Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = aramid nanofiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2197 KB  
Article
Antibacterial and Moisture Transferring Properties of Functionally Integrated Knitted Firefighting Fabrics
by Zhilin Teng, Zhen Li, Yue Zhang, Chentian Zhang, Liming Wang, Xinxin Li, Xing Jin and Rongwu Wang
Polymers 2025, 17(21), 2915; https://doi.org/10.3390/polym17212915 - 31 Oct 2025
Viewed by 681
Abstract
This research highlights the issue that large amount of sweat generated by metabolism cannot be discharged from the internal environment of traditional fire suits when firefighters are intensively operating in high-temperature environments. This is highly prone to bacterial growth, which brings much harm [...] Read more.
This research highlights the issue that large amount of sweat generated by metabolism cannot be discharged from the internal environment of traditional fire suits when firefighters are intensively operating in high-temperature environments. This is highly prone to bacterial growth, which brings much harm to their health. Therefore, this study aims to present a new fire-retardant fabric with both antibacterial and high hygroscopic properties. Blended fibers were used including aramid 1313 fibers with excellent flame retardancy and flame-retardant viscose fibers. By uniformly embedding antibacterial nanofibers into the microfiber aggregates and controlling the adhesion behavior at the cross-scale interfaces of micro–nano fibers, the fire-retardant yarns were endowed with both antibacterial and moisture-transporting properties. The bacterial inhibition rate was calculated by comparing colonies cultured on EF fabric versus NF fabric. Additionally, the antibacterial and moisture-wicking properties of the fabrics were verified through tests such as placing the fabrics vertically in liquid to measure the height of absorbed moisture. This prepared functionally integrated fabric has excellent antibacterial properties even after 50 washing cycles. Its antibacterial rate against Escherichia coli and Staphylococcus aureus kept a preferred result of 99%. Its moisture-transporting performance has also been significantly improved. Based on the above, this study has not only successfully developed a flame-retardant fabric with high antibacterial and moisture-wicking properties, but more importantly, the method demonstrates a degree of universal applicability. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

12 pages, 1563 KB  
Article
Tough Hydrogel Reinforced by Meta-Aramid Nanofibers for Flexible Sensors
by Zhiwen Hou, Yongzheng Li, Donghao Zhang, Cun Peng, Yan Wang and Kunyan Sui
Polymers 2025, 17(16), 2179; https://doi.org/10.3390/polym17162179 - 9 Aug 2025
Cited by 1 | Viewed by 1046
Abstract
Hydrogels exhibit significant promise for advanced flexible sensing applications owing to their intrinsic softness, biocompatibility, and customizable functionalities. Nevertheless, their limited mechanical strength poses a critical barrier to practical implementation. In this study, we engineered a mechanically robust alginate/chitosan (SA/CS) hydrogel reinforced with [...] Read more.
Hydrogels exhibit significant promise for advanced flexible sensing applications owing to their intrinsic softness, biocompatibility, and customizable functionalities. Nevertheless, their limited mechanical strength poses a critical barrier to practical implementation. In this study, we engineered a mechanically robust alginate/chitosan (SA/CS) hydrogel reinforced with meta-aramid (PMIA) nanofibers. The resulting composite hydrogel achieves a tensile strength of 16.8 MPa, substantially exceeding the performance of conventional biomass-derived hydrogels. When employed as a flexible sensor, the hydrogel demonstrates exceptional pressure-sensing capabilities, featuring high sensitivity (178.41 MΩ/MPa below 5 kPa), rapid response kinetics (0.4–0.8 s), and sustained stability (>200 cycles). Leveraging these properties, we successfully monitored vocal cord vibrations and finger motion trajectories, highlighting their potential for biomechanical sensing applications. Full article
Show Figures

Figure 1

19 pages, 6353 KB  
Article
Anti-Swelling Aramid-Nanofiber-Reinforced Zwitterionic Polymer Hydrogel for Strain Sensors
by Zeyu Chen and Wenbin Zhong
Materials 2025, 18(8), 1800; https://doi.org/10.3390/ma18081800 - 15 Apr 2025
Cited by 1 | Viewed by 1190
Abstract
Zwitterionic polymer hydrogels have great application prospects in wearable electronic devices due to their antifouling and excellent biocompatibility. However, its strong hydrophilicity often leads to easy swelling and poor mechanical properties. In this study, aramid nanofiber (ANF)-reinforced zwitterionic ion hydrogels were synthesized by [...] Read more.
Zwitterionic polymer hydrogels have great application prospects in wearable electronic devices due to their antifouling and excellent biocompatibility. However, its strong hydrophilicity often leads to easy swelling and poor mechanical properties. In this study, aramid nanofiber (ANF)-reinforced zwitterionic ion hydrogels were synthesized by the one-step free radical polymerization of N-acryloyl glycinamide (NAGA), N-[Tris (hydroxymethyl) methyl] acrylamide (THMA) and sulfobetaine methacrylate (SBMA) monomers in the presence of ANFs. A large number of hydrogen bonds were formed between the amide groups of the ANFs and the amide groups of the NAGA units/the hydroxyl groups of the THMA units/the sulfonic groups of the SBMA units, which improved the internal interface force of the hydrogel. The obtained ANF-reinforced hydrogel had an anti-swelling property, and its swelling ratio and tensile strength were 25% and 170% of those of the hydrogel without the addition of ANFs. By introducing lithium chloride as an electrolyte to improve its ion conductivity and subsequently assembling it into strain sensors, it exhibited a high sensitivity (GF = 1.12), short response and recovery times (100 ms and 150 ms), and excellent cycling stability. This work provides a feasible strategy for anti-swelling wearable strain sensors. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

13 pages, 5166 KB  
Article
Multifunctional Aramid Nanofiber/MXene/Aramid Fiber Composite Fabric with Outstanding EMI Shielding Performance
by Qianyi Wang, Ying Wang, Changmei Sun, Ying Zhang, Rongjun Qu and Yunxia Shen
Coatings 2025, 15(3), 354; https://doi.org/10.3390/coatings15030354 - 19 Mar 2025
Cited by 2 | Viewed by 1870
Abstract
Developing aramid fiber (AF) with electromagnetic interference (EMI) shielding properties is of significant importance for expanding their applications in the military, aerospace, and industrial sectors. Current research on the EMI shielding properties of AF often encounters challenges such as structural damage to the [...] Read more.
Developing aramid fiber (AF) with electromagnetic interference (EMI) shielding properties is of significant importance for expanding their applications in the military, aerospace, and industrial sectors. Current research on the EMI shielding properties of AF often encounters challenges such as structural damage to the fibers and inadequate shielding performance. In this study, we used vacuum-assisted filtration technology to sequentially deposit aramid nanofiber (ANF) and MXene onto the surface of AF fabric, thus preparing ANF/MXene/AF composite fabric. MXene, with its large specific surface area and excellent electrical conductivity, was used in conjunction with ANF, which acts as an intermediate layer to effectively filter MXene and improve the interfacial adhesion between the MXene and AF. The results showed that, under the combined effects of reflection and absorption, the A20M40 sample achieved an average EMI SE of 78.1 dB in the X-band, meeting the EMI shielding requirements for both civilian and military applications. Additionally, the ANF/MXene/AF composite fabric exhibited excellent electrothermal conversion performance (surface temperature reached 120 °C within 32 s under 5 V) and photothermal performance (surface temperature reached 85 °C after 145 s of exposure to 1500 W/m2 light intensity). Furthermore, the flame-retardant performance of the ANF/MXene/AF composite fabric was significantly enhanced compared to the pure AF fabric due to the physical barrier effect of MXene. Full article
Show Figures

Figure 1

15 pages, 6972 KB  
Article
Preparation of Mechanically Strong Aramid Nanofiber Gel Film with Surprising Entanglements and Orientation Structure Through Aprotic Donor Solvent Exchange
by Zeyu Chen, Chuying Yu and Wenbin Zhong
Materials 2025, 18(5), 1142; https://doi.org/10.3390/ma18051142 - 4 Mar 2025
Cited by 2 | Viewed by 1719
Abstract
Aramid nanofiber (ANF), a nanoscale building block with a prominently complex structure, can be prepared by splitting poly(p-phenylene terephthalamide) (PPTA) fibers into negatively charged ANFs in a deprotonating manner in a DMSO/KOH solvent system, followed by a subsequent re-protonation process using a proton-donor [...] Read more.
Aramid nanofiber (ANF), a nanoscale building block with a prominently complex structure, can be prepared by splitting poly(p-phenylene terephthalamide) (PPTA) fibers into negatively charged ANFs in a deprotonating manner in a DMSO/KOH solvent system, followed by a subsequent re-protonation process using a proton-donor reagent. There are rare reports regarding the utilization of an aprotic donor reagent to convert deprotonated ANF dispersion into film or gel with a controllable structure and high mechanical properties. In this work, dichloromethane, as an anhydrous aprotic donor solvent, has been introduced into the deprotonated ANF dispersion to replace DMSO, containing PPTA molecules and hydroxyl ions, leading to the gelation of deprotonated ANF dispersions, forming a film (ANFDCM) possessing a surprisingly highly entangled and oriented structure, as proven by SEM results. Due to the attenuation of electrostatic repulsion in the dispersion, partially deprotonated ANFs intertwined and cross-linked through π–π conjugation among a large number of benzene rings in PPTA molecules. After treating ANFDCM with water for re-protonation, the as-prepared film (ANFDCM-W) exhibited high tensile strength (307.7 MPa) and toughness (74.7 MJ m−3). Full article
Show Figures

Figure 1

27 pages, 6034 KB  
Review
High-Performance Advanced Composites in Multifunctional Material Design: State of the Art, Challenges, and Future Directions
by Sónia Simões
Materials 2024, 17(23), 5997; https://doi.org/10.3390/ma17235997 - 7 Dec 2024
Cited by 75 | Viewed by 9747
Abstract
This review examines high-performance advanced composites (HPACs) for lightweight, high-strength, and multi-functional applications. Fiber-reinforced composites, particularly those utilizing carbon, glass, aramid, and nanofibers, are highlighted for their exceptional mechanical, thermal, and environmental properties. These materials enable diverse applications, including in the aerospace, automotive, [...] Read more.
This review examines high-performance advanced composites (HPACs) for lightweight, high-strength, and multi-functional applications. Fiber-reinforced composites, particularly those utilizing carbon, glass, aramid, and nanofibers, are highlighted for their exceptional mechanical, thermal, and environmental properties. These materials enable diverse applications, including in the aerospace, automotive, energy, and defense sectors. In extreme conditions, matrix materials—polymers, metals, and ceramics—and advanced reinforcement materials must be carefully chosen to optimize performance and durability. Significant advancements in manufacturing techniques, such as automated and additive methods, have improved precision, reduced waste, and created highly customized and complex structures. Multifunctional composites integrating structural properties with energy storage and sensing capabilities are emerging as a breakthrough aligned with the trend toward smart material systems. Despite these advances, challenges such as recyclability, scalability, cost, and robust quality assurance remain. Addressing these issues will require the development of sustainable and bio-based composites, alongside efficient recycling solutions, to minimize their environmental impact and ensure long-term technological viability. The development of hybrid composites and nanocomposites to achieve multifunctionality while maintaining structural integrity will also be described. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Figure 1

14 pages, 4480 KB  
Article
Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing
by Jin Dong, Jing Lin, Hebai Zhang, Jun Wang, Ye Li, Kelin Pan, Haichen Zhang and Dechao Hu
Molecules 2024, 29(17), 4000; https://doi.org/10.3390/molecules29174000 - 23 Aug 2024
Cited by 1 | Viewed by 2222
Abstract
Developing multifunctional flexible composites with high-performance electromagnetic interference (EMI) shielding, thermal management, and sensing capacity is urgently required but challenging for next-generation smart electronic devices. Herein, novel nacre-like aramid nanofibers (ANFs)-based composite films with an anisotropic layered microstructure were prepared via vacuum-assisted filtration [...] Read more.
Developing multifunctional flexible composites with high-performance electromagnetic interference (EMI) shielding, thermal management, and sensing capacity is urgently required but challenging for next-generation smart electronic devices. Herein, novel nacre-like aramid nanofibers (ANFs)-based composite films with an anisotropic layered microstructure were prepared via vacuum-assisted filtration and hot-pressing. The formed 3D conductive skeleton enabled fast electron and phonon transport pathways in the composite films. As a result, the composite films showed a high electrical conductivity of 71.53 S/cm and an outstanding thermal conductivity of 6.4 W/m·K when the mass ratio of ANFs to MXene/AgNWs was 10:8. The excellent electrical properties and multi-layered structure endowed the composite films with superior EMI shielding performance and remarkable Joule heating performance, with a surface temperature of 78.3 °C at a voltage of 2.5 V. Additionally, it was found that the composite films also exhibited excellent mechanical properties and outstanding flame resistance. Moreover, the composite films could be further designed as strain sensors, which show great promise in monitoring real-time signals for human motion. These satisfactory results may open up a new opportunity for EMI shielding, thermal management, and sensing applications in wearable electronic devices. Full article
(This article belongs to the Special Issue Recent Advances in Functional Composite Materials)
Show Figures

Graphical abstract

12 pages, 5089 KB  
Article
Flexible and Compressible Nanostructure-Assembled Aramid Nanofiber/Silica Composites Aerogel
by Chensi Zhang, Jiangtao Li, Junpeng Jiang, Xiaoxia Hu, Shuo Yang, Kuan Wang, Anran Guo and Haiyan Du
Materials 2024, 17(9), 1938; https://doi.org/10.3390/ma17091938 - 23 Apr 2024
Cited by 10 | Viewed by 2892
Abstract
The Applications of silica aerogel are limited due to its brittleness and low strength. As a result, it is essential to strengthen and toughen it. Organic nanofibers are one of the preferred reinforcement materials. In this work, we designed and fabricated flexible and [...] Read more.
The Applications of silica aerogel are limited due to its brittleness and low strength. As a result, it is essential to strengthen and toughen it. Organic nanofibers are one of the preferred reinforcement materials. In this work, we designed and fabricated flexible and compressible nanostructure-assembled aramid nanofiber/silica composites aerogel (ANF/SiO2 aerogel) to improve the mechanical strength and flexibility of silica aerogel without compromising thermal insulation properties. The aramid nanofiber/silica composite aerogels were prepared by immersing the aramid nanofiber wet gel into the silica sol for a certain period of time followed by freeze drying without solvent replacement. The surface modifier 3-aminopropyltriethoxysilane (APTES) was used as a coupling agent to form chemical linkage between the ANF fiber and silica gel. It was observed that APTES can effectively drive the silica sol to infuse into ANF hydrogel, promoting the assembly of silica gel onto the fiber surface and a uniform distribution in the network of ANF. The compressive resilience, thermal stability, and thermal insulation properties of the composite aerogels were evaluated by inducing the silica aerogel into the ANF network to form a protective layer on the fiber and change the pore structure in the ANF network. Full article
Show Figures

Figure 1

17 pages, 10597 KB  
Article
Effect of Carbon Nanofiber Distribution on Mechanical Properties of Injection-Molded Aramid-Fiber-Reinforced Polypropylene
by Tetsuo Takayama, Shunsuke Kobayashi, Yuuki Yuasa and Quan Jiang
Polymers 2024, 16(8), 1110; https://doi.org/10.3390/polym16081110 - 16 Apr 2024
Cited by 8 | Viewed by 3438
Abstract
The mechanical recycling of discarded plastic products as resources for environmental preservation has recently gained research attention. In this context, it is necessary to use waste materials for fiber-reinforced thermoplastics (FRTP). Glass and carbon fibers are often damaged by shear and compression during [...] Read more.
The mechanical recycling of discarded plastic products as resources for environmental preservation has recently gained research attention. In this context, it is necessary to use waste materials for fiber-reinforced thermoplastics (FRTP). Glass and carbon fibers are often damaged by shear and compression during melt-forming processes. To achieve a sustainable society, it is necessary for thermal recycling to produce minimal to no residue and for mechanical recycling to maintain the length of fibers used in FRTP to preserve their performance as a reinforcing agent. Aramid fibers (AFs) do not shorten during the melt-molding process, and their composites have excellent impact strength. On the other hand, plastics reinforced with glass or carbon fibers are reported to have a superior strength and modulus of elasticity compared to aramid fibers. This study investigates the dispersion of a carbon nanofiber (CNF), a whisker, as the third component in aramid-fiber-reinforced polypropylene (PP/AF). The results and discussion sections demonstrate how the dispersion of CNF in PP/AF can enhance the mechanical properties of injection-molded products without compromising their impact resistance. The proposed composition will have excellent material recyclability and initial mechanical properties compared to glass-fiber-reinforced thermoplastics. Full article
Show Figures

Graphical abstract

15 pages, 4877 KB  
Article
Large-Scale Fabrication of Tunable Sandwich-Structured Silver Nanowires and Aramid Nanofiber Films for Exceptional Electromagnetic Interference (EMI) Shielding
by Xinbo Jiang, Guoqiang Cai, Jiangxiao Song, Yan Zhang, Bin Yu, Shimin Zhai, Kai Chen, Hao Zhang, Yihao Yu and Dongming Qi
Polymers 2024, 16(1), 61; https://doi.org/10.3390/polym16010061 - 23 Dec 2023
Cited by 4 | Viewed by 2255
Abstract
The recent advancements in communication technology have facilitated the widespread deployment of electronic communication equipment globally, resulting in the pervasive presence of electromagnetic pollution. Consequently, there is an urgent necessity to develop a thin, lightweight, efficient, and durable electromagnetic interference (EMI) shielding material [...] Read more.
The recent advancements in communication technology have facilitated the widespread deployment of electronic communication equipment globally, resulting in the pervasive presence of electromagnetic pollution. Consequently, there is an urgent necessity to develop a thin, lightweight, efficient, and durable electromagnetic interference (EMI) shielding material capable of withstanding severe environmental conditions. In this paper, we propose an innovative and scalable method for preparing EMI shielding films with a tunable sandwich structure. The film possesses a nylon mesh (NM) backbone, with AgNWs serving as the shielding coating and aramid nanofibers (ANFs) acting as the cladding layer. The prepared film was thin and flexible, with a thickness of only 0.13 mm. AgNWs can easily form a conductive network structure, and when the minimum addition amount was 0.2 mg/cm2, the EMI SE value reached 28.7 dB, effectively shielding 99.884% of electromagnetic waves and thereby meeting the commercial shielding requirement of 20 dB. With an increase in dosage up to 1.0 mg/cm2, the EMI SE value further improved to reach 50.6 dB. The NAAANF film demonstrated remarkable robustness in the face of complex usage environments as a result of the outstanding thermal, acid, and alkali resistance properties of aramid fibers. Such a thin, efficient, and environmentally resistant EMI shielding film provided new ideas for the broad EMI shielding market. Full article
(This article belongs to the Special Issue Advances in Interfacial Compatibility of Polymer Materials)
Show Figures

Figure 1

11 pages, 5536 KB  
Communication
Preparation and Mechanical Properties of UV-Curable Epoxy Acrylate/Modified Aramid Nanofiber Nanocomposite Films
by Ying Wang, Zhenxing Sun, Peixu Yin, Rongjun Qu, Ying Zhang and Changmei Sun
Nanomaterials 2023, 13(22), 2960; https://doi.org/10.3390/nano13222960 - 16 Nov 2023
Cited by 5 | Viewed by 2443
Abstract
In order to enhance the mechanical properties of UV-curable epoxy acrylate (EA)-based coatings, 3-(trimethoxysilyl)propyl methacrylate modified aramid nanofibers (T-ANFs) were synthesized and used as nanofillers to prepare EA/T-ANF nanocomposite films. The morphology of T-ANFs was characterized by transmission electron microscopy. The chemical structure [...] Read more.
In order to enhance the mechanical properties of UV-curable epoxy acrylate (EA)-based coatings, 3-(trimethoxysilyl)propyl methacrylate modified aramid nanofibers (T-ANFs) were synthesized and used as nanofillers to prepare EA/T-ANF nanocomposite films. The morphology of T-ANFs was characterized by transmission electron microscopy. The chemical structure of T-ANFs was analyzed via infrared spectroscopy, confirming successful grafting of methyl methacryloyloxy groups onto the surface of aramid nanofibers (ANFs). Real-time infrared spectroscopy was employed to investigate the influence of ANFs and T-ANFs on the photopolymerization kinetics of the EA film. The results revealed that the addition of ANFs and T-ANFs led to a decrease in the photopolymerization rate during the initial stage but had little impact on the final double bond conversion, with all samples exhibiting a conversion rate of over 83%. The incorporation of ANFs improved the tensile strength of the films while significantly reducing their Young’s modulus. In contrast, the addition of T-ANFs led to a substantial increase in both tensile stress and Young’s modulus of the films. For instance, the tensile strength and Young’s modulus of the 0.1 wt% of T-ANF film increased by 52.7% and 41.6%, respectively, compared to the pure EA film. To further study the dispersion morphology and reinforcement mechanism, the cross-sectional morphology of the films was characterized by scanning electron microscopy. Full article
Show Figures

Figure 1

18 pages, 5439 KB  
Article
Asymmetric and Flexible Ag-MXene/ANFs Composite Papers for Electromagnetic Shielding and Thermal Management
by Xiaoai Ye, Xu Zhang, Xinsheng Zhou and Guigen Wang
Nanomaterials 2023, 13(18), 2608; https://doi.org/10.3390/nano13182608 - 21 Sep 2023
Cited by 8 | Viewed by 2854
Abstract
Lightweight, flexible, and electrically conductive thin films with high electromagnetic interference (EMI) shielding effectiveness and excellent thermal management capability are ideal for portable and flexible electronic devices. Herein, the asymmetric and multilayered structure Ag-MXene/ANFs composite papers (AMAGM) were fabricated based on Ag-MXene hybrids [...] Read more.
Lightweight, flexible, and electrically conductive thin films with high electromagnetic interference (EMI) shielding effectiveness and excellent thermal management capability are ideal for portable and flexible electronic devices. Herein, the asymmetric and multilayered structure Ag-MXene/ANFs composite papers (AMAGM) were fabricated based on Ag-MXene hybrids and aramid nanofibers (ANFs) via a self-reduction and alternating vacuum-assisted filtration process. The resultant AMAGM composite papers exhibit high electrical conductivity of 248,120 S m−1, excellent mechanical properties with tensile strength of 124.21 MPa and fracture strain of 4.98%, superior EMI shielding effectiveness (62 dB), ultra-high EMI SE/t (11,923 dB cm2 g−1) and outstanding EMI SE reliability as high as 96.1% even after 5000 cycles of bending deformation benefiting from the unique structure and the 3D network at a thickness of 34 μm. Asymmetric structures play an important role in regulating reflection and absorption of electromagnetic waves. In addition, the multifunctional nanocomposite papers reveal outstanding thermal management performances such as ultrafast thermal response, high heating temperatures at low operation voltage, and high heating stability. The results indicate that the AMAGM composite papers have excellent potential for high-integration electromagnetic shielding, wearable electronics, artificial intelligence, and high-performance heating devices. Full article
(This article belongs to the Special Issue Recent Advances in Two-Dimensional Monolayer Nanomaterials)
Show Figures

Figure 1

15 pages, 3731 KB  
Article
Torsional Vibrations in the Resonance of High-Speed Rotor Bearings Reduced by Dynamic Properties of Carbon Fiber Polymer Composites
by Zuzana Murčinková, Jozef Živčák and Dominik Sabol
Materials 2023, 16(9), 3324; https://doi.org/10.3390/ma16093324 - 24 Apr 2023
Cited by 2 | Viewed by 2645
Abstract
The present study deals with the harmful torsional resonance vibrations of textile rotor bearings, the amplitudes of which are reduced mainly by the use of high-capacity damping materials, characterized by an internal hierarchical structure and macroshape, added into the machine mechanical system. The [...] Read more.
The present study deals with the harmful torsional resonance vibrations of textile rotor bearings, the amplitudes of which are reduced mainly by the use of high-capacity damping materials, characterized by an internal hierarchical structure and macroshape, added into the machine mechanical system. The additional materials are polymer matrix composites reinforced either by carbon nanofibers or carbon chopped microfibers and either aramid or carbon continuous fibers. The macroshape is based on a honeycomb with internal cavities. Torsional vibrations arise in mechanical systems as a result of fluctuations in the low-level pressing load of the flat belt driving the rotor-bearing pin and the changing of kinematic conditions within it, which, in the resonance area, leads to cage slip and unwanted impulsive torsional vibrations. Moreover, this occurs during high-frequency performance at around 2100 Hz, i.e., 126,000 min−1. The condition, before the redesign, was characterized by significantly reduced textile rotor-bearing life due to significant impulse torsional vibrations in the resonance area. The study showed a significant reduction in average and maximum torsional amplitudes in the resonance area by 33% and 43%, respectively. Furthermore, the paper provides visualization of the propagation of a stress wave at the microscale obtained by the explicit finite element method to show the dispersion of the wave and the fibers as one of the sources of high damping. Full article
(This article belongs to the Special Issue Advanced and Emerging Materials-2022)
Show Figures

Figure 1

10 pages, 2758 KB  
Article
Aramid Nanofiber/XNBR Nanocomposite with High Mechanical, Thermal, and Electrical Performance
by Jingyi Wang, Xumin Zhang, Yanwei Wen, Yang Chen, Quansheng Fu, Jing Wang and Hongbing Jia
Nanomaterials 2023, 13(2), 335; https://doi.org/10.3390/nano13020335 - 13 Jan 2023
Cited by 7 | Viewed by 2778
Abstract
Aramid nanofibers (ANFs) were successfully produced by deprotonation of Kevlar fiber followed by grafting epichlorohydrin in dimethyl sulfoxide solution. The ANFs were then incorporated into carboxylated acrylonitrile butadiene rubber (XNBR) by means of latex blending, followed by vulcanization. The interaction between ANFs and [...] Read more.
Aramid nanofibers (ANFs) were successfully produced by deprotonation of Kevlar fiber followed by grafting epichlorohydrin in dimethyl sulfoxide solution. The ANFs were then incorporated into carboxylated acrylonitrile butadiene rubber (XNBR) by means of latex blending, followed by vulcanization. The interaction between ANFs and XNBR, and the effects of ANFs on the mechanical strength, dielectric properties, and thermal stability of ANF/XNBR nanocomposites were investigated. The results revealed that hydrogen bonding and covalent bonding interactions existed between ANFs and the XNBR matrix and played a critical role in the reinforcement of ANFs to XNBR nanocomposites. After adding 5 phr (parts per hundred rubber) of ANFs, the XNBR nanocomposite exhibited a significant improvement in mechanical properties, namely a 182% increase in tensile strength and a 101% increase in tear strength. In addition, the dielectric constant and thermal properties of ANF/XNBR also increased dramatically. ANFs may thus make an ideal candidate for high-performance rubber materials. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymer Nanocomposites)
Show Figures

Figure 1

11 pages, 7953 KB  
Article
Pressure Drop Performance of Porous Composites Based on Cotton Cellulose Nanofiber and Aramid Nanofiber for Cigarette Filter Rod
by Guangyuan Yang, Ning Hou, Zheming Li, Ke Huang, Bin Zhang, Jie Xu and Jiuxiao Sun
Materials 2023, 16(1), 411; https://doi.org/10.3390/ma16010411 - 1 Jan 2023
Cited by 2 | Viewed by 2798
Abstract
Porous composites have been widely used in the adsorption and catalysis field due to their special structure, abundant sites, and light weight. In this work, an environmentally friendly porous composite was successfully prepared via a facile freeze-drying method, in which cotton cellulose nanofiber [...] Read more.
Porous composites have been widely used in the adsorption and catalysis field due to their special structure, abundant sites, and light weight. In this work, an environmentally friendly porous composite was successfully prepared via a facile freeze-drying method, in which cotton cellulose nanofiber (CCNF) was adopted as the main framework to construct the connected flue structure, and aramid nanofiber (ANF) was used as a reinforcer to enhance its thermal property. As-prepared porous materials retained a regulated inter-connected hole structure and controllable porosity after ice template evolution and possessed improved resistance to thermal collapse with the introduction of a small amount of aramid nanofiber, as evaluated and verified by FTIR, SEM, and TGA measurements. With the increased addition of cotton cellulose nanofiber and aramid nanofiber, the porous composites exhibited decreased porosity and increased pressure drop performance. For the CCNF/ANF-5 sample, the pressure drop was 1867 Pa with a porosity of 7.46 cm3/g, which best met the required pressure drop value of 1870 Pa. As-prepared porous composite with adjustable interior structure and enhanced thermal property could be a promising candidate in the tobacco field. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop