Nomex with PCM) demonstrated superior fire resistance, air permeability, and thermal protection, with a 37.3% increase in air permeability as compared to the control sample (SC) by maintaining comfort while offering high thermal resilience. The inclusion of PCM enhanced its thermal regulation, moderating heat transfer. Flame resistance tests confirmed its excellent performance, while thermo–physiological assessments highlighted a well-balanced combination of thermal conductivity and air permeability. This study will help to improve the performance of firefighter protective fabrics and provide guidelines in terms of balancing comfort and performance while designing firefighter protective clothing for different climatic conditions. Full article
Show Figures

Figure 1

32 pages, 15061 KiB  
Article
Assessing the Sound and Heat Insulation Characteristics of Layered Nonwoven Composite Structures Composed of Meltblown and Recycled Thermo-Bonded Layers
by Emel Çinçik and Eda Aslan
Polymers 2024, 16(10), 1391; https://doi.org/10.3390/polym16101391 - 13 May 2024
Cited by 2 | Viewed by 2606
Abstract
Sound and heat insulation are among the most important concerns in modern life and nonwoven composite structures are highly effective in noise reduction and heat insulation. In this study, three layered nonwoven composite structures composed of a recycled polyester (r-Pet)-based thermo-bonded nonwoven outer [...] Read more.
Sound and heat insulation are among the most important concerns in modern life and nonwoven composite structures are highly effective in noise reduction and heat insulation. In this study, three layered nonwoven composite structures composed of a recycled polyester (r-Pet)-based thermo-bonded nonwoven outer layer and meltblown nonwovens from Polypropylene (PP) and Polybutylene terephthalate (PBT) as inner layers were formed to provide heat and sound insulation. Fiber fineness and cross-section of the thermo-bonded outer layer, fiber type (PP/PBT), areal weight (100/200 g/m2) and process conditions (calendared/non-calendared) of the meltblown inner layer were changed systematically and the influence of these independent variables on thickness, bulk density, air permeability, sound absorption coefficient and thermal resistance of composite structures were analyzed statistically by using Design Expert 13 software. Additionally, the results were compared with composite structures including an electrospun nanofiber web inner layer and with structures without an inner layer. It was concluded that comparable or even better sound absorption values were achieved with the developed nonwoven composites containing meltblown layers compared to nanofiber-included composites and the materials in previous studies. Full article
(This article belongs to the Collection Progress in Polymer Applications)
Show Figures

Graphical abstract

15 pages, 56529 KiB  
Article
Synthesis and Printing Features of a Hierarchical Nanocomposite Based on Nickel–Cobalt LDH and Carbonate Hydroxide Hydrate as a Supercapacitor Electrode
by Tatiana L. Simonenko, Nikolay P. Simonenko, Philipp Yu. Gorobtsov, Andrey S. Nikitin, Aytan G. Muradova, Yuri M. Tokunov, Stanislav G. Kalinin, Elizaveta P. Simonenko and Nikolay T. Kuznetsov
Appl. Sci. 2023, 13(10), 5844; https://doi.org/10.3390/app13105844 - 9 May 2023
Cited by 9 | Viewed by 2960
Abstract
The hydrothermal synthesis of a hierarchically organized nanocomposite based on nickel–cobalt carbonate hydroxide hydrate of composition M(CO3)0.5(OH)·0.11H2O (where M is Ni2+ and Co2+) and nickel–cobalt layered double hydroxides (NiCo-LDH) was studied. Using synchronous thermal [...] Read more.
The hydrothermal synthesis of a hierarchically organized nanocomposite based on nickel–cobalt carbonate hydroxide hydrate of composition M(CO3)0.5(OH)·0.11H2O (where M is Ni2+ and Co2+) and nickel–cobalt layered double hydroxides (NiCo-LDH) was studied. Using synchronous thermal analysis (TGA/DSC), it was determined that the material retained thermal stability up to 200 °C. The crystal structure of the powder and the set of functional groups in its composition were determined by X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). The resulting hierarchically organized nanopowder was employed as a functional ink component for microplotter printing of an electrode film, which is an array of miniature planar structures with a diameter of about 140 μm, on the surface of a nickel-plated steel substrate. Using scanning electron microscopy (SEM), it was established that the main area of the electrode “pixels” represents a thin film of individual nanorods with periodic inclusions of larger hierarchically organized spherical formations. According to atomic force microscopy (AFM) data, the mean square roughness of the material surface was 28 nm. The electrochemical properties of the printed composite film were examined; in particular, the areal specific capacitance at different current densities was calculated, and the electrochemical kinetics of the material was studied by impedance spectroscopy. It was found that the electrode material under study exhibited relatively low Rs and Rct resistance, which indicates active ion transfer at the electrode/electrolyte interface. Full article
(This article belongs to the Special Issue Novel Nanomaterials and Nanostructures)
Show Figures

Figure 1

11 pages, 2457 KiB  
Article
Nanocomposite Electrode of Titanium Dioxide Nanoribbons and Multiwalled Carbon Nanotubes for Energy Storage
by Mohammad BinSabt, Mohamed Shaban and Ahmed Gamal
Materials 2023, 16(2), 595; https://doi.org/10.3390/ma16020595 - 7 Jan 2023
Cited by 8 | Viewed by 2635
Abstract
TiO2 is one of the most investigated materials due to its abundance, lack of toxicity, high faradaic capacitance, and high chemical and physical stability; however, its potential use in energy storage devices is constrained by its high internal resistance and weak van [...] Read more.
TiO2 is one of the most investigated materials due to its abundance, lack of toxicity, high faradaic capacitance, and high chemical and physical stability; however, its potential use in energy storage devices is constrained by its high internal resistance and weak van der Waals interaction between the particles. Carbon nanotubes are especially well suited for solving these issues due to their strong mechanical strength, superior electrical conductivity, high electron mobilities, excellent chemical and thermal stability, and enormous specific nanoporous surface. The hydrothermal approach was followed by chemical vapor deposition to produce a network composite of titanium dioxide nanoribbons (TNRs) and multi-walled carbon nanotubes (MWCNTs). The nanocomposite was characterized using a variety of methods. One phase of TiO2-B nanoribbons has porous pits on its surface, and MWCNTs are grown in these pits to produce a network-like structure in the nanocomposite. With a two-electrode supercapacitor configuration, the TNR/CNT gave a gravimetric capacitance of 33.33 F g−1, which was enhanced to 68.18 F g−1 in a redox-active electrolyte containing hydroquinone (HQ). Additionally, the areal capacitance per footprint was increased from 80 mF cm−2 in H2SO4 to 163.63 mF cm−2 in H2SO4/HQ. The TNR/CNT supercapacitor has superior cyclic stability than the previously reported TiO2-based electrodes, with 97.5% capacitance retention after 5000 cycles. Based on these results, it looks like the TNR/CNT supercapacitor could provide portable electronic power supplies with new ways to work in the future. Full article
Show Figures

Figure 1

12 pages, 2333 KiB  
Article
Preparation of Bacterial Cellulose/Ketjen Black-TiO2 Composite Separator and Its Application in Lithium-Sulfur Batteries
by Ming Yan, Chuanshan Zhao and Xia Li
Polymers 2022, 14(24), 5559; https://doi.org/10.3390/polym14245559 - 19 Dec 2022
Cited by 3 | Viewed by 2922
Abstract
Lithium-sulfur batteries (LSBs) have attracted extensive attention due to their high energy density and low cost. The separator is a key component of LSBs. An excellent LSBs separator requires not only good electrolyte wettability, but also high thermal stability, good tensile mechanical properties, [...] Read more.
Lithium-sulfur batteries (LSBs) have attracted extensive attention due to their high energy density and low cost. The separator is a key component of LSBs. An excellent LSBs separator requires not only good electrolyte wettability, but also high thermal stability, good tensile mechanical properties, green environmental protection potential and enough inhibition of shuttle effect. In this paper, composite separator Bacterial cellulose/Ketjen black-TiO2 (BKT) was prepared by coating the green and environmentally friendly bacterial cellulose (BC) substrate with KB-TiO2 material. BKT not only demonstrates higher electrolyte wettability, but also displays thermal stability and tensile resistance to enhance the safety of the battery. The high ratio of TiO2 and KB on the BKT surface provides chemical and physical adsorption of lithium polysulfides (LiPSs), thereby inhibiting the shuttle effect and increasing the cycle life of LSBs. The secondary current collector formed by TiO2 and KB can also reactivate the adsorbed LiPSs, further improving the capacity retention rate of the battery. Therefore, the LSBs assembled with the BKT separator exhibited an initial discharge capacity of 1180 mAh × g−1 at a high current density of 0.5 C, and maintained a specific discharge capacity of 653 mAh × g−1 after 100 cycles was achieved. Even at 2.0 mg × cm−2 sulfur areal density and 0.1 C current density, the BKT separator based battery still has an initial discharge specific capacity of 1274 mAh × g−1. In conclusion, BKT is a promising lithium-sulfur battery separator material. sulfur areal densities. Full article
(This article belongs to the Special Issue Synthesis and Application of Cellulose-Based Composites)
Show Figures

Figure 1

15 pages, 9013 KiB  
Article
Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries
by Yer-Targyn Tleukenov, Gulnur Kalimuldina, Anar Arinova, Nurbolat Issatayev, Zhumabay Bakenov and Arailym Nurpeissova
Polymers 2022, 14(23), 5327; https://doi.org/10.3390/polym14235327 - 6 Dec 2022
Cited by 8 | Viewed by 3468
Abstract
The three-dimensional (3D) structure of batteries nowadays obtains a lot of attention because it provides the electrodes a vast surface area to accommodate and employ more active material, resulting in a notable increase in areal capacity. However, the integration of polymer electrolytes to [...] Read more.
The three-dimensional (3D) structure of batteries nowadays obtains a lot of attention because it provides the electrodes a vast surface area to accommodate and employ more active material, resulting in a notable increase in areal capacity. However, the integration of polymer electrolytes to complicated three-dimensional structures without defects is appealing. This paper presents the creation of a flawless conformal coating for a distinctive 3D-structured NiO/Ni anode using a simple thermal oxidation technique and a polymer electrolyte consisting of three layers of PAN-(PAN-PVA)-PVA with the addition of Al2O3 nanoparticles as nanofillers. Such a composition with a unique combination of polymers demonstrated superior electrode performance. PAN in the polymer matrix provides mechanical stability and corrosion resistance, while PVA contributes to excellent ionic conductivity. As a result, NiO/Ni@PAN-(PAN-PVA)-PVA with 0.5 wt% Al2O3 NPs configuration demonstrated enhanced cycling stability and superior electrochemical performance, reaching 546 mAh g−1 at a 0.1 C rate. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 2745 KiB  
Article
A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment
by Zahra Roohi, Frej Mighri and Ze Zhang
Polymers 2022, 14(21), 4693; https://doi.org/10.3390/polym14214693 - 3 Nov 2022
Cited by 8 | Viewed by 2852
Abstract
Polypyrrole (PPy) is one of the attractive conducting polymers that have been investigated as energy storage materials in devices like supercapacitors. Previously, we have reported a free-standing soft PPy membrane synthesized through interfacial polymerization in which methyl orange (MO) and ferric chloride were [...] Read more.
Polypyrrole (PPy) is one of the attractive conducting polymers that have been investigated as energy storage materials in devices like supercapacitors. Previously, we have reported a free-standing soft PPy membrane synthesized through interfacial polymerization in which methyl orange (MO) and ferric chloride were used as nano template and oxidant. In this work, we report that the presence of MO and the treatment of the PPy–MO membrane with sulfuric acid can dramatically increase the specific capacitance of the membrane. The properties of the membranes were evaluated using scanning electron microscope (SEM) for morphology, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) for chemistry, thermogravimetric analysis (TGA) for thermal stability, and cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) for electrochemical activity. It was found that the areal specific capacitance of the PPy membrane increased from 2226 mF/cm2 to 6417 mF/cm2 and the charge transfer resistivity decreased from about 17 Ω to 3 Ω between 10,000 and 0.1 Hz due to the presence of MO and the acid treatment. It is likely that the superposition effect of MO and acid treatment helped the charge transfer process and consequently enhanced the charge storage performance and specific capacitance of the PPy membrane. Full article
(This article belongs to the Special Issue Intrinsically Conducting Polymers in Electrochemical Energy Storage)
Show Figures

Figure 1

13 pages, 17411 KiB  
Article
Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide
by Kamil Dydek, Paulina Latko-Durałek, Agata Sulowska, Michał Kubiś, Szymon Demski, Paulina Kozera, Bogna Sztorch and Anna Boczkowska
Polymers 2021, 13(21), 3816; https://doi.org/10.3390/polym13213816 - 4 Nov 2021
Cited by 11 | Viewed by 3196
Abstract
The study aimed to investigate the effect of processing temperature and the content of multi-wall carbon nanotubes (MWCNTs) on the rheological, thermal, and electrical properties of polyphenylene sulfide (PPS)/MWCNT nanocomposites. It was observed that the increase in MWCNT content influenced the increase of [...] Read more.
The study aimed to investigate the effect of processing temperature and the content of multi-wall carbon nanotubes (MWCNTs) on the rheological, thermal, and electrical properties of polyphenylene sulfide (PPS)/MWCNT nanocomposites. It was observed that the increase in MWCNT content influenced the increase of the complex viscosity, storage modulus, and loss modulus. The microscopic observations showed that with an increase in the amount of MWCNTs, the areal ratio of their agglomerates decreases. Thermogravimetric analysis showed no effect of processing temperature and MWCNT content on thermal stability; however, an increase in stability was observed as compared to neat PPS. The differential scanning calorimetry was used to assess the influence of MWCNT addition on the crystallization phenomenon of PPS. The calorimetry showed that with increasing MWCNT content, the degree of crystallinity and crystallization temperature rises. Thermal diffusivity tests proved that with an increase in the processing temperature and the content of MWCNTs, the diffusivity also increases and declines at higher testing temperatures. The resistivity measurements showed that the conductivity of the PPS/MWCNT nanocomposite increases with the increase in MWCNT content. The processing temperature did not affect resistivity. Full article
(This article belongs to the Special Issue Advanced Thermoplastic Polymers and Composites)
Show Figures

Graphical abstract

11 pages, 4179 KiB  
Article
Hierarchically Porous, Laser-Pyrolyzed Carbon Electrode from Black Photoresist for On-Chip Microsupercapacitors
by Soongeun Kwon, Hak-Jong Choi, Hyung Cheoul Shim, Yeoheung Yoon, Junhyoung Ahn, Hyungjun Lim, Geehong Kim, Kee-Bong Choi and JaeJong Lee
Nanomaterials 2021, 11(11), 2828; https://doi.org/10.3390/nano11112828 - 25 Oct 2021
Cited by 4 | Viewed by 2723
Abstract
We report a laser-pyrolyzed carbon (LPC) electrode prepared from a black photoresist for an on-chip microsupercapacitor (MSC). An interdigitated LPC electrode was fabricated by direct laser writing using a high-power carbon dioxide (CO2) laser to simultaneously carbonize and pattern a spin-coated [...] Read more.
We report a laser-pyrolyzed carbon (LPC) electrode prepared from a black photoresist for an on-chip microsupercapacitor (MSC). An interdigitated LPC electrode was fabricated by direct laser writing using a high-power carbon dioxide (CO2) laser to simultaneously carbonize and pattern a spin-coated black SU-8 film. Due to the high absorption of carbon blacks in black SU-8, the laser-irradiated SU-8 surface was directly exfoliated and carbonized by a fast photo-thermal reaction. Facile laser pyrolysis of black SU-8 provides a hierarchically macroporous, graphitic carbon structure with fewer defects (ID/IG = 0.19). The experimental conditions of CO2 direct laser writing were optimized to fabricate high-quality LPCs for MSC electrodes with low sheet resistance and good porosity. A typical MSC based on an LPC electrode showed a large areal capacitance of 1.26 mF cm−2 at a scan rate of 5 mV/s, outperforming most MSCs based on thermally pyrolyzed carbon. In addition, the results revealed that the high-resolution electrode pattern in the same footprint as that of the LPC-MSCs significantly affected the rate performance of the MSCs. Consequently, the proposed laser pyrolysis technique using black SU-8 provided simple and facile fabrication of porous, graphitic carbon electrodes for high-performance on-chip MSCs without high-temperature thermal pyrolysis. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Electrochemical Energy Storage)
Show Figures

Figure 1

19 pages, 6852 KiB  
Article
Interlaminar Fracture Behavior of Carbon Fiber/Polyimide Composites Toughened by Interleaving Thermoplastic Polyimide Fiber Veils
by Bangwei Lan, Yi Liu, Song Mo, Minhui He, Lei Zhai and Lin Fan
Materials 2021, 14(10), 2695; https://doi.org/10.3390/ma14102695 - 20 May 2021
Cited by 16 | Viewed by 3783
Abstract
Carbon fiber reinforced thermosetting polyimide (CF/TSPI) composites were interleaved with thermally stable thermoplastic polyimide (TPPI) fiber veils in order to improve the interlaminar fracture toughness without sacrificing the heat resistance. Both of the mode I and mode II interlaminar fracture toughness (GIC [...] Read more.
Carbon fiber reinforced thermosetting polyimide (CF/TSPI) composites were interleaved with thermally stable thermoplastic polyimide (TPPI) fiber veils in order to improve the interlaminar fracture toughness without sacrificing the heat resistance. Both of the mode I and mode II interlaminar fracture toughness (GIC and GIIC) for the untoughened laminate and TPPI fiber veils interleaved laminates were characterized by the double cantilever beam (DCB) test and end notch flexure (ENF) test, respectively. It is found that the TPPI fiber veils interleaved laminates exhibit extremely increased fracture toughness than the untoughened one. Moreover, the areal density of TPPI greatly affected the fracture toughness of laminates. A maximum improvement up to 179% and 132% on GIC and GIIC is obtained for 15 gsm fiber veils interleaved laminate, which contributes to the existence of bicontinuous TPPI/TSPI structure in the interlayer according to the fractography analysis. The interlaminar fracture behavior at elevated temperatures for 15 gsm fiber veils interleaved laminate were also investigated. The results indicated that the introduction of thermally stable TPPI fiber veils could enhance the fracture toughness of CF/TSPI composites by exceeding 200% as compared to the untoughened one even as tested at 250 °C. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

20 pages, 7689 KiB  
Article
Thermal Performance of a Massive Wall in the Mediterranean Climate: Experimental and Analytical Research
by Chiara Tribuiani, Luca Tarabelli, Serena Summa and Costanzo Di Perna
Appl. Sci. 2020, 10(13), 4611; https://doi.org/10.3390/app10134611 - 3 Jul 2020
Cited by 6 | Viewed by 3974
Abstract
In the Mediterranean climate, indoor overheating and, thus, excessive use of cooling systems represents one of the main problems both for the occupants’ health and energy consumption. In order to limit this problem, an appropriate design or energy retrofitting of the building envelope [...] Read more.
In the Mediterranean climate, indoor overheating and, thus, excessive use of cooling systems represents one of the main problems both for the occupants’ health and energy consumption. In order to limit this problem, an appropriate design or energy retrofitting of the building envelope is of utmost importance. The predominance of massive buildings in the Italian territory and the need to comply with Italian regulations often leads technicians to not optimal energy saving solutions. To this purpose, this experimental research was conducted on a mockup building, located in Fabriano and characterized by high thermal mass walls (W0) and two different external insulating systems: Cork based lightweight plaster (W1) and Extruded polystyrene foam panel (XPS) (W2). Furthermore, a virtual model in TRNSYS, a transient simulation software, was used to compare analytical and simulated values. Results show that W2 undergoes a higher level of thermal stress than W1, due to higher peaks in the external surface temperature and larger fluctuations in daily temperature. Therefore, a high value of thermal resistance of the external insulation and low value of external areal heat capacity on a massive building causes external surface overheating problems, thus, not representing the optimal construction solution. Full article
(This article belongs to the Special Issue Impact Assessment of Climate Change on Buildings)
Show Figures

Figure 1

16 pages, 2280 KiB  
Article
Effect of the Inclination Angle on the Steady-State Heat Transfer Performance of a Thermosyphon
by Yafeng Wu, Zhe Zhang, Wenbin Li and Daochun Xu
Appl. Sci. 2019, 9(16), 3324; https://doi.org/10.3390/app9163324 - 13 Aug 2019
Cited by 10 | Viewed by 4563
Abstract
A two-phase closed thermosyphon is an efficient heat transfer element. The heat transfer process of this type of thermosyphon includes conduction and convective heat transfer accompanied by phase changes. Variations in the inclination angle of a thermosyphon affect the steady-state heat transfer performance [...] Read more.
A two-phase closed thermosyphon is an efficient heat transfer element. The heat transfer process of this type of thermosyphon includes conduction and convective heat transfer accompanied by phase changes. Variations in the inclination angle of a thermosyphon affect the steady-state heat transfer performance of the device. Therefore, the inclination angle is an important factor affecting the performance of a thermosyphon. In this paper, an equation for the actual heating area variations with respect to the inclination angle is deduced, and a model for the areal thermal resistance of a thermosyphon is proposed by analyzing the main influence mechanisms of the inclination angle on the heat transfer process. The experimental results show that the areal thermal resistance, which accounts for the effect of the actual heating area, does not change with respect to the inclination angle and exhibits a linear relationship with the heat transfer rate. The thermal resistance equation is fit according to the experimental data when the inclination angle of the thermosyphon is vertically oriented (90°), and the predicted values of the thermosyphon’s thermal resistance are obtained when the thermosyphon is inclined. The deviations between the experimental data and predicted values are less than ±0.05. Therefore, the theoretical equation can accurately predict the thermosyphon’s thermal resistance at different inclination angles. Full article
Show Figures

Figure 1

12 pages, 13630 KiB  
Article
The Influence of Surface Treatment of PVD Coating on Its Quality and Wear Resistant
by Tomas Zlamal, Ivan Mrkvica, Tomas Szotkowski and Sarka Malotova
Coatings 2019, 9(7), 439; https://doi.org/10.3390/coatings9070439 - 13 Jul 2019
Cited by 31 | Viewed by 6232
Abstract
The article deals with a determination of the influence of a cutting edge preparation on the quality and wear resistance of coated cutting tools. Cutting inserts made from a sintered carbide with a deposited layer of PVD coating were selected for measurement. Non-homogeneity [...] Read more.
The article deals with a determination of the influence of a cutting edge preparation on the quality and wear resistance of coated cutting tools. Cutting inserts made from a sintered carbide with a deposited layer of PVD coating were selected for measurement. Non-homogeneity caused by the creation of droplets arises in the application layer during the process of applying the coating by the PVD method. These droplets make the surface roughness of the PVD coating worse, increase the friction and thereby the thermal load of the cutting tool as well. Also, the droplets could be the cause of the creation and propagation of droplets in the coating and they can cause quick cutting tool wear during machining. Cutting edge preparations were suggested for the improvement of the surface integrity of deposited layers of PVD coating, namely the technology of drag finishing and abrasive jet machining. After their application, the areal surface roughness was measured on the surface of coated cutting inserts, the occurrence of droplets was tracked and the surface structure was explored. A tool-life test of cutting inserts was carried out for verification of the influence of surface treatment on the wear resistance of cutting inserts during the milling process. The cutting inserts with a layer of PVD coatings termed as samples A, B, and C were used for the tool-life test. The first sample, A, represented the coating before the application of cutting edge preparations and samples B and C were after the application of the cutting edge preparation. A carbon steel termed C45 was used for the milling process and cutting conditions were suggested. The visual control of surface of cutting inserts, intensity of wear and occurrence of thermal cracks in deposited PVD layers were the criterion for the evaluation of the individual tests. Full article
(This article belongs to the Special Issue Physical Vapor Deposition)
Show Figures

Figure 1

11 pages, 779 KiB  
Article
Switchable Thermal Interfaces Based on Discrete Liquid Droplets
by Yanbing Jia, Gilhwan Cha and Yongho Sungtaek Ju
Micromachines 2012, 3(1), 10-20; https://doi.org/10.3390/mi3010010 - 6 Jan 2012
Cited by 14 | Viewed by 6762
Abstract
We present a switchable thermal interface based on an array of discrete liquid droplets initially confined on hydrophilic islands on a substrate. The droplets undergo reversible morphological transition into a continuous liquid film when they are mechanically compressed by an opposing substrate to [...] Read more.
We present a switchable thermal interface based on an array of discrete liquid droplets initially confined on hydrophilic islands on a substrate. The droplets undergo reversible morphological transition into a continuous liquid film when they are mechanically compressed by an opposing substrate to create low-thermal resistance heat conduction path. We investigate a criterion for reversible switching in terms of hydrophilic pattern size and liquid volume. The dependence of the liquid morphology and rupture distance on the diameter and areal fraction of hydrophilic islands, liquid volumes, as well as loading pressure is also characterized both theoretically and experimentally. The thermal resistance in the on-state is experimentally characterized for ionic liquids, which are promising for practical applications due to their negligible vapor pressure. A life testing setup is constructed to evaluate the reliability of the interface under continued switching conditions at relatively high switching frequencies. Full article
(This article belongs to the Special Issue Thermal Switches and Control of Heat Transfer in MEMS)
Show Figures

Figure 1

Back to TopTop