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Abstract: Sound and heat insulation are among the most important concerns in modern life and
nonwoven composite structures are highly effective in noise reduction and heat insulation. In this
study, three layered nonwoven composite structures composed of a recycled polyester (r-Pet)-based
thermo-bonded nonwoven outer layer and meltblown nonwovens from Polypropylene (PP) and
Polybutylene terephthalate (PBT) as inner layers were formed to provide heat and sound insula-
tion. Fiber fineness and cross-section of the thermo-bonded outer layer, fiber type (PP/PBT), areal
weight (100/200 g/m2) and process conditions (calendared/non-calendared) of the meltblown inner
layer were changed systematically and the influence of these independent variables on thickness,
bulk density, air permeability, sound absorption coefficient and thermal resistance of composite
structures were analyzed statistically by using Design Expert 13 software. Additionally, the results
were compared with composite structures including an electrospun nanofiber web inner layer and
with structures without an inner layer. It was concluded that comparable or even better sound
absorption values were achieved with the developed nonwoven composites containing meltblown
layers compared to nanofiber-included composites and the materials in previous studies.

Keywords: sound insulation; heat insulation; meltblown nonwovens; polypropylene; polybutylene
terephthalate

1. Introduction

Concurrent with increasing technological developments and demands for modern
life, noise pollution has emerged as an environmental concern, affecting human health and
comfort. Noise, characterized as unwanted sound spanning various frequencies, dulls the
senses, reduces concentration, induces difficulty in falling asleep, and causes annoyance.
Prolonged exposure to excessive noise can lead to health problems such as tinnitus, hearing
impairments, neurological issues, and hypertension. Therefore, noise control is essential
for industries like building, automotive, and machinery to improve quality of life [1–6].

Nonwoven materials present a promising option for sound absorption due to their sub-
stantial and intricately designed internal structure, lightweight nature, cost-effectiveness,
and recyclability [4–7]. The porous nonwoven material consists of fibers of varying
lengths and incorporates cavities, channels, or interstices, allowing for the oscillation
of air molecules. This oscillation leads to frictional losses that causes the conversion of
sound or acoustic energy into heat [7,8]. Moreover, the interlocked fibers within nonwovens
act as frictional elements, providing resistance to the motion of acoustic waves. When sound
waves encounter the fibers of the structure, they induce vibrations in individual fibers.
Additionally, a significant portion of the sound energy can either be absorbed through scat-
tering from the fibers or transformed into heat due to internal frictional forces. In summary,
the amplitude of sound energy is reduced or damped by momentum loss, frictional loss
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and temperature fluctuations occurring in the porous and tortuous structures of nonwo-
vens [2,8–13]. Thus, sound-absorbing characteristics of nonwovens depend mainly on pore
properties such as size, shape, number and they are affected by the fiber’s diameter, fibers
orientation and distribution. The nature of the fiber (type, surface characteristics, elasticity),
length, fineness, cross-section of the constituent fibers, the fiber orientation, the porosity,
pore size and number, thickness, density and areal weights of the nonwovens and many
other factors determine the sound absorption characteristics of these structures [2,5,11–15].

The sound-absorbing properties of nonwoven fabrics have undergone extensive in-
vestigations. The effect of raw material type on acoustical characteristics of single-layer
nonwovens for various kinds of fibers, such as polyester, flax, jute, kapok, chicken feather,
cotton-wool, bamboo, banana, waste wool, recycled polyester, recycled cotton, carbonized
cotton, activated carbon, and polyamide/polyethylene bicomponent filaments, were in-
vestigated in many studies [4,16–36] and it was concluded that different types of fibers
can be used in nonwoven production for sound insulation. Fibers with different cross
sections (round, trilobal, 4DG, hollow, HexaFlower, flat) were evaluated in nonwovens for
sound-absorbing properties in numerous studies [36–42] and it was revealed that cross
sections increasing surface area, pore size and thickness also increased the sound absorp-
tion coefficient. Some of the investigations focused on the influence of fiber fineness, areal
density, thickness, and the density of nonwovens manufactured with different methods like
air laying, carding, needle punching, thermal bonding and vertical lapping [4,5,8,43–46].
The studies demonstrated that thickness, areal weight, porosity and density are influential
factors for sound absorption.

The increase in the number of layers within the nonwoven structure leads to an
increase in areal density, thickness, and a change in the percentage of the different types of
pores and consequently a change in the acoustic properties. Both the intrinsic characteristics
and the sequence of layering play a role in the noise reduction efficiency of multilayered
fibrous structures comprising distinct layers [47]. Liu et al. [48] developed a simulation
model for the sound absorption coefficient of double-layered nonwovens. The sound-
absorbing properties of layered bulky nonwovens produced with traditional methods
were studied by evaluating process parameters [15,47–51] and all findings including single-
layer and layered nonwovens revealed that heavier and denser nonwovens show good
acoustic performance at mid- to high-frequency bands, however they suffer from weak
absorption at low and middle frequencies up to 2 kHz. Furthermore, it was concluded that
low-frequency sound absorption has a direct relationship with thickness and the effective
sound absorption of a porous absorber is achieved when the material thickness is about
one-tenth of the wavelength of the incident sound. Eventually, less dense and more open
structures are favorable in low-frequency sound absorption [14,15,52,53].

The ways to provide higher sound absorption in low frequency bands is to use nonwo-
vens with higher thicknesses to increase the backing air cavity depth of the nonwovens or to
increase the friction between pore walls and air molecules by decreasing pore size and/or
increasing total surface area. This can be achieved by decreasing fiber diameter in nonwo-
vens. Thinner fibers move more easily than thicker counterparts when encountered with
sound waves. Furthermore, a greater quantity of fibers is necessary to achieve the same vol-
ume density with fine denier fibers which results in a more tortuous path and higher airflow
resistance. These cases lead to an improvement in sound absorption performance [2,8,54].
Thus, nonwovens containing microfibers and nanofibers or microfiber/nanofibers layers
provide superior sound absorption in a large frequency range [55–80].

In recent years, electrospun nanofibers have become popular among sound insula-
tion materials due to their very low diameter, higher surface area, and highly porous
network of interconnected pores. The nanofiber structures ensure sound absorption by
acting as an acoustic resonance membrane. Numerous researchers have explored the
acoustic characteristics of materials incorporating nanofibers, whether in the form of a
web layer and/or as reinforcement in nonwovens or textile structures [55–80]. These
studies focused on the diversity of polymers [6,56–80] such as Polyvinyl alcohol (PVA),
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Polyacrylonitrile (PAN), Polyurethane (PU), Polyvinylpyrrolidone (PVP), Polyamide (PA),
Polyvinyl Chloride (PVC), Polystyrene (PS), PVA/Polyethylene oxide/Graphene oxide,
recycled Polyethylene terephthalate (r-PET), core-shell and hollow shaped PAN/PVA. All
the previous studies have demonstrated that nanofiber webs exhibit high sound absorp-
tion at low and medium frequencies alone and integrating nanofibrous structures into
nonwovens and textile structures without adding extra weight or thickness. On the other
hand, the production process of nanofibrous surfaces is challenging, and producing a layer
takes a long time. In this respect, surfaces containing fibers with a small diameter such as
microfibers can be beneficial for acoustic applications and meltblown nonwovens can serve
as an alternative to nanofibers.

The polymer is converted into continuous spun filaments which are later accelerated by hot
and fast-flowing air to form low-diameter fiber changing between 1 and 5 µm in the meltblown
process. The formed thinner fibers then accumulate on a collector to construct a self-bonded
web layer [81]. Meltblown nonwovens can be economically manufactured representing lighter
nonwoven fabrics with reduced fiber and pore diameter, and increased surface area. This
material offers an effective alternative for sound absorption management compared to the bulky
needle-punched nonwoven sound absorbers available commercially or materials including
nanofibers [7,11,58,82,83]. Some studies related to sound insulation features of nonwoven com-
posites evaluated the Polypropylene (PP) [11,58,83], Polylactic Acid (PLA) [11,47], Polyethylene
terephthalate (PET) [7] and PP/Pet bicomponent fiber [83]-based meltblown layers.

Çelikel and Babaarslan [7] investigated the sound absorption properties of Spun-
bond/Meltblown/Spunbond (SMS) multilayer nonwoven structures incorporating bicom-
ponent/homocomponent, round/trilobal PET fiber-based spunbond layers and meltblown
layers with increasing areal weight. It was concluded that all samples exhibited inade-
quate sound absorption performance for frequencies up to 3000 Hz. However, at higher
frequencies, three-layered nonwoven structures with bicomponent fibers as outer layers
demonstrated superior sound absorption performance compared to nonwoven structures
incorporating homocomponent fibers. Additionally, increasing the meltblown layer’s areal
weight enhanced sound absorption.

Öztürk et al. [58] evaluated the contribution of differently configured SMS cover layers
on the sound-absorbing properties of nanofibrous resonant membrane-coated wool-based
needle-punched nonwoven composites. The study showed that the addition of a covering
material to the layered structure made a positive contribution to the sound absorption
property unless its areal density was lower than 60 g/m2. The highest sound absorption
coefficient was obtained for composite structures having a 300 g/m2 meltblown layer at
500 and 1000 Hz frequencies as 30% and 80%, respectively.

The acoustic performance of cotton, polyester, cotton/polyester-blended needle-
punched, PP and PLA-blended meltblown nonwovens were compared in the frequency
region of 100–1500 Hz by considering one-, two- and three-layered structures [47]. The
research showed that the polypropylene microfiber meltblown nonwoven sample exhibited
effective sound absorption behavior across the entire frequency range. Utilizing multilayer
samples enhanced the sound absorption coefficient, particularly when one of the layers
consisted of a thin meltblown nonwoven layer. This improvement could reach up to 50%,
especially when the upper layer was composed of finer fibers from a meltblown nonwoven
with a low air permeability value.

A noise-reducing sound absorber designed for attachment to textile machine bod-
ies was created by combining PLA meltblown nonwovens with rigid polyurethane foam
(PUF) [11]. The study investigated the impact of fiber diameter, air permeability, pore diam-
eter, volume density, and thickness on the sound absorption properties of PLA meltblown
nonwoven materials. The findings revealed that a thin sample with low fiber diameter, the
smallest pore diameter, high air permeability, and low density demonstrated significant
sound absorption characteristics. It was suggested to use PUF covered by a single layer of
PLA meltblown instead of PUF covered by PLA meltblown nonwoven layers on both sides
for the design of the sound absorber.
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Sivri and Haji [82] identified the most efficient medium for sound absorption per-
formance, exploring various arrangements of polypropylene-based needle-punched non-
woven, polypropylene meltblown nonwoven, and hybrid forms, and examining their
correlation with thermal conductivity. The composite structure where the meltblown
nonwoven with the lowest fiber diameter was placed at the face side of needle-punched
nonwoven was found to provide the highest sound absorption coefficient; nonetheless,
sound absorption was inadequate for sounds with medium and low frequencies.

The paper of Lee et al. [83] presented the design of a three-layer composite structure
for sound-absorbing material comprised of a surface layer with fine meltblown and high-
modulus hollow fiber, a middle layer with bulky nonwoven and a bottom layer with
meltblown nonwoven layers. The influences of fiber diameter, areal weight, thickness,
and air permeability on sound absorption were investigated and it was concluded that
bulky meltblown nonwovens were effective in sound insulation, and increasing weight
and thickness enhanced the acoustic properties.

As a result of a detailed literature survey, it was concluded that although an extended
number of papers have been published about the acoustic properties of nonwoven struc-
tures, there has been a lack of systematic research on the sound absorption characteristics of
meltblown nonwoven integrated nonwoven structures. Previous studies primarily focused
on the areal weight of meltblown nonwovens, neglecting other important parameters, and
comparisons with nanofiber web counterparts were also lacking.

In addition to sound insulation requirements, concerns for energy conservation have
contributed to the need for economical heat/thermal insulation for buildings, automobiles,
aircraft and industrial process equipment and clothing. Low price, low weight, easy pro-
duction processes and diversity of structural porous properties caused nonwoven materials
to be one of the most important products used for heat insulation as well. Previous stud-
ies [18,26,30,31,43,44,84–95] evaluating nonwovens produced many different techniques
which indicated that fiber type, thickness, bulk density, porosity and any factors influencing
these structural parameters alter the thermal insulation properties such as thermal resis-
tance or thermal conductivity. Furthermore, the literature review revealed that previous
research on thermal insulation primarily addressed single-layer nonwovens, with limited
attention given to layered structures, particularly meltblown nonwovens.

This study contributes to the field by addressing the lack of research on the sound
absorption and thermal insulation properties of multilayered nonwoven composite struc-
tures, particularly those incorporating meltblown nonwovens. Additionally, it fills the
gap in the literature by systematically evaluating various parameters about meltblown
nonwovens and comparing the results with structures containing nanolayers or no inner
layer. In this study, fiber fineness and cross-section of thermo-bonded layer as outer layers,
fiber type, areal weight, and production process of meltblown layers as inner layers were
systematically changed. The influence of these parameters on sound and heat insulation of
the composite structures were statistically analyzed by using Design Expert software to
determine the most effective structures with regard to different sound frequencies. Also,
the results were compared with the composite structures including a nanoweb layer as
the inner layer and composite structures without the inner layer. It was concluded that
comparable or even better sound absorption values and similar heat insulation values were
achieved with the developed nonwoven composites.

2. Materials and Methods
2.1. Materials

In light of all the studies discussed in the Introduction section, it has been determined that
nonwoven surfaces with different characteristics are effective at different sound frequencies.
Therefore, three-layered nonwoven composite structures were constituted by assembling two
thermo-bonded nonwoven layers as outer layers and meltblown/nanofiber nonwoven webs as
inner layers to enable a single material for addressing different sound frequencies. The inner
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layers of the composite structure were formed either with meltblown technology by altering
raw material, areal weight and process type or with electrospinning technology.

The thermo-bonded nonwovens used for the outer layer were produced from recycled
polyester (r-PET) fiber with different fiber fineness and cross-section through carding
and thermo-bonding processes, sequentially. The properties of the fibers constituting the
thermo-bonded layers are presented in Table 1. As seen from the table, the thermo-bonded
layers were formed with 7-denier solid, 7-denier hollow and 12-denier hollow r-Pet fibers to
provide sustainability and bicomponent polyester fiber. The bicomponent polyester fiber is
composed of a standard polyester center and co-Polyester shell part with a 110 ◦C melting
point. The air gap of the 7-denier hollow r-Pet fiber was larger than that of 12-denier hollow
r-Pet fiber.

Table 1. The properties of fibers constituting the thermo-bonded outer layers.

Fiber Type Linear Density
(denier)

Length
(mm)

Strength
(g/denier)

Elongation
(%)

Crimp
(Crimps/cm)

Cross Section
(1000×)

7D Solid r-Pet
(7DS)

6.8
(2.8)

64.4
(1.3)

3.6
(2.2)

63
(2.5)

3.2
(0.7)
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2.2. Methods
2.2.1. Manufacturing of Nonwoven Layers and Layered Nonwoven Composite Structures

The outer thermo-bonded layers were produced by following the carding with the
web forming method and thermal bonding with the web bonding method, respectively. The
r-PET fibers and bicomponent polyester fibers were blended with an eight-chamber mixer
according to the fiber contents given in Table 2 after the application of various preparation
processes such as bale opening and opening fibers. In the table, the layers were coded
considering the fibers forming the web. For instance, 7DH represents the thermo-bonded
outer layer constituted with 80% 7-denier hollow r-PET and 20% bicomponent polyester
fiber. Mixed fibers were carded to produce webs with 25 g/m2 areal weight and cross-
lapped in eight layers to form a web with a 200 g/m2 target areal weight. The bonding
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process of the webs was carried out by the through-air-bonding method in an oven at
200 ◦C with a band distance of 12 mm and a passage speed set to 50 m/min.

Table 2. Thermo-bonded outer layers of composite structures.

Outer Web Layer Content

7DS 80%–7D Solid r-PET and 20% 4D Bicomponent PET
7DH 80%–7D-Hollow r-PET and 20% 4 D Bicomponent PET
12DH 80%–12D Hollow r-PET and 20% 4 D Bicomponent PET

The inner layers of the composite structure were produced with either Polypropylene
or Polybutylene Terephthalate as a raw material by using the meltblown method. Also,
only one type of electrospun nanofiber web was alternatively used as an inner layer for
the purpose of comparison. The raw material, the process parameters (calendered/non-
calendered) and the areal weight (100/200 g/m2) of meltblown nonwovens were altered
and used as independent variables in statistical analyses. The calendering process was
performed by using diamond-shaped cylinders at 160 ◦C for calendered inner layers. The
coded names and features of the inner layers are shown in Table 3.

Table 3. Inner layers of composite structures.

Layer Code Raw Material Manufacturing Process Target Areal
Weight (g/m2)

PP-NC-100 Polypropylene Produced with meltblown technology and non-calendared 100
PP-NC-200 Polypropylene Produced with meltblown technology and non-calendared 200
PP-C-100 Polypropylene Produced with meltblown technology and calendared 100
PP-C-200 Polypropylene Produced with meltblown technology and calendared 200

PBT-NC-100 Polybutylene Terephthalate Produced with meltblown technology and non-calendared 100
PBT-NC-200 Polybutylene Terephthalate Produced with meltblown technology and non-calendared 200
PBT-C-100 Polybutylene Terephthalate Produced with meltblown technology and calendared 100
PBT-C-200 Polybutylene Terephthalate Produced with meltblown technology and calendared 200

N Polyamide Electrospun 8

Different nonwoven inner layers with varying properties given in Table 3 were inserted
between two thermally bonded nonwovens with different characteristics (Table 2) in order
to form three-layered nonwoven composite structures (Figure 1). The layered structures
were exposed to heat in an oven without pressure at 160 ◦C for 10 min to bond the layers to
each other.
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2.2.2. Testing of Nonwoven Layers and Layered Nonwoven Composite Structure

The individual inner and outer layers and constituted composite structure layers were
conditioned according to ISO 139 [96] under standard atmospheric conditions for 24 h
before the testing procedure. All the tests were conducted in the standard atmosphere of
20 ± 2 ◦C and 65 ± 4% humidity. The standard tests were performed to determine the areal
density and thickness of the individual layers and composite structures. The areal weights
were measured according to the test standard NWSP 130.1 [97] by testing 30 cm × 30 cm of
ten samples. A digital thickness gauge (Elastocon EV 07, Brämhult, Sweden) was used to
measure the thickness of the inner layers following the NWSP 120.1 [98] test standard. On
the other hand, the thickness of the outer layers and composite structures were detected by
digital calipers since these structures are voluminous and sensitive to pressure. The bulk
density (dn, g/cm3) of the layers and composite structures were calculated using the mean
of measured areal weight (W, g/m2) and thickness (t, mm) as follows [99]:

dn =
W

1000 × t
(1)

The porosity (P; %) of the samples was computed using the bulk density of the
nonwoven structure (dn; g/cm3) and density of the fiber forming the structure (df; g/cm3)
as follows [99]. Since the samples were constituted from different fibers, the fiber densities
were also calculated based on a weighted average [99]. The densities of r-PET, bicomponent
PET, PP, and PBT were considered as 1.35 g/cm3, 1.38 g/cm3, 0.9 g/cm3, and 1.35 g/cm3,
respectively, during calculations [100–104].

P = (1 − dn

d f
) ∗ 100 (2)

Furthermore, due to the different structural parameters, the pore size characteristics of
meltblown layers were also determined according to the ASTM E1294 [105] test standard
via a capillary flow porometer (PMI, Florham Park, NJ, USA).

The air permeability tests of samples were performed on a digital air permeability
tester (Textest FX 3300, Zurich, Switzerland) following the NWSP 070.1 [106] test standard
using a test area of 20 cm2. The results were expressed as L/m2/s by taking into considera-
tion the unit volume of air (l) that passed through 1 m2 of material at a pressure difference
of 200 Pa in one second. The thermal conductivity of the samples was determined according
to ASTM C518 employing a heat flow meter (Thermtest HFM-100, Hanwell, NB, Canada).
The thermal resistance (R: m2K/W) of the structures was calculated based on thermal
conductivity (λ: W/mK) and thickness (h: m) as given below [86,90]:

R =
h
λ

(3)

The sound absorption coefficients of multilayered composite nonwoven structures
were computed utilizing an impedance tube (Brüel & Kjær 4206 model, Nærum, Denmark)
in accordance with the ISO10534-2 [107] and ASTM E1050–08 [108] standards. The pre-
scribed test methodology encompasses the utilization of an impedance tube as displayed
in Figure 2. In this setup, a sound source (loudspeaker) is positioned at the left end of the
impedance tube, while the sample is situated at the right end. The sound source generates
broadband, stationary random sound waves that propagate as plane waves within the tube.
The propagation, contact, and reflection processes lead to a standing-wave interference
pattern due to the superposition of forward- and backward-traveling waves inside the
tube. The measurement involves recording the sound pressure at two fixed locations and
computing the complex transfer function using a two-channel digital frequency analyzer.
This enables the determination of sound absorption and complex reflection coefficients,
as well as the normal acoustic impedance of the material. The applicable frequency range
is contingent upon the diameter of the tube and the spacing between the microphone
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positions. The sound absorption capacity of the constructed samples was assessed across
the 50–6300 Hz frequency spectrum by employing both large and small tubes. The large
tube is employed for the 50–1600 Hz sound frequency range, whereas the small tube is
utilized for the 1600–6300 Hz frequency range. The sample diameters for the large and
small tubes are 100 mm and 29 mm, respectively [82,109].
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Figure 2. Dual microphone impedance tube device.

The results derived from the tests were statistically analyzed by using Design Expert
software. During analyses, independent variables were chosen as the type of outer layer
(O; 7DS, 7DH, 12DH), the raw material of the inner layers (R; PP/PBT), the process param-
eter of the inner layer (P; C/NC) and the areal weight of inner layer (W; 100/200 g/m2).
Moreover, the frequency level of sound (F) was used as an additional independent factor
while evaluating the sound absorption coefficient property. The dependent factors were
thickness, bulk density, air permeability, thermal conductivity, and sound absorption coeffi-
cient of multilayered nonwoven composite structures. As a result of statistical analyses,
analysis of variance (ANOVA) tables of each composite property were evaluated and the
variation of each composite feature with chosen variables was assessed through the graphs
formed by the software.

3. Results and Discussion
3.1. Properties of Individual Layers Forming the Composite Structures

The physical properties such as areal weight, thickness, bulk density, porosity, pore
size, air permeability, etc. of each layer are presented in Tables 4 and 5 for the outer and
inner layers, respectively.

Table 4. Properties of thermo-bonded outer layers.

Outer
Web Layer Content Areal Weight

(g/m2)
Thickness

(mm)

Calculated Bulk
Density
(g/cm3)

Calculated
Porosity

(%)

Air Permeability
(L/m2/s)

7DS 80%–7D Solid r-PET
20% 4D Bicomponent PET

200.99
(0.68)

12.74
(4.57) 0.0158 98.83 216.60

(4.5)

7DH 80%–7D-Hollow r-PET
20% 4 D Bicomponent PET

201.12
(0.55)

14.72
(4.16) 0.0137 98.99 238.00

(4.1)

12DH 80%–12D Hollow r-PET
20% 4 D Bicomponent PET

201.81
(0.50)

11.68
(3.86) 0.0173 98.72 279.40

(3.3)

The values in parenthesis show the Coefficient of Variation (CV%) values.
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Table 5. Properties of inner layers.

Sample
Code

Fiber
Fineness

(µm)

Areal
Weight
(g/m2)

Thickness
(mm)

Strength
in MD

(N)

Elongation
in MD

(%)

Strength
in CD

(N)

Elongation
in CD

(%)

Calculated
Bulk Density

(g/cm3)

Calculated
Porosity

(%)

Pore
Size
(ìm)

Air
Permeability

(L/m2/s)

PP-C-100 3.87
(7.8)

102.1
(3.9)

0.72
(2.3)

42
(3.5)

30
(1.9)

44
(1.2)

35
(1.8) 0.159 82.344 16.5

(5.3)
4.64
(6.0)

PP-C-200 4.33
(9.3)

208.4
(3.6)

0.87
(2.5)

110
(2.8)

30
(2.3)

60
(3.1)

40
(2.2) 0.241 73.260 15.0

(4.8)
1.27

(12.6)

PP-NC-100 6.46
(8.7)

108.95
(4.3)

1.24
(4.4)

18.94
(5.1)

10.55
(3.8)

33.83
(4.2)

28.56
(4.7) 0.088 90.243 33.5

(6.2)
30.08
(5.4)

PP-NC-200 5.04
(10.3)

210.43
(5.9)

2.36
(3.8)

27.23
(4.9)

10.32
(4.2)

61.33
(3.9)

34.6
(4.1) 0.089 90.093 31.5

(5.2)
21.06
(5.9)

PBT-C-100 4.97
(8.6)

99.08
(3.9)

0.57
(1.9)

41.30
(2.4)

50.99
(3.3)

34.02
(2.9)

52.94
(2.3) 0.175 87.033 23.2

(4.8)
15.24
(6.6)

PBT-C-200 7.69
(11.2)

204.39
(2.3)

0.80
(2.4)

74.69
(2.6)

37.07
(2.8)

66.10
(2.5)

45.15
(2.4) 0.255 81.123 20.6

(4.4)
6.07

(12.3)

PBT-NC-100 4.97
(7.9)

103.97
(3.9)

0.63
(3.3)

9.20
(4.1)

43.79
(4.9)

22.59
(4.2)

38.86
(4.3) 0.164 87.853 26.2

(6.3)
30.62
(5.8)

PBT-NC-200 6.11
(8.4)

218.22
(2.9)

1.26
(2.8)

20.11
(4.7)

18.2
(3.9)

63.39
(3.8)

68.70
(3.7) 0.174 87.144 22.7

(5.9)
13.06
(9.8)

N 0.19
(10.9)

8.3
(3.3) - - - - - - - 0.38

(10.2) -

The values in parenthesis show the Coefficient of Variation (CV%) values.

3.2. Properties of the Nonwoven Composite Structures

The features of layered nonwoven composite structures such as thickness, bulk density,
air permeability, sound absorption coefficient and thermal resistance were evaluated with
statistical analyses in this section.

3.2.1. Thickness and Bulk Density

The thickness and bulk density are key factors for nonwovens to explain both structural
properties and the relation between structure and performance properties. The summarized
analysis of variance (ANOVA) tables of thickness and bulk density values belonging to
nonwoven composite structures are demonstrated in Table 6. Here, R, W, and P represent
the raw material, areal weight and process parameter of the inner layer, respectively.
Moreover, O expresses the type of the outer layer.

Table 6. Summarized ANOVA for thickness and bulk density of composite structures.

ANOVA for Thickness ANOVA for Bulk Density

Source F-Value p-Values Contribution (%) Source F-Value p-Values Contribution (%)

Model 130.079 <0.0001 R2 = 98.28 Model 19.01 <0.0001 R2 = 98.82
R 4.866 0.0424 0.53 R 1.29 0.2725 0.095
W 16.138 0.0010 1.74 W 633.85 <0.0001 46.60
O 428.750 <0.0001 92.55 O 340.14 <0.0001 50.02
P 18.992 0.0005 2.05 P 12.17 0.0030 0.89
RWO 6.529 0.0085 1.41 RP 4.90 0.0416 0.36
Residual 1.72 RWP 11.60 0.0036 0.85
Cor Total 100 Residual 1.18

Cor Total 100

R: Raw material of inner layer, W: areal weight of inner layer, O: type of outer layer, P: process type of inner layer.

The parameters in models having p values lower than 0.05 are expected to have a
statistically significant effect in the 95% confidence interval on thickness and bulk density
in this table. Significant effect expresses that the chosen independent variable causes
statistically meaningful variation to the dependent variable. The contribution of each
factor/model is the ratio of the sum of squares of each factor/model to the sum of squares
of the corrected total. The contribution of the model is also named R2 (the coefficient of
determination). R2 is a statistical measure that determines the proportion of variance in
the dependent variable that can be explained by the independent variables. R2 values
of the generated models were determined as 98.28% for thickness and 98.82% for bulk
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density. This expressed that the chosen factors explain 98.28% and 98.82% of the variation
in thickness and bulk density, respectively.

As can be seen from the table, all the factors chosen for the experimental study
had significant effects on the thickness and bulk density, except the individual effect of
inner layer raw material for bulk density. On the other hand, the binary interaction of
raw material with process parameter and triple interaction of raw material with process
parameter and areal weight contributed significantly to the bulk density of composites. The
higher the F values, the higher the effects of the factors acquired. The contribution of outer
layer type on thickness and the effects of inner layer areal weight and outer layer type on
bulk density were more elevated than other factors when F values were considered.

The influence of various chosen layer parameters on the thickness of nonwoven composite
structures is demonstrated in Figure 3. The variation of thickness with inner layer material and
inner layer areal weight is presented in Figure 3a for composites including 7DS outer layer and
calendared inner layer. The trend was similar for other inner and outer layers.
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The composites including higher areal weighted inner layer had a higher degree of thick-
ness, as expected. A higher number of fibers in the cross-section of inner layers with higher
areal weight caused a higher degree of thickness for individual inner layers as also follows from
Table 5 which resulted in a composite structure with a higher degree of thickness. Furthermore,
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as seen from the same table, the inner layers produced from polypropylene (PP) polymer had
a higher degree of thickness compared to Polybutylene terephthalate (PBT) counterparts due
to the lower density and structural properties of PP polymer [12,101,104]. Since the density
of PP is lower, more fibers were needed to achieve the meltblown nonwoven with the same
areal weight which led to a bulkier and thicker structure than PBT. Generally, a higher degree of
thickness was obtained for PP-included composite structures (Figure 3a,b) except composites
containing 12DH outer and 100 g/m2 inner layer (Figure 3c). The different trend was attributed
to the unevenness property special to nonwoven structures. When the composite with different
outer layers was compared with composites formed from non-calendered, 100 g/m2 areal
weighted meltblown inner layers, it was concluded that the highest thickness was observed for
composites constructed from 7DH outer layer followed by 7DS and 12DH outer layer containing
composites, sequentially (Figure 3c). This tendency was the same for composites other than ones
evaluated in Figure 3c. Similar thickness trends were also acquired for individual outer layers
(Table 4) and it was considered that these thickness results were reflected in the composites.

The change in bulk density of structures with a 7DS outer layer, created with inner
layers weighing 100 and 200 g/m2, is demonstrated in Figure 4a,b based on the inner
layer raw material and processing type. Similar trends were observed for composite
structures with outer layers of 7DH and 12DH. Although closer bulk density values have
been obtained for composites, it was indicated that, with a few exceptions, composites
containing PBT-based inner layers had relatively higher density (Figure 4a,b). When
examining the bulk density values of individual inner layers, it was observed that samples
based on PBT had higher density. This characteristic extended to composite structures as
well. The observed differences in the exceptional samples were presumed to originate from
regional variations inherent in the structure of each nonwoven layer.
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bulk density for composites including 100 g/m2 inner layer; (b) relation between raw material and process
type of inner layer with composite bulk density for composites including 200 g/m2 inner layer; (c) relation
between process type of inner layer and outer layer type with composite bulk density.

Additionally, from the figures it was determined that samples with calendered inner
layers generally had higher bulk densities compared to those with non-calendered ones.
The calendering process involves compressing the meltblown nonwoven surfaces with
pressure and temperature to ensure bonds, resulting in these nonwoven surfaces becoming
tighter, more compact, and denser. This effect of the calendering process also manifested in
composite structures. Moreover, as expected, an increase in inner layer weight led to an
increase in the bulk density of the samples.

The impact of the outer layer type of layered structures on the bulk density of the
structures is illustrated in Figure 4c for samples with a PBT-based inner layer weighing
200 g/m2. Similar trends were found for samples with inner layers of other weights
and compositions. Upon examination of the figure, it was concluded that the densest
structure was achieved with the 12DH outer layer, followed by 7DS and 7DH outer-
layered nonwoven composite structures, respectively. A similar ranking was evident in the
individual density results of the outer layers, as seen in Table 4. We believe that the outer
layer type, identified as the most influential parameter in volumetric density based on the
ANOVA table (Table 6), imparts a similar trend to the composite as it was in the individual
bulk density of single outer layers.

3.2.2. Air Permeability

Air permeability refers to the ability of air to pass through the fibers and fabric
structure and that of the composite structures was determined to help the understanding
of the overall structure and porosity of layered nonwoven composite structures. The most
suitable model explaining the air permeability of layered nonwoven composite structures
with different featured layers has been determined as a modified cubic model through
statistical analysis, and the ANOVA table for this model is shown in Table 7.

Table 7. ANOVA table for air permeability of composite structures.

Source Sum of
Squares

Degrees of
Freedom

Contribution
(%)

Mean
Square F Value P > F Significance

Model 10,790.99 15 R2 = 99.29 719.40 966.21 <0.0001 Significant
R 277.10 1 2.55 277.10 372.16 <0.0001 Significant
W 2277.93 1 20.96 2277.93 3059.44 <0.0001 Significant
O 430.25 2 3.96 215.12 288.93 <0.0001 Significant
P 6700.44 1 61.65 6700.44 8999.23 <0.0001 Significant
RW 275.76 1 2.54 275.76 370.37 <0.0001 Significant
RO 4.64 2 0.04 2.32 3.12 0.0486 Significant
RP 640.10 1 5.89 640.10 859.71 <0.0001 Significant
WO 8.01 2 0.07 4.00 5.38 0.0060 Significant
WP 161.40 1 1.49 161.40 216.78 <0.0001 Significant
OP 9.35 2 0.09 4.67 6.28 0.0027 Significant
RWP 6.03 1 0.06 6.03 8.09 0.0054 Significant
Residual 77.43 104 0.71 0.75 - -
Cor Total 10,868.43 119 100 - -

As follows from the table, the effect of all the chosen factors related to nonwoven composites
and their binary and triple interactions on air permeability were statistically significant. It is
evident that the created model explained 99.29% of the variation in air permeability of the
layered structure. The most influential parameter contributing to the air permeability of the
layered structure was found to be the processing type of the inner layer (61.65%), followed by
the areal weight of the inner layer contributing 20.96%, and the interaction of the processing
type with the inner layer raw material with a contribution of 5.89%.
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The variation in air permeability with different outer and inner layers for chosen layer
factors is discussed in Figure 5. When the air permeability values of composites with
different outer layers and inner layers with different raw materials were examined from the
figure, it was determined that the highest air permeability for all samples was achieved in
structures with the outer layer of 12DH, followed by structures with the outer layer of 7DH
and 7DS. A similar ranking existed in the individual air permeability values of the outer
layers, (Table 4), suggesting that the characteristics of individual layers also influenced the
layered structure. Due to the higher linear density of 12DH fibers, there must be fewer
fibers in the cross-section to achieve the same areal weight on a nonwoven surface, creating
larger and more spaces and allowing air passage between thicker fibers. This situation can
be seen in Figure 6 where the surface images of the outer layers are presented. Additionally,
considering the lower thickness of this layer, it was estimated that samples obtained from
this layer have higher air permeability. In the outer layer obtained with 7DH fibers, it was
concluded that, despite its high thickness, a looser and more porous nonwoven surface was
obtained due to the hollow structure of the fibers inside, leading to higher air permeability.
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Additionally, it was observed that composites containing PBT-based meltblown non-
woven surfaces as the inner layer had slightly higher air permeability than PP-based
counterparts, except for structures with 200 g/m2 non-calendered inner layers. A sim-
ilar tendency was also observed for individual inner layers (Table 5). The most crucial
parameters known to influence the air permeability property are pore size and thickness.
Furthermore, increased thickness causes the air permeability to decrease while increased
pore size and porosity lead to an increase in air permeability. Based on the calculated poros-
ity and measured pore size values (Table 5), it was revealed that calendared PBT-based
meltblown nonwovens were more porous and had larger pores, while non-calendered
PP-based meltblown nonwovens were more porous and had larger pores.

Moreover, the structural twisted fibers observed on the surface of non-calendered PBT
meltblown nonwovens with 200 g/m2 (Figure 7) were assumed to cover the surface of the
layer which resulted in lower air permeability. On the other hand, despite higher porosity
and larger pores of PP-based non calendered 100 g/m2 meltblown inner layers, lower air
permeability was obtained for composites containing this inner layer. This phenomenon
was considered to arise from the higher thickness exhibited by PP-based meltblown nonwo-
vens. As mentioned in Table 5, the thickness difference between the mentioned inner layers
was substantial and thus caused composites including non-calendered PBT meltblown
with 100 g/m2 to have slightly higher air permeability.
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Figure 7. Surface image of non-calendared PBT and PP based meltblown with 200 g/m2 areal
weight (100×).

To illustrate the impact of the process type of meltblown nonwovens used as an
inner layer on the air permeability of composite structures, the air permeability values of
samples containing 100 g/m2 PP-based inner layers are presented graphically in Figure 8.
As expected, the air permeability of composite structures with calendared inner layers
was lower compared to those without calendaring. This result was valid for samples
with inner layers containing different areal weights and raw materials. The calendaring
process involves passing meltblown nonwoven surfaces through hot rollers under pressure,
tightly bonding the fibers to each other, consequently causing a reduction in pores and
air permeability.
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Figure 8. Relation between process type of inner layer and outer layer type with composite air
permeability for PP based 100 g/m2 inner layer.

The air permeability values for composites with non-calendered PBT inner layers are
displayed in Figure 9 to elucidate the influence of the areal weight of the inner layer on the
air permeability of layered structures. Similar outcomes were observed for all composites
containing all inner layers. As depicted, an increase in the areal weight of the inner layer
led to a reduction in the air permeability of the layered composite structure. The number
of fibers resisting air passage in the cross-section rose with an increase in areal weight,
consequently resulting in decreased air permeability.
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3.2.3. Sound Absorption Coefficient

The sound absorption coefficient is a measure quantifying the extent to which a
material or surface absorbs sound energy at a specific frequency, indicating the proportion
of incident sound energy that is absorbed rather than reflected or transmitted. It is typically
expressed as a dimensionless value between 0 and 1, where 0 represents total sound
reflection and 1 represents total sound absorption. The sound absorption coefficients of
developed layered nonwoven composites have been measured for 19 frequencies within
the range of 100–6300 Hz. The frequency values (F), where sound absorption coefficients
were determined, have been treated as an additional independent variable in the statistical
analysis to generate a model for elucidating sound absorption properties of the nonwoven
composite structures. The ANOVA table of sound absorption coefficient of multilayered
nonwoven composites for varying frequencies is evaluated in Table 8.

Table 8. ANOVA for the sound absorption coefficient of composite structures in all sound frequencies.

Source Sum of
Squares

Degrees of
Freedom

Contribution
(%)

Mean
Square F Value P > F Significance

Model 54.01 10 R2 = 94.79 5.40 803.6 <0.0001 Significant
R 0.0007 1 0.001 0.0007 0.1 0.7474 Not significant
W 0.16 1 0.28 0.16 23.6 <0.0001 Significant
P 0.03 1 0.05 0.03 4.3 0.0384 Significant
O 0.07 2 0.13 0.035 5.4 0.0050 Significant
F 42.45 1 74.50 42.45 6315.4 <0.0001 Significant
F2 11.20 1 19.66 11.20 1666.2 <0.0001 Significant
RF 0.05 1 0.08 0.05 6.8 0.0094 Significant
WF 0.09 1 0.15 0.09 12.7 0.0004 Significant
PF 0.19 1 0.34 0.19 28.6 <0.0001 Significant
Residual 2.97 442 5.21 0.007 - - -
Cor Total 56.98 456 100 - - - -

As indicated in the ANOVA table (Table 8), the most influential factor affecting the
sound absorption behavior was found as the sound frequency with a contribution of 42.45%.
The R2 value of the mentioned model was determined as 94.79% which expresses that the
areal weight of the inner layer (W), the raw material of the inner layer (R), the process type
of the inner layer (P), outer layer type (O) and sound frequencies (F) explain the 94.79%
of the variation in the sound absorption coefficient of the composite structures. All the
chosen factors handled were found to have significant effects on the sound absorption
coefficient except the raw material of the inner layer. On the other hand, the impact of
binary interactions of raw material and sound frequency were significant.

The variation in sound absorption coefficients of multilayered nonwoven composite struc-
tures with sound frequencies and raw materials of the inner layer are depicted in Figure 10
for 200 g/m2 areal weighted calendered and non-calendered inner layers and 7DH outer layer.
In consideration of the similar results of other layers, these two graphs were provided here
as exemplary instances. As illustrated from the graphs, an increase in the sound absorption
coefficient was indicated with increasing sound frequencies. The observations revealed that
composites with calendered inner layers were effective at low and moderate sound frequencies,
whereas those without calendared inner layers demonstrated efficacy in higher frequencies. A
maximum sound absorption coefficient of 0.46 was obtained for 630 Hz, 0.71 for 800 Hz, and 0.74
for 1000 Hz sound frequencies, respectively. These results for low frequencies were higher than
the sound absorption coefficients derived from previous studies conducted with nanofiber lay-
ers [56–80]. Moreover, 0.77–0.98 sound absorption values were also acquired for moderate sound
frequencies (1250–3150 Hz) whereas 0.99–1 sound absorption values were provided for high
frequencies (4000–6300 Hz) with developed nonwoven composite structures. Furthermore, these
results were considerably higher than the results of previous studies [8–10,17–43,46–49,82–84].
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absorption coefficient for composites including 200 g/m2 calendered and non-calendered inner layer.

According to the generated model, the impact of the selected structural layer factors seemed
to be minimal in comparison to the influence of the sound frequency factor. This was attributed
to the markedly distinct behaviors of the developed layered structures in response to different
sound frequencies. Since sound absorption coefficients exhibited greater variation at different
frequencies, the effect of sound frequencies was believed to overshadow the influence of the
selected parameters. For this reason, the sound frequencies were classified as low, medium, and
high considering the previous studies [2,11,12,14] and the average sound absorption coefficient
for these frequencies was calculated. These average values are also called the noise reduction
coefficient (NRC) and were determined for low (100–1000 Hz), medium (1250–3000 Hz), and
high (4000–6300) sound frequencies using the following formula [11]:

NRC =

n
∑
i

αi

n
(4)

Here, αi expresses the sound absorption coefficient for the first sound frequency and n
presents the number of sound frequencies where tests were conducted [11]. For instance,
the NRC value for low frequency was calculated by considering the average of α100, α125,
α160, α200, α250, α315, α500, α630, α800, and α1000. Statistical analyses were performed again
for NRC values of high, medium, and low frequencies as dependent factors by taking into
account the chosen layer factors such as R, W, O, and P. The summarized ANOVA tables
for the mentioned analyses are illustrated in Table 9.

Table 9. Summarized ANOVA for NRC in low, medium and high frequencies.

NRC for Low Frequencies (100–1000 Hz) NRC for Medium Frequencies (1250–3000 Hz) NRC for High Frequencies (4000–6300 Hz)

Source F
Value P > F Contribution

(%) Source F
Value P > F Contribution

(%) Source F
Value P > F Contribution

(%)

Model 21.47 <0.0001 R2 = 93.25 Model 16.06 <0.0001 R2 = 95.43 Model 47.25 <0.0001 R2 = 95.39
R 3.37 0.0879 1.63 R 8.33 0.0162 3.81 R 37.98 <0.0001 10.95
W 109.47 <0.0001 52.82 W 58.33 <0.0001 26.66 W 33.93 <0.0001 9.78
P 34.04 <0.0001 16.42 P 63.16 <0.0001 28.87 P 147.00 <0.0001 42.39
O 9.79 0.0022 9.44 O 16.52 0.0007 15.10 O 2.98 0.0792 1.72
RP 10.30 0.0063 4.97 RW 9.40 0.0119 4.29 RP 63.76 <0.0001 18.39
WP 9.223 0.0089 4.45 RO 7.59 0.0099 6.94 WP 42.14 <0.0001 12.15
WO 3.64 0.0533 3.51 WP 5.54 0.0404 2.53 Residual - - 4.61
Residual 6.75 WO 3.17 0.0858 2.89 Cor Total - - 100
Cor Total 100 WPO 4.74 0.0356 4.33 - - - -
- - - - Residual - - 4.57 - - - -
- - - - Cor Total - - 100 - - - -
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When the table was examined, it was observed that the best models for describing
the NRC of the nonwoven composites in low-, medium-, and high-frequency sounds were
determined as modified 2FI models containing the main factors (R, W, O, P) and the binary
(for example RW, WO, WP) and ternary (WPO) interactions of the factors. The R2 values
of the models were determined as 93.25%, 95.43%, and 95.39% for low, medium and high
frequencies, respectively. Even though the individual effect of all model parameters on
noise reduction properties of nonwoven composite structures was significant for all sound
frequencies, the raw material of the inner layer in low frequency and outer layer type in
high frequency had no individually significant impact. The results revealed that the most
influential factors were the areal weight of the inner layer with a 52.82% contribution and
the process type of the inner layer with a 16.42% contribution to noise reduction coefficient
in low frequency. In the case of mid-range frequencies, the most influential factors on NRC
were the process type (28.87%) and the areal weight (26.66%) of the inner layer, whereas, at
higher frequencies, it was observed that the process type of the inner layer (42.39%), the
interaction between processing type and raw material of inner layer (RP) and the interaction
of process type and areal weight of inner layer (WP) had the most impact.

The graphs obtained as a result of statistical analysis by software which presented the
effects of outer layer type and process type of inner layer on noise reduction coefficient are
demonstrated in Figure 11 for low, medium and high sound frequencies. Here, the results
of nonwoven composites with PBT-based, 200 g/m2 areal weighted and calendered/non-
calendered inner layers were demonstrated to display the relation. Similar results were also
obtained for composites including other inner layers. As follows from the figures, although
the noise reduction coefficients were approximately similar, it is observed that composite
structures with a 7DH outer layer provided slightly better sound absorption in low- and
mid-frequency ranges (Figure 11a,b). On the other hand, the influence of the outer layer on
NRC was negligible for high sound frequencies (Figure 11c). The p-value of the outer layer
factor was insignificant as indicated in the ANOVA table (Table 9). Samples containing
7DH outer layers exhibited both greater thickness and a more voluminous structure due to
the presence of hollow fiber content, consequently yielding higher porosity values (Table 4).
For these reasons, it is believed that they provide better sound insulation, thanks to the
increased air voids they contain. It has been concluded that these air voids, as indicated in
previous studies [2,8–13], facilitated the vibration of air molecules for sound attenuation
and contributed to the reduction of sound energy. Additionally, they provided the space
necessary for the vibration of fibers during the reduction of sound energy.

The influences of process type of inner layers on the NRC of composites could be
also evaluated from Figure 11. The NRC of the composites including the calendered inner
layer was found to be higher than those that had non-calendered inner layers in low and
mid sound frequencies (Figure 11a,b). Conversely, the NRC was higher for composites
constructed from non-calendered inner layers than composites formed with calendered
inner layers in high sound frequencies (Figure 11c). The tendency was similar for the
composites other than those shown in these graphs.

When contemplating the formula of sound waves (λ = c/f; λ: sound wave length-m,
c: sound speed-m/s, f: sound frequency-Hz [9,110]); it is observed that frequency is inversely
proportional to the wavelength of the sound wave. Therefore, the waves of sound are bigger
for lower sound frequencies and vice versa. The fibers adhere to each other more effectively
in calendered inner layers due to the effects of heat and pressure, resulting in a denser, tighter,
and stronger structure with fewer air voids within. It was concluded that the presence of
bonds between the fibers enabled better resistance against larger sound waves. As reported in
the literature, resonant-type sound absorbers similar to calendered layers in our study were
preferred instead of porous structures in low sound frequencies [9,12,16,41,58]. For high sound
frequencies, the wavelength decreases, and the sound waves become denser in number. In
this scenario, it was believed that the thick, voluminous and tortuous structure with air voids
of non-calendared inner layers provided a favorable environment for attenuating such sound
waves. These results were in agreement with previous studies [9,12,16,41].
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Figure 11. Relation between outer layer type and inner layer process type with NRC of composites
containing PBT based 200 g/m2 areal weighted inner layer for different sound frequencies.

Figure 12 explains the variation of the NRC with the areal weight of the inner layer
located in nonwoven composite structures for low and high sound frequencies. Graphs
were formed for composites consisting of PP-based, calendered/non-calendered inner lay-
ers and 7DH outer layers, but the same trend was observed for other composite structures.
An increase in the areal weight of both calendered and non-calendered inner layers of
composite structures led to a rise in NRC when the frequency of sound was in the low- and
mid-ranges (Figure 10a). The increasing areal weight of the inner layer caused an increase
in the number of fibers in the cross-section. Since the wavelength was high at low and
mid frequencies, it was presumed that the increase in the number of fibers interacting with
sound waves resulted in greater sound absorption. Furthermore, increasing areal weight
means also an increase in thickness which yields higher NRC. Several previous studies also
support these results [4,5,8,43–46].

Regarding the high frequencies, increasing the areal weight of the inner layers in com-
posite structures delivered statistically insignificant differences for composites including
non-calendered inner layers, and the NRC values were kept constant although the areal
weight of the inner layers increased. However, decreasing NRC values were obtained with
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ascending inner layer areal weight for the calendered inner layer containing composites.
In high frequencies where the wavelength is small and dense, air voids are effective in
sound absorption and it would be reasonable to expect higher NRC values with highly
porous structures with numerous small air voids. The bulk density and porosity of the
non-calendered inner layers with different areal weights were approximately the same
whereas the pore size of 100 g/m2 is higher as shown in Table 5. Accordingly, the NRC has
remained constant. In calendered counterparts, the number and size of pores decreased
with increased areal weight and increased the number of fibers in the cross-section due
to the calendaring process. It was estimated that with an increase in areal weight, the
pores that attenuated sound waves became smaller and the number of pores decreased,
consequently this led to a decrease in sound absorption.
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Figure 12. Relation between areal weight and process type of inner layer with NRC of composites
containing PP-based inner layer and 7DH outer layer at different sound frequencies.

The variation between the raw material of the inner layer and NRC is depicted in
Figure 13 for different inner layer process types and sound frequencies. The graphs were
constituted for composite structures comprising a 7DH outer layer and 200 g/m2 inner
layer and are shown here, but the trend was the same for others. As seen from the figure,
the alteration of the raw material led to a negligible change in NRC at low and mid sound
frequencies for composites including both calendered and non-calendered inner layers and
at high frequencies for composites containing non-calendered inner layers. This effect was
also visible in the graphs containing all sound frequencies (Figure 10). This situation can
arise from the insignificant effect of the individual raw material factor for low frequencies
displayed in the ANOVA table (Table 9). Also, when the table was examined, it could be
inferred that the contribution of raw material individually was lower for mid frequencies
(3.81%) and the contribution of singular raw material factor reached up to 10.95% for
high frequencies. The porosity values of PP and PBT-based non-calendered inner layers
were closer (Table 5) and this result was assumed to be caused by these closer values
and the twisted fibers on the surface of PBT non-calendered inner layers (Figure 7) that
were believed to eliminate the higher thickness effect and other superior properties of PP
non-calendered inner layers.
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Figure 13. Relation between raw material and process type of inner layer with NRC of composites
containing 200 g/m2 areal weighted inner layer and 7DH outer layer for different sound frequencies.

Considering the calendered inner layers for high sound frequencies (Figure 13c), using
PBT-based calendered inner layers had a slightly beneficial effect on the NRC of nonwoven
composite structures, as also inferred clearly from Figure 8 for all sound frequencies.
This result was attributed to the higher elasticity and resilience properties of PBT fibers
compared to PP counterparts (Table 5) which yielded the damping of smaller and more
frequent sound waves (high sound frequencies). Furthermore, higher porosity and pore
size features of PBT-based calendered inner layers also resulted in higher NRC values for
these inner layers.

Figure 14 demonstrates the comparison of NRC values of the nonwoven composite
structures developed in this study with both the composite structures with nanofiber inner
layers (Table 5) and without inner layers for low (Figure 14a), moderate (Figure 14b) and
high (Figure 14c) sound frequencies. The composite structure coded as without an inner
layer was formed with two layers of thermo-bonded outer layers whereas nano-coding was
constructed by two thermo-bonded outer layers and a nanofiber-containing inner layer.
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As indicated in the figures, two layers of thermo-bonded nonwoven composite struc-
tures (without an inner layer) exhibited the lowest noise reduction values for all sound fre-
quencies, and adding an inner layer enhanced the sound absorption accordingly. Nanofiber
layer-containing composites were found to have slightly lower noise reduction coefficients
compared to the meltblown layer-containing counterparts for low and moderate sound
frequencies. On the contrary, composite materials containing nanofibers have demonstrated
sound absorption properties comparable to those of meltblown competitors at high sound
frequencies. As a result of this study, it can be concluded that similar or even higher sound
insulation can be achieved with composites formed by using meltblown nonwoven layers
compared to nanofiber layers. Considering that meltblown nonwovens can be produced
more rapidly, economically, effectively, and easily compared to nanofiber surfaces, it can be
seen that the use of meltblown layers will be more advantageous.

3.2.4. Thermal Resistance

Thermal insulation for textile materials and nonwoven structures is often expressed in
terms of thermal resistance, which quantifies the ability of a material to resist the flow of
heat. The thermal resistance value (R) is a fundamental metric used in the field of insulation
to evaluate and compare different materials’ effectiveness in impeding heat transfer. It
can be stated that the higher the thermal resistance, the better the insulation provided by
the nonwoven structures [111,112]. Table 10 presents the ANOVA results of the thermal
resistance of nonwoven composite structures.

Table 10. ANOVA table of thermal resistance of nonwoven composites.

Source Sum of
Squares

Degrees of
Freedom

Contribution
(%)

Mean
Square F Value P > F Significance

Model 0.052 9 R2 = 88.94 0.006 12.51 <0.0001 Significant
R 0.002 1 2.87 0.002 3.64 0.0772 Not significant
W 0.004 1 6.16 0.004 7.80 0.0144 Significant
O 0.035 2 60.13 0.0175 38.06 <0.0001 Significant
P 0.0006 1 0.98 0.0006 1.23 0.2853 Not significant
RWO 0.007 2 12.65 0.0035 8.02 0.0048 Significant
WOP 0.004 2 6.15 0.002 3.89 0.0454 Significant
Residual 0.007 14 11.16 0.0005 - - -

Cor Total 0.059 23 100 - - - -

Upon reviewing the ANOVA table, it can be seen that 88.94% of the variation in
thermal resistance of the nonwoven composite structures could be explained with the
chosen parameters in this study (R2 = 88.94%). The individual effects of areal weight and
process type of the inner layer were found to have a meaningful effect on thermal resistance;
on the contrary, raw material of the inner layer had no significant effect. The outer layer
type (60.13%) was determined to be the major contributor to the thermal resistance of the
composites which denoted that the thermal resistance of the generated composite structures
mainly depended on the outer layer type. Furthermore, despite the insignificant individual
influence of raw material and process type of the inner layer, the triple effect of RWO and
WOP had a meaningful impact on the thermal resistance of the composites.

In general, the type of fiber, thickness, density, and porosity of textile products and
nonwovens, which also determines the amount of trapped air within them, play an important
role in their thermal resistance properties. Additionally, nonwovens containing fibers with
lower thermal conductivity exhibit higher thermal resistance. According to the literature data
obtained, the thermal conductivity of PP polymer ranges from 0.17 to 0.22 W/mK [101,113],
while the thermal conductivity of PBT polymer ranges from 0.17 to 0.23 W/mK [114,115]. As
seen, the thermal conductivity properties of polymers forming the intermediate layers are very
close to each other, so the raw material type was not found to be effective as a main factor.
However, the parameters such as thickness, density, and porosity also changed according to
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raw material type; this factor is thought to have an indirect effect on the thermal resistance
properties of layered structures.

The thickness, density, and porosity of the composite structures are considered to be
prominent in the thermal resistance properties of porous materials. The more voluminous
the nonwovens are containing more air voids, the higher their thermal resistance properties,
due to the lower thermal conductivity of air [111,112]. Since the air trapped in the structure
was an important parameter for thermal resistance, the outer layer which had air containing
larger pores assumed to lead the outer layer to be the most influential parameter.

The effect of inner layer areal weight on the thermal resistance of composites with
different outer and inner layers is discussed in Figure 15. It was observed that the nonwoven
composites with 7DH outer layers exhibited the highest thermal resistance values compared
to composites with 7DS and 12DH layers. In addition, except for some composites, 7DS
and 12DH outer layers generally followed 7DH including composites in terms of thermal
resistance, respectively. As mentioned in thickness part, although single 7DS and 12DH
outer layers had different thickness values (Table 4), the thickness of the composites
including these outer layers were similar (Figure 3c) and accordingly the exceptions were
thought to be derived from the regional variations in all layers forming the three-layered
composite. Also, the difference in thermal resistance trend for the exceptional composites
containing PBT non-calendered inner layers (Figure 15b) may have originated from the
twisted fibers densely seen on the surface of this inner layer (Figure 7). The higher thermal
resistance of the composites containing 7DH was attributed to hollow fibers constituting
the outer layer and thicker and more voluminous structure than other outer layers. Despite
the hollow cross-section of fibers in 12DH outer layers, generally, the thermal resistance of
composites containing this outer layer was found to be the lowest due to the lower air gap
area in the center of the fiber (Table 1) and lower thickness of nonwoven. It was concluded
that the larger air voids formed in the structure of the 12DH outer layer because of the
thicker fiber diameter caused thermal loss through the thinner thickness of the nonwoven
path and eventually lead to lower thermal resistance.
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different outer layer type.

In general, it was determined that an increase in the areal weight of the non-calendered
inner layer (Figure 15a,b) had a positive effect on increasing thermal resistance, except for
composites including the 12DH outer layer and non-calendered PBT-based inner layer. This
exception was assumed to be caused by the twisted fiber regions on the non-calendered
PBT inner layer surface which covered the large air gaps in the 12DH outer layer. An
increase in areal weight lead to an increase in thickness along with an increase in the
number of fibers in the cross-section and a decrease in air gaps within the cross-section. As
the non-calendered inner layers were bulkier and thicker, it was estimated that the increase
in weight had a supportive effect on the thermal resistance of the composites including
these inner layers.

When the influence of areal weight in composites including the calendered inner layer
was examined (Figure 15c,d), significant alteration in thermal resistance was not identified
with variations in the areal weight of the calendered inner layer. The increase in areal weight
yielded an increase in the amount of fiber in the cross-section in calendered inner layers
which had a positive effect on thermal resistance, but the increase in thickness was restricted
by the calendaring process. The thicknesses of calendered 100 g/m2 and 200 g/m2 inner
layers were closer. Also, the pore size of the calendered inner layer decreased by increasing
the areal weight due to the increasing amount of fiber in the cross-section (Table 5) and
this influenced the thermal resistance negatively. On the other hand, the diamond-shaped
pattern was generated on the surface of the inner layer thanks to the calendaring process
and the size of this pattern was different (Figure 16) because of the different polymer
properties of PP and PBT, although the same calendaring roller was used. It was thought
that these diamond-shaped calendered regions formed air pores between the layers by
the layering process and these pores affected the thermal resistance positively. Thus, the
interactions of all these factors were assumed to lead to different trends of inner layer areal
weight for these composites.

The influence of the process type of the inner layer on the thermal resistance of
nonwoven composites with a PBT-based inner layer and 7DH outer layer is evaluated in
Figure 17. A similar trend was determined for other counterparts. As indicated from the
figure, the higher thermal resistance values were obtained with a non-calendered inner
layer for 100 g/m2 areal weighted inner layers. The thicker, bulkier non-calendered inner
layers caused thicker composites and also the air pores inside the non-calendered inner
layer had an enhancing effect on thermal resistance. However, the thermal resistance of
composites was kept constant for 200 g/m2 areal weighted inner layers despite different
process types (Figure 17). The closer thickness values were acquired for composites with
200 g/m2 areal weighted calendered and non-calendered inner layers (Table 5) and the air
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voids were reduced due to the calendaring effect. On the other hand, the diamond-shaped
calendaring pattern was formed which created air voids between the layers. Therefore,
it was estimated that the thermal conductivity values of calendared and non-calendared
samples were closer as a result of these complicated effects.
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If the overall thermal resistance results of generated multilayered nonwoven compos-
ites were evaluated, it can be indicated that the thermal resistance results changing between
0.519 and 0.697 m2K/W were obtained while thermal conductivity values were between
0.048 and 0.060 W/mK. The highest thermal resistance with the created layers is found to be
0.69665 m2K/W, and this value was achieved with a sample having a 7DH outer layer and
PP, non-calendered inner layer with the areal weight of 200 g/m2. According to the Turkish
Standard of TS 825 [116], the materials exhibiting thermal conductivity values smaller than
0.065 W/mK could be considered as heat insulation materials. Therefore, all the layered
nonwoven composites formed in this study could be used as heat insulation materials. Also,
when compared with the widely used heat insulation materials [117,118], the generated
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composites can offer a competitive advantage concerning thermal conductivity and cost
due to the use of recycled PET outer layers.

4. Conclusions

As a result of the experimental study addressing the influence of outer layer type
and inner layer properties, such as raw material type, areal weight and process type
on thickness, bulk density, air permeability, sound absorption coefficient and thermal
resistance of multilayered nonwoven composite structures, it was concluded that the
chosen parameters had significant effects on the investigated properties of composites.
Furthermore, higher R2 values were obtained for the statistical models to explain the
thickness, bulk density, air permeability, sound absorption coefficient and thermal resistance
of generated nonwoven composites.

Regarding the noise reduction for low sound frequencies (100–1000 Hz) and moderate
sound frequencies (1250–3150 Hz), the most influential factors were determined as the
areal weight of the inner layer and the process type of the inner layer. In the case of higher
frequencies, it was observed that the process type of the inner layer (42.39%), the interaction
between processing type and raw material of the inner layer (RP) and the interaction of
process type and areal weight of inner layer (WP) had the highest impact on NRC. A
maximum sound absorption coefficient of 0.46 was obtained for 630 Hz, 0.71 for 800 Hz,
and 0.74 Hz for 1000 Hz sound frequencies, respectively. Moreover, 0.77–0.98 sound
absorption values were also acquired for moderate sound frequencies (1250–3150 Hz),
whereas 0.99–1 sound absorption values were provided for high frequencies (4000–6300 Hz)
with the developed nonwoven composite structures. Accordingly, considerably higher
sound absorption coefficients were obtained with the developed nonwoven composites
compared to previous studies.

Nanofiber layer-containing composites were found to have slightly lower noise re-
duction coefficients compared to the meltblown layer-containing counterparts for low and
moderate sound frequencies, but similar results were obtained for high sound frequencies
with composites composed of a meltblown inner layer. Therefore, it can be concluded that
similar or even higher sound insulation can be achieved with composites formed by using
meltblown inner layers compared to nanofiber inner layers including counterparts. More-
over, if the quick, efficient, economical and easy manufacturing processes of meltblown
nonwovens compared to nanofiber layers is considered, using meltblown layers should
clearly be beneficial.

When the thermal resistance and conductivity results were assessed, the highest ther-
mal resistance and accordingly lowest thermal conductivity value was acquired with a
composite having a 7DH outer layer and PP, non-calendered inner layer with an areal
weight of 200 g/m2. Thermal conductivity values between 0.048 and 0.060 W/mK were
determined with developed multilayered nonwoven composites, which make these ma-
terials competitors with widely used insulation materials. Since the outer layer of the
developed composites were formed with recycled PET, the composites were found to be
cheaper compared to existing counterparts in the market. Furthermore, the contribution to
environmental preservation was provided by using sustainable r-Pet fibers in the bigger
part of composites. As a result, considering sound and heat insulation and price and
sustainability, the developed multilayered nonwoven composites can be used as insulation
materials offering a competitive advantage in required areas.

Author Contributions: Conceptualization, E.A. and E.Ç.; methodology, E.A. and E.Ç.; software, E.Ç.;
validation, E.A. and E.Ç.; formal analysis, E.A. and E.Ç.; investigation, E.A. and E.Ç.; resources, E.A. and
E.Ç.; data curation, E.A. and E.Ç.; writing original draft preparation, E.Ç.; writing—review and editing, E.A.
and E.Ç.; visualization, E.A. and E.Ç.; supervision, E.Ç.; project administration, E.Ç.; funding acquisition,
E.Ç. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Research Fund of Erciyes University [Project number:
FHD-2022-12093].



Polymers 2024, 16, 1391 28 of 32

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is provided in the article.

Acknowledgments: The authors would like to express sincere appreciation to Yataş Yatak ve Yorgan
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