Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (513)

Search Parameters:
Keywords = aqueous battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5039 KB  
Article
Impact of Gel-Derived Morphology-Controlled UiO-66/Cellulose Nanofiber Composite Separators on the Performance of Aqueous Zinc-Ion Batteries
by Tian Zhao, Jiangrong Yu, Shilin Peng, Yan Wu, Tianhang Wang, Zhuoheng Li, Ling Shen, Christoph Janiak and Yi Chen
Gels 2026, 12(1), 75; https://doi.org/10.3390/gels12010075 - 15 Jan 2026
Viewed by 149
Abstract
Zinc dendrite growth and side reactions remain critical challenges hindering the advancement of aqueous zinc-ion batteries (AZIBs). This study proposes a gel-based strategy for designing high-performance separators by regulating the crystal morphology of the metal–organic framework UiO-66 within a cellulose nanofiber (CNF) gel [...] Read more.
Zinc dendrite growth and side reactions remain critical challenges hindering the advancement of aqueous zinc-ion batteries (AZIBs). This study proposes a gel-based strategy for designing high-performance separators by regulating the crystal morphology of the metal–organic framework UiO-66 within a cellulose nanofiber (CNF) gel matrix. The resulting gel-derived separators exhibit distinctive structural and interfacial properties that significantly enhance battery performance. Compared with hierarchical porous structures (H-UiO-66), the octahedral morphology (O-UiO-66) disperses more uniformly in the CNF gel network, forming well-defined ion transport channels through its integrated gel architecture. The fabricated O-UiO-66/CNF gel separator demonstrates exceptional hydrophilicity (contact angle 21°), high porosity (73.2%), and significantly improved zinc ion migration number (0.72). Electrochemical tests reveal that this gel-based separator effectively guides uniform zinc deposition while suppressing dendrite growth. Zn/Zn symmetric cells using the O-UiO-66/CNF gel separator achieve a cycle life exceeding 800 h at 1 mA cm−2. The Zn/MnO2 full cell maintains 98.1% capacity retention after 100 cycles at 1 A g−1. This work establishes a structure–performance relationship between MOF morphology and gel separator properties, providing new insights for designing advanced gel-based materials for AZIBs. Full article
(This article belongs to the Special Issue Gel-Based Materials for Energy Storage)
Show Figures

Figure 1

16 pages, 7835 KB  
Article
Influence of Y and Ca Micro-Alloying and Citric Acid on the Discharge Behavior of AZ31 Mg Alloys for Mg–Air Batteries
by Shani Abtan Bason and Guy Ben Hamu
Metals 2026, 16(1), 87; https://doi.org/10.3390/met16010087 - 13 Jan 2026
Viewed by 77
Abstract
This study examined cast AZ31 magnesium alloy and its variant containing micro-alloying elements of Y and Ca (AZXW alloy), evaluating their potential as anode materials in magnesium–air batteries. The AZXW alloy was fabricated via two manufacturing techniques: casting and extrusion. The synergistic influence [...] Read more.
This study examined cast AZ31 magnesium alloy and its variant containing micro-alloying elements of Y and Ca (AZXW alloy), evaluating their potential as anode materials in magnesium–air batteries. The AZXW alloy was fabricated via two manufacturing techniques: casting and extrusion. The synergistic influence of Y and Ca, in conjunction with the production procedure, on the microstructure, electrochemical characteristics, and anodic discharge behavior of the examined alloys was investigated. The addition of Y and Ca results in the formation of secondary phases that affect grain size, particle size, and distribution, as well as the electrochemical performance and discharge properties of the Mg–air battery constructed for this study, over 24 h or until fully discharged. This work demonstrates the potential to enhance discharge performance and electrochemical behavior by adjusting the aqueous electrolyte solution in the battery through the incorporation of Citric Acid (C.A) at varying concentrations. The incorporation of citric acid into the aqueous electrolyte improves battery stability and specific energy as long as citric acid is present in the solution. Magnesium hydroxide (Mg(OH)2) begins to form on the anode surface as its concentration progressively decreases due to complexation with dissolved magnesium ions. This diminishes the effective anode area over time, ultimately resulting in the distinctive “knee-type” collapse characteristic of electrolytes containing citric acid. Full article
(This article belongs to the Special Issue Advances and Challenges in Corrosion of Alloys and Protection Systems)
Show Figures

Figure 1

34 pages, 21175 KB  
Review
Critical Progress of Mn, Cu, Co, and V-MOFs and Their Derivatives as Promising Electrodes for Aqueous Zn-Ion Batteries
by Ramanadha Mangiri and Joonho Bae
Nanomaterials 2026, 16(1), 33; https://doi.org/10.3390/nano16010033 - 25 Dec 2025
Viewed by 408
Abstract
Metal–organic frameworks (MOFs) have emerged as versatile precursors and templates for developing high-performance electrode materials for aqueous zinc-ion batteries (ZIBs), owing to their adjustable porosity, abundant metal-coordination sites, and structural flexibility. Among the diverse array of MOFs investigated, those based on manganese, copper, [...] Read more.
Metal–organic frameworks (MOFs) have emerged as versatile precursors and templates for developing high-performance electrode materials for aqueous zinc-ion batteries (ZIBs), owing to their adjustable porosity, abundant metal-coordination sites, and structural flexibility. Among the diverse array of MOFs investigated, those based on manganese, copper, and cobalt, as well as their derivatives, have shown exceptional potential, exhibiting enhanced redox activity, structural integrity, and advantageous zinc-ion storage kinetics compared with many other MOF systems. This study emphasizes the synthesis methodologies, structural characteristics, and electrochemical benefits of these three significant MOF families. After a succinct overview of MOF chemistry, synthesis methodologies, and fundamental design principles for ZIB electrode materials, the article presents a systematic, comparative evaluation of Mn-MOFs, Cu-MOFs, Co-MOFs and V-MOFs, along with their corresponding metal oxides, sulfides, phosphates, carbon composites, and multidimensional hybrid structures. Recent publications for each MOF type are detailed in separate tables, including synthesis methods, morphological development, electrochemical behavior, and performance metrics. The discourse highlights the distinct properties of each metal center, Mn’s multivalent redox chemistry, Cu’s superior electron transport and coordination adaptability, and Co’s elevated activity and stable structures, which together facilitate improved ion diffusion, substantial reversible capacity, and prolonged cycling durability. Ultimately, existing obstacles and potential research avenues are delineated to advance MOF-based materials for next-generation aqueous ZIB systems. Full article
Show Figures

Graphical abstract

17 pages, 2856 KB  
Article
Mechanism-Informed Interfacial Chemistry and Structural Evolution of TiS2 During Ca2+ Intercalation in Concentrated Aqueous CaCl2 Electrolytes
by SangYup Lee, Sujin Seong, Seunga Yang and Soon-Ki Jeong
Int. J. Mol. Sci. 2025, 26(24), 11971; https://doi.org/10.3390/ijms262411971 - 12 Dec 2025
Viewed by 273
Abstract
This study examines the interfacial and structural evolution of titanium disulfide (TiS2) during Ca2+ intercalation/deintercalation in concentrated aqueous CaCl2. Electrochemical measurements were combined with ex situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy to characterize [...] Read more.
This study examines the interfacial and structural evolution of titanium disulfide (TiS2) during Ca2+ intercalation/deintercalation in concentrated aqueous CaCl2. Electrochemical measurements were combined with ex situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy to characterize the solvation structure, potential window, and reversibility in concentrated CaCl2 electrolytes. Increasing the CaCl2 concentration from 1.0 to 8.0 M was accompanied by reduced gas evolution and an expanded practical operating window. Stepwise analysis identified the potential range −1.00 to 0.10 V (vs. the saturated calomel electrode) as a practical window that minimized TiO2/S8 formation while preserving reversible Ca2+ intercalation. Ex situ XRD showed reversible (001) shifts, consistent with interlayer expansion and contraction, and peak broadening was indicative of partial amorphization and defects. XPS revealed CaS and polysulfides (Sz2−, 2 ≤ z ≤ 8) to be the prevalent surface species with limited Ca(OH)2 and CaSO4; within the detection limits, no chlorine-containing reduction products were observed after charging. The electrochemical and spectroscopic results indicate that intercalation is accompanied by partial sulfur-centered reduction and defect signatures, with associated changes in the interfacial charge-transfer characteristics and reversibility. These findings link the potential, interfacial chemistry, and lattice response, and suggest design considerations for stable aqueous multivalent-ion storage. Full article
(This article belongs to the Special Issue Recent Advances in Electrochemical-Related Materials)
Show Figures

Figure 1

22 pages, 1509 KB  
Review
A Review of Recent Advances in Multivalent Ion Batteries for Next Generation Energy Storage
by Raj Shah, Kate Marussich and Vikram Mittal
Electrochem 2025, 6(4), 44; https://doi.org/10.3390/electrochem6040044 - 10 Dec 2025
Viewed by 1187
Abstract
As demand for high-performance energy storage grows across grid and mobility sectors, multivalent ion batteries (MVIBs) have emerged as promising alternatives to lithium-based systems due to their potential for higher volumetric energy density and material abundance. This review comprehensively examines recent breakthroughs in [...] Read more.
As demand for high-performance energy storage grows across grid and mobility sectors, multivalent ion batteries (MVIBs) have emerged as promising alternatives to lithium-based systems due to their potential for higher volumetric energy density and material abundance. This review comprehensively examines recent breakthroughs in magnesium, zinc, aluminum, and calcium-based battery chemistries, with a focus on overcoming barriers related to slow ion transport, limited reversibility, and electrode degradation. Advances in aqueous and non-aqueous electrolyte formulations, including solvation shell engineering, interfacial passivation, and dual-zone ion transport, are discussed for their role in improving compatibility and cycling stability. Particular focus is placed on three high-impact innovations: solvation-optimized Mg-ion systems for improved mobility and retention, interface-engineered Zn-ion batteries enabling dendrite-free operation, and sustainable Al-ion technologies targeting grid-scale deployment with eco-friendly electrolytes and recyclable materials. Cross-cutting insights from operando characterization techniques and AI-guided materials discovery are also evaluated for their role in accelerating MVIB development. By integrating fundamental materials innovation with practical system design, multivalent ion batteries offer a compelling path toward next-generation, safer, and more sustainable energy storage platforms. Full article
Show Figures

Figure 1

19 pages, 3215 KB  
Article
Thick LiMn2O4 Electrode with Polymer Electrolyte for Electrochemical Extraction of Lithium from Brines
by Daiwei Yao, Jing Qin, Hongtan Liu, Mert Akin and Xiangyang Zhou
Batteries 2025, 11(12), 454; https://doi.org/10.3390/batteries11120454 - 10 Dec 2025
Viewed by 402
Abstract
Thick (900–1500 µm), crack-free lithium manganese oxide (LMO) electrodes with a polyvinylidene fluoride (PVDF)-based polymer electrolyte were prepared using an innovated slurry casting method. The selectivity and intercalation capacity of the thick electrodes of 900–1500 μm were evaluated in aqueous chloride solutions containing [...] Read more.
Thick (900–1500 µm), crack-free lithium manganese oxide (LMO) electrodes with a polyvinylidene fluoride (PVDF)-based polymer electrolyte were prepared using an innovated slurry casting method. The selectivity and intercalation capacity of the thick electrodes of 900–1500 μm were evaluated in aqueous chloride solutions containing main cations in synthetic Salar de Atacama brine using cyclic voltammetry (CV) measurements. The CV data indicated that a high Li+ selectivity of Li/Na = 152.7 could be achieved under potentiostatic conditions. With the thickest electrode, while the mass specific intercalation capacity was 6.234 mg per gram of LMO, the area specific capacity was increased by 3–11 folds compared to that for conventional thin electrodes to 0.282 mg per square centimeter. In addition, 82% of capacity was retained over 30 intercalation/dis-intercalation cycles. XRD and electrochemical analyses revealed that both Faradaic diffusion-controlled or battery-like intercalation and Faradaic non-diffusion controlled or pseudocapacitive intercalation contributed to the capacity and selectivity. This work demonstrates a practical technology for thick electrode fabrication that promises to result in a significant reduction in manufacturing and operational costs for lithium extraction from brines. Full article
(This article belongs to the Special Issue Solid Polymer Electrolytes for Lithium Batteries and Beyond)
Show Figures

Figure 1

12 pages, 5003 KB  
Article
A Carboxyl-Modified Polyaniline Cathode for High-Performance Aqueous Zinc-Ion Batteries
by Zhen Sun, Shijun Tang, Haixu Wang, Shiyu Liu and Xiang Cai
Molecules 2025, 30(23), 4498; https://doi.org/10.3390/molecules30234498 - 21 Nov 2025
Viewed by 486
Abstract
Inherent conductivity and high redox activity endow polyaniline (PANI) with great potential to serve as a cathode material for aqueous zinc-ion batteries. However, compared with traditional strongly acidic electrolytes (pH < 1), its electrochemical performances are moderated in weakly acidic zinc salt electrolytes [...] Read more.
Inherent conductivity and high redox activity endow polyaniline (PANI) with great potential to serve as a cathode material for aqueous zinc-ion batteries. However, compared with traditional strongly acidic electrolytes (pH < 1), its electrochemical performances are moderated in weakly acidic zinc salt electrolytes (pH > 3) because of spontaneous deprotonation. Herein, a carboxyl-modified PANI was designed and synthesized by introducing carboxyl groups at the para-position of the terminal benzene rings within the polymer chains. In this conjugated system, the electron density in the polymer chains was redistributed with a higher one around the substituent due to the electron-withdrawing effect of carboxyl groups and meanwhile carboxyl groups characterized by a proton donor render PANI achieve a proton-involved electrochemical reaction. Consequently, the carboxyl-modified PANI cathode, in a Zn//PANI cell, delivers an impressive specific capacity of 226 mAh g−1 along with excellent rata capability and cycling stability. This work presented some new insights into the molecule structure design of PANI-based polymers applied in advanced aqueous batteries. Full article
Show Figures

Graphical abstract

17 pages, 3371 KB  
Article
Oxygen-Vacancy-Rich V2O5@NC Composite with Enhanced Zinc-Storage Performance for Aqueous Zinc-Ion Batteries
by Taoyun Zhou, Pingyuan Liang, Shilin Li, Yun Cheng and Xinyu Li
Materials 2025, 18(22), 5216; https://doi.org/10.3390/ma18225216 - 18 Nov 2025
Viewed by 613
Abstract
The practical application of vanadium-based cathode materials in aqueous zinc-ion batteries (AZIBs) is severely hindered by vanadium dissolution, low electronic conductivity, and sluggish reaction kinetics in aqueous electrolytes. In this work, a three-dimensional confined V2O5@ nitrogen-doped carbon (V2 [...] Read more.
The practical application of vanadium-based cathode materials in aqueous zinc-ion batteries (AZIBs) is severely hindered by vanadium dissolution, low electronic conductivity, and sluggish reaction kinetics in aqueous electrolytes. In this work, a three-dimensional confined V2O5@ nitrogen-doped carbon (V2O5@NC) composite was rationally designed and constructed through a dual-regulation strategy combining oxygen-vacancy engineering and conductive network enhancement. In this architecture, the nitrogen-doped carbon framework provides a highly conductive network and robust structural support, while in situ carbonization induces the generation of oxygen vacancies within V2O5. These oxygen vacancies cause lattice distortion and expand the interlayer spacing, thereby accelerating Zn2+ diffusion and improving reaction kinetics. Benefiting from this synergistic effect, the V2O5@NC electrode exhibits an excellent specific capacity of 437 mAh g−1 at 0.1 A g−1 and maintains a remarkable 89.3% capacity retention after 2000 cycles at 3 A g−1, demonstrating outstanding rate performance and cycling stability. This study provides new insights and an effective design strategy for developing high-performance cathode materials for next-generation aqueous zinc-ion batteries. Full article
Show Figures

Figure 1

29 pages, 5727 KB  
Review
Progress in Improving Safety Performance of Battery Separators Based on MOF Materials: Mechanisms, Materials and Applications
by Tian Zhao, Yajuan Bi, Jiayao Chen, Jiangrong Yu, Shilin Peng, Fuli Luo and Yi Chen
Safety 2025, 11(4), 111; https://doi.org/10.3390/safety11040111 - 17 Nov 2025
Viewed by 2329
Abstract
This comprehensive review examines the transformative role of metal–organic frameworks (MOFs) in advancing battery separator technology to address critical safety challenges in rechargeable lithium metal batteries. MOF-based separators leverage their highly specific surface area, tunable pore structures, and functionalized organic ligands to enable [...] Read more.
This comprehensive review examines the transformative role of metal–organic frameworks (MOFs) in advancing battery separator technology to address critical safety challenges in rechargeable lithium metal batteries. MOF-based separators leverage their highly specific surface area, tunable pore structures, and functionalized organic ligands to enable precise ion-sieving effects, uniform lithium-ion flux regulation, and dendrite suppression—significantly mitigating risks of internal short circuits and thermal runaway. We systematically analyze the mechanisms by which classical MOF families (e.g., ZIF, UiO, MIL series) enhance separator performance through physicochemical properties such as electrolyte wettability, thermal stability (>400 °C), and mechanical robustness. Furthermore, we highlight innovative composite strategies integrating MOFs with polymer matrices (e.g., PVDF, PAN) or traditional separators, which synergistically improve ionic conductivity while inhibiting polysulfide shuttling in lithium–sulfur batteries and side reactions in aqueous zinc-ion systems. Case studies demonstrate that functionalized MOF separators achieve exceptional electrochemical outcomes: Li–S batteries maintain >99% Coulombic efficiency over 500 cycles, while solid-state batteries exhibit 2400 h dendrite-free operation. Despite promising results, scalability challenges related to MOF synthesis costs and long-term stability under operational conditions require further research. This review underscores MOFs’ potential as multifunctional separator materials to enable safer, high-energy-density batteries and provides strategic insights for future material design. Full article
Show Figures

Figure 1

21 pages, 3086 KB  
Review
Polymer-Based Artificial Solid Electrolyte Interphase Layers for Li- and Zn-Metal Anodes: From Molecular Engineering to Operando Visualization
by Jae-Hee Han and Joonho Bae
Polymers 2025, 17(22), 2999; https://doi.org/10.3390/polym17222999 - 11 Nov 2025
Viewed by 1690
Abstract
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how [...] Read more.
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how these designs are now evaluated against operando readouts rather than post-mortem snapshots. We group the related molecular strategies into three classes: (i) side-chain/ionomer chemistry (salt-philic, fluorinated, zwitterionic) to increase cation selectivity and manage local solvation; (ii) dynamic or covalently cross-linked networks to absorb microcracks and maintain coverage during plating/stripping; and (iii) polymer–ceramic hybrids that balance modulus, wetting, and ionic transport characteristics. We then benchmark these choices against metal-specific constraints—high reductive potential and inactive Li accumulation for Li, and pH, water activity, corrosion, and hydrogen evolution reaction (HER) for Zn—showing why a universal preparation method is unlikely. A central element is a system of design parameters and operando metrics that links material parameters to readouts collected under bias, including the nucleation overpotential (ηnuc), interfacial impedance (charge transfer resistance (Rct)/SEI resistance (RSEI)), morphology/roughness statistics from liquid-cell or cryogenic electron microscopy (Cryo-EM), stack swelling, and (for Li) inactive-Li inventory. By contrast, planar plating/stripping and HER suppression are primary success metrics for Zn. Finally, we outline parameters affecting these systems, including the use of lean electrolytes, the N/P ratio, high areal capacity/current density, and pouch-cell pressure uniformity, and discuss closed-loop workflows that couple molecular design with multimodal operando diagnostics. In this view, polymer artificial SEIs evolve from curated “recipes” into predictive, transferable interfaces, paving a path from coin-cell to prototype-level Li- and Zn-metal batteries. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Figure 1

16 pages, 500 KB  
Review
The Influence of Membrane Selection on the Performance of Ionic Liquid-Based Redox Flow Batteries
by Aldo Silva-Ibaceta and Carlos Carlesi
Processes 2025, 13(11), 3641; https://doi.org/10.3390/pr13113641 - 10 Nov 2025
Viewed by 543
Abstract
The development of large-scale energy storage technologies is a key element in the transition to sustainable energy systems, where redox flow batteries (RFBs) are emerging as a promising alternative to conventional systems. The available literature reveals a notable lack of systematic studies evaluating [...] Read more.
The development of large-scale energy storage technologies is a key element in the transition to sustainable energy systems, where redox flow batteries (RFBs) are emerging as a promising alternative to conventional systems. The available literature reveals a notable lack of systematic studies evaluating the impact of membranes on the performance of IL-incorporating RFBs, despite this component being crucial for regulating ionic conductivity, minimizing the crossover of active species, and ensuring the operational stability of the system. This review provides a critical analysis of 81 articles published between 2015 and 2025, examining the impact of various membrane types on key parameters including conductivity, thermal and mechanical stability, energy efficiency, and power output. The findings reveal that more than 70% of the reviewed studies do not directly address the function of the membrane, underscoring the need for research focused on designing selective and robust materials for non-aqueous conditions. Finally, knowledge gaps are identified, and development prospects are proposed, along with the standardization of characterization protocols, to accelerate the practical implementation of IL-based RFBs in various scenarios. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

15 pages, 2663 KB  
Article
Carbon NanoFiber-Integrated VN@CNS Multilevel Architectures for High-Performance Zinc-Ion Batteries
by Yun Cheng, Taoyun Zhou, Jianbo Wang, Yiwen Wang and Xinyu Li
Micromachines 2025, 16(11), 1265; https://doi.org/10.3390/mi16111265 - 10 Nov 2025
Viewed by 526
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention due to their intrinsic safety, low cost, and environmental friendliness. However, drastic volume expansion, sluggish reaction kinetics, and the insufficient structural stability of electrode materials still remain key challenges. In this work, a cascade structure-guided [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention due to their intrinsic safety, low cost, and environmental friendliness. However, drastic volume expansion, sluggish reaction kinetics, and the insufficient structural stability of electrode materials still remain key challenges. In this work, a cascade structure-guided electron transport strategy was used to construct a vanadium nitride@carbon nanosheet/carbon nanofiber (VN@CNS/CNF) composite as a high-performance cathode for AZIBs. In this rationally engineered architecture, carbon-coated VN nanoparticles are uniformly anchored on a conductive carbon nanofiber network, forming a multidimensional interconnected structure that enables fast electron/ion transport and robust mechanical stability. The carbon shell effectively alleviates volume expansion and prevents VN nanoparticle agglomeration, while the continuous carbon fiber backbone reduces charge transfer resistance and enhances reaction kinetics. Benefiting from this synergistic structural design, the VN@CNS/CNF electrode delivers a high specific capacity of 564 mAh g−1 at 0.1 A g−1, maintains 99% capacity retention after 50 cycles, and retains 280 mAh g−1 even at 8 A g−1 after prolonged cycling. This study provides a new structural engineering strategy for vanadium nitride-based electrodes and provides strategic guidance for the development of fast-charging, durable aqueous zinc-ion batteries. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

12 pages, 4564 KB  
Article
Co-Doping Inducing d-Electron Delocalization in α-MnO2 for High-Performance Zinc-Ion Batteries
by Jiachen Liang, Chen Zhang, Jinli Lv, Xiaoqing Zheng, Ruisha Zhou and Jiangfeng Song
Processes 2025, 13(11), 3617; https://doi.org/10.3390/pr13113617 - 8 Nov 2025
Viewed by 626
Abstract
Element doping technology is widely recognized as an effective strategy for high-performance MnO2-based cathode materials. While this approach improves the electronic and ionic conductivity of MnO2, it is often accompanied by the introduction of oxygen vacancies. This synergistic effect [...] Read more.
Element doping technology is widely recognized as an effective strategy for high-performance MnO2-based cathode materials. While this approach improves the electronic and ionic conductivity of MnO2, it is often accompanied by the introduction of oxygen vacancies. This synergistic effect poses challenges for precisely investigating the effect of doping elements on the d-electron configuration of the Mn site and establishing atomic-level structure-activity relationships for high-energy aqueous zinc-MnO2 batteries. In this paper, the rational design of d-electron configurations in the Mn site has been achieved through simple Co doping in α-MnO2 (CMO). Experimental results confirm that the introduction of Co can delocalize the d-electrons of the Mn site and increase the ratio of eg (dz2 and dx2−y2) occupancy. Consequently, the charge transfer resistance, electrode polarization, and Zn2+ diffusion coefficient of the CMO-2 cathode have been greatly optimized. Thus, the as-prepared electrode delivers a high specific capacity of 287.4 mAh g−1 at 1 A g−1, with a capacity retention rate of 92.8% and a corresponding remaining capacity of 199.7 mAh g−1 after 700 cycles. This study paves the road for the designation and construction of high-energy MnO2 cathodes with optimized electronic structures for advanced aqueous zinc ion batteries. Full article
(This article belongs to the Special Issue Advanced Technologies for Energy Storage)
Show Figures

Figure 1

9 pages, 2220 KB  
Communication
Stabilizing Zinc Anodes with Water-Soluble Polymers as an Electrolyte Additive
by Xueyan Li, Xiaojiang Chen, Senlong Zhang, Jinrong Wang, Zhuo Chen and Yuexian Song
Materials 2025, 18(21), 5040; https://doi.org/10.3390/ma18215040 - 5 Nov 2025
Viewed by 665
Abstract
Water-induced corrosion and zinc dendrite formation seriously disrupt the Zn plating/stripping process at the anode/electrolyte interface, which results in the instability of the Zn metal anode in aqueous zinc-ion batteries. To address the issues of the zinc metal anode, three water-soluble polymers with [...] Read more.
Water-induced corrosion and zinc dendrite formation seriously disrupt the Zn plating/stripping process at the anode/electrolyte interface, which results in the instability of the Zn metal anode in aqueous zinc-ion batteries. To address the issues of the zinc metal anode, three water-soluble polymers with different hydrophilic groups—polyacrylic acid (PAA), polyacrylamide (PAM), and polyethylene glycol (PEG)—were designed as electrolyte additives in ZnSO4 electrolytes. Among them, the PAA-based system exhibited an optimal electrochemical performance, achieving a stable cycling for more than 360 h at a current density of 5 mA cm−2 with an areal capacity of 2 mA h cm−2. This improvement could be attributed to its carboxyl groups, which effectively suppresses zinc dendrite growth, electrode corrosion, and side reactions, thereby enhancing the cycling performance of zinc-ion batteries. This work provides a reference for the optimization of zinc anodes in aqueous zinc-ion batteries. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Figure 1

3 pages, 1055 KB  
Correction
Correction: Zhu et al. Hydrogel Polymer Electrolytes for Aqueous Zinc-Ion Batteries: Recent Progress and Remaining Challenges. Batteries 2025, 11, 380
by Zhaoxuan Zhu, Sihan Xiong, Jing Li, Lixin Wang, Xiaoning Tang, Long Li, Qi Sun, Yan Shi and Jiaojing Shao
Batteries 2025, 11(11), 407; https://doi.org/10.3390/batteries11110407 - 5 Nov 2025
Viewed by 527
Abstract
In the original publication [...] Full article
Show Figures

Figure 4

Back to TopTop