Co-Doping Inducing d-Electron Delocalization in α-MnO2 for High-Performance Zinc-Ion Batteries
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Li, S.L.; Shang, J.; Li, M.L.; Xu, M.W.; Zeng, F.B.; Yin, H.; Tang, Y.; Han, C.; Cheng, H.-M. Design and Synthesis of a π-Conjugated N-Heteroaromatic Material for Aqueous Zinc-Organic Batteries with Ultrahigh Rate and Extremely Long Life. Adv. Mater. 2023, 35, 2207115. [Google Scholar] [CrossRef]
- Li, B.Y.; Ma, Y.T.; Ma, J.B.; Chen, L.K.; Zhao, Y.; Tang, M.C. Challenges and Opportunities Facing Zinc Anodes for Aqueous Zinc-Ion Battery. Energy Mater. Devices 2024, 2, 9370044. [Google Scholar] [CrossRef]
- Shi, X.; Xie, J.; Yang, F.; Wang, F.; Zheng, D.; Cao, X.; Yu, Y.; Liu, Q.; Lu, X. Compacting Electric Double Layer Enables Carbon Electrode with Ultrahigh Zn Ion Storage Capability. Angew. Chem.-Int. Ed. 2022, 61, e202214773. [Google Scholar] [CrossRef]
- Chuai, M.; Yang, J.; Wang, M.; Yuan, Y.; Liu, Z.; Xu, Y.; Yin, Y.; Sun, J.; Zheng, X.; Chen, N.; et al. High-Performance Zn Battery with Transition Metal Ions Co-Regulated Electrolytic MnO2. eScience 2021, 1, 178–185. [Google Scholar] [CrossRef]
- Zhao, Q.; Song, A.; Ding, S.; Qin, R.; Cui, Y.; Li, S.; Pan, F. Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects. Adv. Mater. 2020, 32, 202002450. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.-Z.; Gao, Y.-Q.; Sheng, G.; Elshof, J.E.T. Defect Engineering of MnO2 Nanosheets by Substitutional Doping for Printable Solid-State Micro-Supercapacitors. Nano Energy 2020, 68, 104306. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Du, H.; Kang, F. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew. Chem.-Int. Ed. 2012, 51, 933–935. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, G.; Liu, J.; Zhang, J.; Wang, X.; Pu, X.; Wang, J.; Yan, C.; Cao, Y.; Yang, H.; et al. Recent Advances on Challenges and Strategies of Manganese Dioxide Cathodes for Aqueous Zinc-Ion Batteries. Energy Environ. Mater. 2023, 6, 12575. [Google Scholar] [CrossRef]
- Ye, X.; Han, D.; Jiang, G.; Cui, C.; Guo, Y.; Wang, Y.; Zhang, Z.; Weng, Z.; Yang, Q.-H. Unraveling the deposition/dissolution chemistry of MnO2 for high-energy aqueous batteries. Energy Environ. Sci. 2023, 16, 1016–1023. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. J. Am. Chem. Soc. 2016, 138, 12894–12901. [Google Scholar] [CrossRef]
- Lin, M.; Shao, F.; Weng, S.; Xiong, S.; Liu, S.; Jiang, S.; Xu, Y.; Jiao, Y.; Chen, J. Boosted charge transfer in oxygen vacancy-rich K+ birnessite MnO2 for water oxidation and zinc-ion batteries. Electrochim. Acta 2021, 378, 138147. [Google Scholar] [CrossRef]
- Yao, S.; Wang, S.; Liu, R.; Liu, X.; Fu, Z.; Wang, D.; Hao, H.; Yang, Z.; Yan, Y.-M. Delocalizing the d-electrons spin states of Mn site in MnO2 for anion-intercalation energy storage. Nano Energy 2022, 99, 107391. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Z.; Guo, S.; Sun, B.; Li, Q.; Meng, Q.; Wei, F.; Qi, J.; Sui, Y.; Cao, P. Oxygen Vacancy-Rich Cobalt-Doped MnO2 Nanorods for Zn Ion Batteries. ACS Appl. Mater. Interfaces 2025, 17, 12074–12084. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Fee, J.; Khanna, H.; March, S.; Nisly, N.; Rubio, S.J.B.; Cui, C.; Li, Z.; Suib, S.L. A two-electron transfer mechanism of the Zn-doped δ-MnO2 cathode toward aqueous Zn-ion batteries with ultrahigh capacity. J. Mater. Chem. A 2022, 10, 6762–6771. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, Y.; Ouyang, Q.; Feng, Q.; Wang, H.; Zheng, D.; Wang, F.; Lu, X.; Liu, Q. Boosting Zn2+ Intercalation in Manganese Oxides for Aqueous Zinc Ion Batteries via Delocalizing the d-Electrons Spin States of Mn Site. Energy Storage Mater. 2024, 70, 103476. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Y.; Liao, D.; Wu, Y.; Yu, Y.; Hu, C. Highly Zn2+-Conductive and Robust Modified Montmorillonite Protective Layer of Electrodes Toward High-Performance Rechargeable Zinc-Ion Batteries. Energy Storage Mater. 2022, 51, 212–222. [Google Scholar] [CrossRef]
- Zhang, B.; Cheng, G.; Lan, B.; Zheng, X.; Sun, M.; Ye, F.; Yu, L.; Cheng, X. Crystallization Design of MnO2 via Acid Towards Better Oxygen Reduction Activity. Crystengcomm 2016, 18, 6895–6902. [Google Scholar] [CrossRef]
- Kong, X.; Ke, J.; Wang, Z.; Liu, Y.; Wang, Y.; Zhou, W.; Yang, Z.; Yan, W.; Geng, Z.; Zeng, J. Co-based Molecular Catalysts for Efficient CO2 Reduction via Regulating Spin States. Appl. Catal. B-Environ. Energy 2021, 290, 120067. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, C.; Huang, P.; Cheng, M.; Xie, Y. Regulating the Charge and Spin Ordering of Two-Dimensional Ultrathin Solids for Electrocatalytic Water Splitting. Chem 2018, 4, 1263–1283. [Google Scholar] [CrossRef]
- Wu, Z.-Z.; Gao, F.-Y.; Gao, M.-R. Regulating the Oxidation State of Nanomaterials for Electrocatalytic CO2 reduction. Energy Environ. Sci. 2021, 14, 1121–1139. [Google Scholar] [CrossRef]
- Zarshad, N.; Rahman, A.U.; Wu, J.; Ali, A.; Raziq, F.; Han, L.; Wang, P.; Li, G.; Ni, H. Enhanced Energy Density and Wide Potential Window for K Incorporated MnO2@Carbon Cloth Supercapacitor. Chem. Eng. J. 2021, 415, 128967. [Google Scholar] [CrossRef]
- Wang, Z.; Han, K.; Wan, Q.; Fang, Y.; Qu, X.; Li, P. Mo-Pre-Intercalated MnO2 Cathode with Highly Stable Layered Structure and Expanded Interlayer Spacing for Aqueous Zn-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Lin, M.; Feng, C.; Liu, Z.; Xu, Y.; Wang, N.; Zhang, X.; Jiao, Y.; Chen, J. Coupling Zn2+ Doping and Rich Oxygen Vacancies in MnO2 Nanowire Toward Advanced Aqueous Zinc-Ion Batteries. J. Colloid Interface Sci. 2023, 645, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Gallaway, J.W.; Yadav, G.G.; Turney, D.E.; Nyce, M.; Huang, J.; Chen-Wiegart Y-C, K.; Williams, G.; Thieme, J.; Okasinski, J.S.; Wei, X.; et al. An Operando Study of the Initial Discharge of Bi and Bi/Cu Modified MnO2. J. Electrochem. Soc. 2018, 165, A2935–A2947. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Islam, S.; Mathew, V.; Song, J. Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Appl. Surf. Sci. 2017, 404, 435–442. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Zhu, Y.; Du, W.; Liu, W.; Yao, M.; Wang, Y.; Qian, Y.; Feng, S. Unlocking the Critical Role of Mg Doping in α-MnO2 Cathode for Aqueous Zinc Ion Batteries. Chem. Eng. J. 2024, 485, 150077. [Google Scholar] [CrossRef]
- Zhong, R.; Xu, M.; Fu, N.; Liu, R.; Zhou, A.; Wang, X.; Yang, Z. A flexible High-Performance Symmetric Quasi-Solid Supercapacitor Based on Ni-doped MnO2 Nano-Array@Carbon Cloth. Electrochim. Acta 2020, 348, 136209. [Google Scholar] [CrossRef]
- Shao, W.; Xia, Y.; Luo, X.; Bai, L.; Zhang, J.; Sun, G.; Xie, C.; Zhang, X.; Yan, W.; Xie, Y. Structurally Distorted Wolframite-Type CoxFe1−xWO4 Solid Solution for Eenhanced Oxygen Evolution Reaction. Nano Energy 2018, 50, 717–722. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Wang, J.; Pu, X.; Zhang, G.; Wang, S.; Wang, N.; Li, X. Engineering p-Band Center of Oxygen Boosting H+ Intercalation in δ-MnO2 for Aqueous Zinc Ion Batteries. Angew. Chem.-Int. Ed. 2023, 62, e202215654. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, C.; Hao, J.; Liang, X.; Bai, Y.; Hu, Q.; Tan, B.; Liu, B.; Zou, X.; Xiang, B. A Universal Voltage Design for Triggering Manganese Dioxide Defects Construction to Significantly Boost the Pseudocapacitance. Adv. Funct. Mater. 2021, 31, 2102693. [Google Scholar] [CrossRef]
- Chen, C.; Shi, M.; Zhao, Y.; Yang, C.; Zhao, L.; Yan, C. Al-Intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries. Chem. Eng. J. 2021, 422, 130375. [Google Scholar] [CrossRef]
- Zhai, T.; Lu, X.; Ling, Y.; Yu, M.; Wang, G.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. A New Benchmark Capacitance for Supercapacitor Anodes by Mixed-Valence Sulfur-Doped V6O13−x. Adv. Mater. 2014, 26, 5869–5875. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-W.; Li, K.; Yu, Y.-X.; Zhang, W.-D. Cobalt-Doped Graphitic Carbon Nitride Photocatalysts with High Activity for Hydrogen Evolution. Appl. Surf. Sci. 2017, 392, 608–615. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Duan, H.; Xie, S.; Dai, R.; Rong, J.; Kang, F.; Dong, L. Aerogel-Structured MnO2 Cathode Assembled by Defect-Rich Ultrathin Nanosheets for Zinc-Ion Batteries. Chem. Eng. J. 2022, 441, 136008. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Wu, W.; Guo, X.; Xiong, P.; Liu, H.; Wang, G. Cobalt-Doped MnO2 Ultrathin Nanosheets with Abundant Oxygen Vacancies Supported on functionalized Carbon Nanofibers for Efficient Oxygen Evolution. Nano Energy 2018, 54, 129–137. [Google Scholar] [CrossRef]
- Davoglio, R.A.; Cabello, G.; Marco, J.F.; Biaggio, S.R. Synthesis and Characterization of α-MnO2 Nanoneedles for Electrochemical Supercapacitors. Electrochim. Acta 2018, 261, 428–435. [Google Scholar] [CrossRef]
- Miao, J.; Lin, H.; Mao, Z.; He, S.; Xu, M.; Li, Q. Electrochemical Performance of Sn-doped δ-MnO2 Hollow Nanoparticles for Supercapacitors. J. Mater. Sci.-Mater. Electron. 2018, 29, 2689–2697. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, H.; Zhang, X.; Liu, Y.; Zhang, Y. Kinetics-Driven MnO2 Nanoflowers Supported by Interconnected Porous Hollow Carbon Spheres for Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 14388–14398. [Google Scholar] [CrossRef]
- Wang, C.; Yang, H.; Wang, B.; Ding, P.; Wan, Y.; Bao, W.; Li, Y.; Ma, S.; Liu, Y.; Lu, Y.; et al. Dual Cation Doping Enabling Simultaneously Boosted Capacity and Rate Capability of MnO2 Cathodes for Zn//MnO2 Batteries. Nano Res. 2023, 16, 9488–9495. [Google Scholar] [CrossRef]
- Xia, J.; Zhou, Y.; Zhang, J.; Lu, T.; Gong, W.; Zhang, D.; Wang, X.; Di, J. Triggering High Capacity and Superior Reversibility of Manganese Oxides Cathode via Magnesium Modulation for Zn//MnO2 Batteries. Small 2023, 19, 2301906. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, C.; Song, J.F.; Liang, J.C. Building g-C3N4/Fe2O3 Heterojunctions on Carbon Nanotubes for Enhanced Electron Conductivity and Pseudocapacitive Performances. J. Mater. Sci. Mater. Electron. 2023, 34, 2324. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, Z.; Wu, X.; Wen, Y.; Chen, H.; Ni, X.; Liu, G.; Huang, J.; Peng, S. MnO2 Cathode Materials with the Improved Stability via Nitrogen Doping for Aqueous Zinc-Ion Batteries. J. Energy Chem. 2022, 64, 23–32. [Google Scholar] [CrossRef]
- Gou, L.; Li, J.; Liang, K.; Zhao, S.; Li, D.; Fan, X. Bi-MOF Modulating MnO2 Deposition Enables Ultra-Stable Cathode-Free Aqueous Zinc-Ion Batteries. Small 2023, 19, 2208233. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Xu, J.; Yuan, B.; Xu, L.; Zheng, R.; Wang, Y.; Zhang, M.; Lu, Y.; Luo, Y. Few-Layer δ-MnO2 Nanosheets Grown on Three-Dimensional N-doped Hierarchically Porous Carbon Networks for Long-Life Aqueous Zinc Ion Batteries. Carbon 2023, 203, 326–336. [Google Scholar] [CrossRef]
- Hu, X.; Liao, Y.; Wu, M.; Zheng, W.; Long, M.; Chen, L. Mesoporous copper-doped δ-MnO2 superstructures to enable high-performance aqueous zinc-ion batteries. J. Colloid Interface Sci. 2024, 674, 297–305. [Google Scholar] [CrossRef]
- Ni, Z.; Liang, X.; Zhao, L.; Zhao, H.; Ge, B.; Li, W. Tin doping manganese dioxide cathode materials with the improved stability for aqueous zinc-ion batteries. Mater. Chem. Phys. 2022, 287, 126238. [Google Scholar] [CrossRef]
- Xu, J.W.; Gao, Q.L.; Xia, Y.M.; Lin, X.S.; Liu, W.L.; Ren, M.M.; Kong, F.G.; Wang, S.J.; Lin, C. High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-manganese dioxide coated by polypyrrole. J. Colloid Interface Sci. 2021, 598, 419–429. [Google Scholar] [CrossRef]
- Xu, P.; Yi, H.; Shi, G.; Xiong, Z.; Hu, Y.; Wang, R.; Zhang, H.; Wang, B. Mg ion pre-intercalated MnO2 nanospheres as high-performance cathode materials for aqueous Zn-ion batteries. Dalton Trans. 2022, 51, 4695–4703. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Wang, P.; Guo, Z.; Chen, X.; Yao, J.; Li, J.; Gan, Y.; Lv, L.; Tao, L.; et al. Ion-exchange induced Ni doping of α-MnO2 cathode with structural modification for aqueous zinc ion batteries. J. Power Sources 2025, 635, 236518. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Sun, H.; Chi, Y.; Gengzang, D.; Zhang, G.; Jiao, H.; Chen, Q.; Wang, P.; Deng, X.; et al. Developing high-performance Zn2+-pre-inserted MnO2 via in situ electrodeposition for aqueous Zn-ion batteries. Dalton Trans. 2025, 54, 11694–11701. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Han, L.; Zhang, J.; Liu, R.; Kong, F. Reduced graphene oxide modified ɛ-MnO2 nanoflowers cathode with oxygen vacancy for advanced rechargeable aqueous zinc-ion batteries. Materials Research Bulletin 2025, 191, 113543. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Lin, Z.W.; Sun, Z.W.; Zhang, P.X.; Li, C.P.; Dong, R.; Mi, H.W. Deciphering H+/Zn2+ co-intercalation mechanism of MOF-derived 2D MnO/C cathode for long cycle life aqueous zinc-ion batteries. Rare Met. 2022, 41, 3729–3739. [Google Scholar] [CrossRef]
- Luo, S.; Xu, J.; Yuan, B.; Chen, L.; Xu, L.; Zheng, R.; Wang, Y.; Zhang, M.; Lu, Y.; Luo, Y. Honeycomb-like δ-MnO2/NCP integrated cathode for advanced aqueous zinc-ion batteries. Electrochim. Acta 2023, 468, 143192. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Zhang, C.; Lv, J.; Zheng, X.; Zhou, R.; Song, J. Co-Doping Inducing d-Electron Delocalization in α-MnO2 for High-Performance Zinc-Ion Batteries. Processes 2025, 13, 3617. https://doi.org/10.3390/pr13113617
Liang J, Zhang C, Lv J, Zheng X, Zhou R, Song J. Co-Doping Inducing d-Electron Delocalization in α-MnO2 for High-Performance Zinc-Ion Batteries. Processes. 2025; 13(11):3617. https://doi.org/10.3390/pr13113617
Chicago/Turabian StyleLiang, Jiachen, Chen Zhang, Jinli Lv, Xiaoqing Zheng, Ruisha Zhou, and Jiangfeng Song. 2025. "Co-Doping Inducing d-Electron Delocalization in α-MnO2 for High-Performance Zinc-Ion Batteries" Processes 13, no. 11: 3617. https://doi.org/10.3390/pr13113617
APA StyleLiang, J., Zhang, C., Lv, J., Zheng, X., Zhou, R., & Song, J. (2025). Co-Doping Inducing d-Electron Delocalization in α-MnO2 for High-Performance Zinc-Ion Batteries. Processes, 13(11), 3617. https://doi.org/10.3390/pr13113617

