Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,722)

Search Parameters:
Keywords = applied artificial intelligence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4706 KB  
Review
Artificial Intelligence and Firm Value: A Bibliometric and Systematic Literature Review
by Alexandros Koulis, Constantinos Kyriakopoulos and Ioannis Lakkas
FinTech 2025, 4(4), 54; https://doi.org/10.3390/fintech4040054 - 5 Oct 2025
Abstract
Objective: This study investigates how artificial intelligence (AI) research relates to firm value, focusing on dominant thematic trends, theoretical foundations, and global collaboration patterns. Methods: A PRISMA-guided systematic review was conducted on 219 peer-reviewed articles published between 2013 and May 2025 in the [...] Read more.
Objective: This study investigates how artificial intelligence (AI) research relates to firm value, focusing on dominant thematic trends, theoretical foundations, and global collaboration patterns. Methods: A PRISMA-guided systematic review was conducted on 219 peer-reviewed articles published between 2013 and May 2025 in the Web of Science Social Sciences Citation Index. Bibliometric techniques, including co-word, co-citation, and collaboration network analyses, were performed using the bibliometrix (version 4.2.3) in R (version 4.4.2) package to map key concepts, intellectual structures, and international research partnerships. Results: The literature is primarily grounded in strategic management theories such as the resource-based view (RBV) and dynamic capabilities. Emerging research streams emphasize digital transformation, big data analytics, and decision support systems. Frequently co-occurring terms include “firm performance,” “artificial intelligence,” “dynamic capabilities,” “information technology,” and “decision-making.” Collaboration mapping highlights the United States, United Kingdom, and China as leading hubs, with increasing contributions from emerging economies such as India, Malaysia, and Saudi Arabia. The alignment between co-word and co-citation structures reflects a shift from foundational theory to applied AI capabilities in firm-value creation. Implications: By integrating a systematic review with advanced bibliometric and science-mapping methods, this work establishes a structured foundation for theory development, empirical testing, and policy formulation in AI-driven business landscapes. Full article
Show Figures

Figure 1

24 pages, 7435 KB  
Article
Analysis of the Multimedia, Crossmedia and Transmedia Elements in Spanish Journalistic Media Projects During the Period 2020–2022
by Ana Serrano-Tellería and Arnau Gifreu-Castells
Journal. Media 2025, 6(4), 169; https://doi.org/10.3390/journalmedia6040169 - 5 Oct 2025
Abstract
This paper presents a qualitative exploratory study based on the analysis of a representative sample of 35 projects carried out during the period 2020–2022 by six Spanish newspapers: elDiario.es, ABC, IDEAL, El Correo, ElConfidencial.com and El País. This study aims to detect and [...] Read more.
This paper presents a qualitative exploratory study based on the analysis of a representative sample of 35 projects carried out during the period 2020–2022 by six Spanish newspapers: elDiario.es, ABC, IDEAL, El Correo, ElConfidencial.com and El País. This study aims to detect and analyze the main elements of multimedia, crossmedia and transmedia content in the selected projects using an original analysis sheet designed for this research. In relation to the categories proposed in the categorization model, in this work we will focus on analyzing two in particular: authorship and information architecture. The projects were selected based on criteria of appropriateness, quality and innovation, as well as the results of semi-structured interviews with the heads and innovation managers (laboratories) of the media included in the framework of the projects ‘NEWSNET: News, Networks, and Users in the Hybrid Media System: Transformation of the Media Industry and the News in the Post-Industrial Era’ and ‘IAMEDIA: Impact of Artificial Intelligence and Algorithms on Online Media, Journalist and Audiences’. The aim of the qualitative analysis is to propose a list of aspects, characteristics, and fundamentals in the ideation, elaboration, and distribution of these types of products. We conclude that the results of applying the designed analysis sheet help us to understand these processes and also to propose alternatives and improvements in its design and implementation Full article
Show Figures

Figure 1

12 pages, 284 KB  
Article
AI-Enabled Secure and Scalable Distributed Web Architecture for Medical Informatics
by Marian Ileana, Pavel Petrov and Vassil Milev
Appl. Sci. 2025, 15(19), 10710; https://doi.org/10.3390/app151910710 - 4 Oct 2025
Abstract
Current medical informatics systems face critical challenges, including limited scalability across distributed institutions, insufficient real-time AI-driven decision support, and lack of standardized interoperability for heterogeneous medical data exchange. To address these challenges, this paper proposes a novel distributed web system architecture for medical [...] Read more.
Current medical informatics systems face critical challenges, including limited scalability across distributed institutions, insufficient real-time AI-driven decision support, and lack of standardized interoperability for heterogeneous medical data exchange. To address these challenges, this paper proposes a novel distributed web system architecture for medical informatics, integrating artificial intelligence techniques and cloud-based services. The system ensures interoperability via HL7 FHIR standards and preserves data privacy and fault tolerance across interconnected medical institutions. A hybrid AI pipeline combining principal component analysis (PCA), K-Means clustering, and convolutional neural networks (CNNs) is applied to diffusion tensor imaging (DTI) data for early detection of neurological anomalies. The architecture leverages containerized microservices orchestrated with Docker Swarm, enabling adaptive resource management and high availability. Experimental validation confirms reduced latency, improved system reliability, and enhanced compliance with medical data exchange protocols. Results demonstrate superior performance with an average latency of 94 ms, a diagnostic accuracy of 91.3%, and enhanced clinical workflow efficiency compared to traditional monolithic architectures. The proposed solution successfully addresses scalability limitations while maintaining data security and regulatory compliance across multi-institutional deployments. This work contributes to the advancement of intelligent, interoperable, and scalable e-health infrastructures aligned with the evolution of digital healthcare ecosystems. Full article
(This article belongs to the Special Issue Data Science and Medical Informatics)
Show Figures

Figure 1

23 pages, 5798 KB  
Article
Application of Generative AI in Financial Risk Prediction: Enhancing Model Accuracy and Interpretability
by Kai-Chao Yao, Hsiu-Chu Hung, Ching-Hsin Wang, Wei-Lun Huang, Hui-Ting Liang, Tzu-Hsin Chu, Bo-Siang Chen and Wei-Sho Ho
Information 2025, 16(10), 857; https://doi.org/10.3390/info16100857 - 3 Oct 2025
Abstract
This study explores the application of generative artificial intelligence (AI) in financial risk forecasting, aiming to assess its potential in enhancing both the accuracy and interpretability of predictive models. Traditional methods often struggle with the complexity and nonlinearity of financial data, whereas generative [...] Read more.
This study explores the application of generative artificial intelligence (AI) in financial risk forecasting, aiming to assess its potential in enhancing both the accuracy and interpretability of predictive models. Traditional methods often struggle with the complexity and nonlinearity of financial data, whereas generative AI—such as large language models and generative adversarial networks (GANs)—offers novel solutions to these challenges. The study begins with a comprehensive review of current research on generative AI in financial risk prediction, with a focus on its roles in data augmentation and feature extraction. It then investigates techniques such as Generative Adversarial Explanation (GAX) to evaluate their effectiveness in improving model interpretability. Case studies demonstrate the practical value of generative AI in real-world financial forecasting and quantify its contribution to predictive accuracy. Furthermore, the study identifies key challenges—including data quality, model training costs, and regulatory compliance—and proposes corresponding mitigation strategies. The findings suggest that generative AI can significantly improve the accuracy and interpretability of financial risk models, though its adoption must be carefully managed to address associated risks. This study offers insights and guidance for future research in applying generative AI to financial risk forecasting. Full article
(This article belongs to the Special Issue Modeling in the Era of Generative AI)
31 pages, 9679 KB  
Article
Weather-Corrupted Image Enhancement with Removal-Raindrop Diffusion and Mutual Image Translation Modules
by Young-Ho Go and Sung-Hak Lee
Mathematics 2025, 13(19), 3176; https://doi.org/10.3390/math13193176 - 3 Oct 2025
Abstract
Artificial intelligence-based image processing is critical for sensor fusion and image transformation in mobility systems. Advanced driver assistance functions such as forward monitoring and digital side mirrors are essential for driving safety. Degradation due to raindrops, fog, and high-dynamic range (HDR) imbalance caused [...] Read more.
Artificial intelligence-based image processing is critical for sensor fusion and image transformation in mobility systems. Advanced driver assistance functions such as forward monitoring and digital side mirrors are essential for driving safety. Degradation due to raindrops, fog, and high-dynamic range (HDR) imbalance caused by lighting changes impairs visibility and reduces object recognition and distance estimation accuracy. This paper proposes a diffusion framework to enhance visibility under multi-degradation conditions. The denoising diffusion probabilistic model (DDPM) offers more stable training and high-resolution restoration than the generative adversarial networks. The DDPM relies on large-scale paired datasets, which are difficult to obtain in raindrop scenarios. This framework applies the Palette diffusion model, comprising data augmentation and raindrop-removal modules. The data augmentation module generates raindrop image masks and learns inpainting-based raindrop synthesis. Synthetic masks simulate raindrop patterns and HDR imbalance scenarios. The raindrop-removal module reconfigures the Palette architecture for image-to-image translation, incorporating the augmented synthetic dataset for raindrop removal learning. Loss functions and normalization strategies improve restoration stability and removal performance. During inference, the framework operates with a single conditional input, and an efficient sampling strategy is introduced to significantly accelerate the process. In post-processing, tone adjustment and chroma compensation enhance visual consistency. The proposed method preserves fine structural details and outperforms existing approaches in visual quality, improving the robustness of vision systems under adverse conditions. Full article
(This article belongs to the Special Issue Deep Learning in Image Processing and Scientific Computing)
Show Figures

Figure 1

25 pages, 6100 KB  
Article
UAV Image Denoising and Its Impact on Performance of Object Localization and Classification in UAV Images
by Rostyslav Tsekhmystro, Vladimir Lukin and Dmytro Krytskyi
Computation 2025, 13(10), 234; https://doi.org/10.3390/computation13100234 - 3 Oct 2025
Abstract
Unmanned aerial vehicles (UAVs) have become a tool for solving numerous practical tasks. UAV sensors provide images and videos for on-line or off-line data processing for object localization, classification, and tracking due to the use of trained convolutional neural networks (CNNs) and artificial [...] Read more.
Unmanned aerial vehicles (UAVs) have become a tool for solving numerous practical tasks. UAV sensors provide images and videos for on-line or off-line data processing for object localization, classification, and tracking due to the use of trained convolutional neural networks (CNNs) and artificial intelligence. However, quality of images acquired by UAV-based sensors is not always perfect due to many factors. One of them could be noise arising because of several reasons. Its presence, especially if noise is intensive, can make significantly worse the performance characteristics of CNN-based techniques of object localization and classification. We analyze such degradation for a set of eleven modern CNNs for additive white Gaussian noise model and study when (for what noise intensity and for what CNN) the performance reduction becomes essential and, thus, special means to improve it become desired. Representatives of two most popular families, namely the block matching 3-dimensional (BM3D) filter and DRUNet denoiser, are employed to enhance images under condition of a priori known noise properties. It is shown that, due to preliminary denoising, the CNN performance characteristics can be significantly improved up to almost the same level as for the noise-free images without CNN retraining. Performance is analyzed using several criteria typical for image denoising, object localization and classification. Examples of object localization and classification are presented demonstrating possible object missing due to noise. Computational efficiency is also taken into account. Using a large set of test data, it is demonstrated that: (1) the best results are usually provided for SSD Mobilenet V2 and VGG16 networks; (2) the performance characteristics for cases of applying BM3D filter and DRUNet denoiser are similar but the use of DRUNet is preferable since it provides slightly better results. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

35 pages, 2599 KB  
Article
Integrated Evaluation of C-ITS Services: Synergistic Effects of GLOSA and CACC on Traffic Efficiency and Sustainability
by Manuel Walch and Matthias Neubauer
Sustainability 2025, 17(19), 8855; https://doi.org/10.3390/su17198855 - 3 Oct 2025
Abstract
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing [...] Read more.
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing studies focus on individual C-ITS services in isolation, overlooking how combined deployments influence outcomes. This study addresses this gap by presenting the first systematic evaluation of individual and joint deployments of Cooperative Adaptive Cruise Control (CACC) and Green Light Optimal Speed Advisory (GLOSA) under diverse conditions. A dual-model simulation framework is applied, combining controlled artificial networks with calibrated real-world corridors in Upper Austria. This allows both statistical testing and validation of plausibility in real-world contexts. Key performance indicators include travel time and CO2 emissions, evaluated across varying lane configurations, numbers of traffic lights, demand levels, and equipment rates. The results demonstrate that C-ITS effectiveness is strongly context-dependent: while CACC generally provides larger efficiency gains, GLOSA yields consistent emission reductions, and the combined deployment offers conditional synergies but may also diminish benefits at high demand. The study contributes a guideline for selecting service configurations based on site conditions, thereby providing practical recommendations for future C-ITS rollouts. Full article
(This article belongs to the Special Issue Sustainable Traffic Flow Management and Smart Transportation)
34 pages, 2710 KB  
Review
The Role of Fractional Calculus in Modern Optimization: A Survey of Algorithms, Applications, and Open Challenges
by Edson Fernandez, Victor Huilcapi, Isabela Birs and Ricardo Cajo
Mathematics 2025, 13(19), 3172; https://doi.org/10.3390/math13193172 - 3 Oct 2025
Abstract
This paper provides a comprehensive overview of the application of fractional calculus in modern optimization methods, with a focus on its impact in artificial intelligence (AI) and computational science. We examine how fractional-order derivatives have been integrated into traditional methodologies, including gradient descent, [...] Read more.
This paper provides a comprehensive overview of the application of fractional calculus in modern optimization methods, with a focus on its impact in artificial intelligence (AI) and computational science. We examine how fractional-order derivatives have been integrated into traditional methodologies, including gradient descent, least mean squares algorithms, particle swarm optimization, and evolutionary methods. These modifications leverage the intrinsic memory and nonlocal features of fractional operators to enhance convergence, increase resilience in high-dimensional and non-linear environments, and achieve a better trade-off between exploration and exploitation. A systematic and chronological analysis of algorithmic developments from 2017 to 2025 is presented, together with representative pseudocode formulations and application cases spanning neural networks, adaptive filtering, control, and computer vision. Special attention is given to advances in variable- and adaptive-order formulations, hybrid models, and distributed optimization frameworks, which highlight the versatility of fractional-order methods in addressing complex optimization challenges in AI-driven and computational settings. Despite these benefits, persistent issues remain regarding computational overhead, parameter selection, and rigorous convergence analysis. This review aims to establish both a conceptual foundation and a practical reference for researchers seeking to apply fractional calculus in the development of next-generation optimization algorithms. Full article
(This article belongs to the Special Issue Fractional Order Systems and Its Applications)
32 pages, 2827 KB  
Article
Understanding Post-COVID-19 Household Vehicle Ownership Dynamics Through Explainable Machine Learning
by Mahbub Hassan, Saikat Sarkar Shraban, Ferdoushi Ahmed, Mohammad Bin Amin and Zoltán Nagy
Future Transp. 2025, 5(4), 136; https://doi.org/10.3390/futuretransp5040136 - 2 Oct 2025
Abstract
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first [...] Read more.
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first nationally representative U.S. dataset collected after the onset of the pandemic. A binary classification task distinguishes between single- and multi-vehicle households, applying an ensemble of algorithms, including Random Forest, XGBoost, Support Vector Machines (SVM), and Naïve Bayes. The Random Forest model achieved the highest predictive accuracy (86.9%). To address the interpretability limitations of conventional machine learning approaches, SHapley Additive exPlanations (SHAP) were applied to extract global feature importance and directionality. Results indicate that the number of drivers, household income, and vehicle age are the most influential predictors of multi-vehicle ownership, while contextual factors such as housing tenure, urbanicity, and household lifecycle stage also exert substantial influence highlighting the spatial and demographic heterogeneity in ownership behavior. Policy implications include the design of equity-sensitive strategies such as targeted mobility subsidies, vehicle scrappage incentives, and rural transit innovations. By integrating explainable artificial intelligence into national-scale transportation modeling, this research bridges the gap between predictive accuracy and interpretability, contributing to adaptive mobility strategies aligned with the United Nations Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities), SDG 10 (Reduced Inequalities), and SDG 13 (Climate Action). Full article
Show Figures

Figure 1

34 pages, 3092 KB  
Review
Processing and Real-Time Monitoring Strategies of Aflatoxin Reduction in Pistachios: Innovative Nonthermal Methods, Advanced Biosensing Platforms, and AI-Based Predictive Approaches
by Seyed Mohammad Taghi Gharibzahedi and Sumeyra Savas
Foods 2025, 14(19), 3411; https://doi.org/10.3390/foods14193411 - 2 Oct 2025
Abstract
Aflatoxin (AF) contamination in pistachios remains a critical food safety and trade challenge, given the potent carcinogenicity of AF-B1 and the nut’s high susceptibility to Aspergillus infection throughout production and storage. Traditional decontamination methods such as roasting, irradiation, ozonation, and acid/alkaline treatments [...] Read more.
Aflatoxin (AF) contamination in pistachios remains a critical food safety and trade challenge, given the potent carcinogenicity of AF-B1 and the nut’s high susceptibility to Aspergillus infection throughout production and storage. Traditional decontamination methods such as roasting, irradiation, ozonation, and acid/alkaline treatments can reduce AF levels but often degrade sensory and nutritional quality, implying the need for more sustainable approaches. In recent years, innovative nonthermal interventions, including pulsed light, cold plasma, nanomaterial-based adsorbents, and bioactive coatings, have demonstrated significant potential to decrease fungal growth and AF accumulation while preserving product quality. Biosensing technologies such as electrochemical immunosensors, aptamer-based systems, and optical or imaging tools are advancing rapid, portable, and sensitive detection capabilities. Combining these experimental strategies with artificial intelligence (AI) and machine learning (ML) models can increasingly be applied to integrate spectral, sensor, and imaging data for predicting fungal development and AF risk in real time. This review brings together progress in nonthermal reduction strategies, biosensing innovations, and data-driven approaches, presenting a comprehensive perspective on emerging tools that could transform pistachio safety management and strengthen compliance with global regulatory standards. Full article
Show Figures

Figure 1

23 pages, 2752 KB  
Article
AI-Driven Outage Management with Exploratory Data Analysis, Predictive Modeling, and LLM-Based Interface Integration
by Kian Ansarinejad, Ying Huang and Nita Yodo
Energies 2025, 18(19), 5244; https://doi.org/10.3390/en18195244 - 2 Oct 2025
Abstract
Power outages pose considerable risks to the reliability of electric grids, affecting both consumers and utilities through service disruptions and potential economic losses. This study analyzes a historical outage dataset from a Regional Transmission Organization (RTO) to reveal key patterns and trends that [...] Read more.
Power outages pose considerable risks to the reliability of electric grids, affecting both consumers and utilities through service disruptions and potential economic losses. This study analyzes a historical outage dataset from a Regional Transmission Organization (RTO) to reveal key patterns and trends that suggest outage management strategies. By integrating exploratory data analysis, predictive modeling, and a Large Language Model (LLM)-based interface integration, as well as data visualization techniques, we identify and present critical drivers of outage duration and frequency. A random forest regressor trained on features including planned duration, facility name, outage owner, priority, season, and equipment type proved highly effective for predicting outage duration with high accuracy. This predictive framework underscores the practical value of incorporating planning information and seasonal context in anticipating outage timelines. The findings of this study not only deepen the understanding of temporal and spatial outage dynamics but also provide valuable insights for utility companies and researchers. Utility companies can use these results to better predict outage durations, allocate resources more effectively, and improve service restoration time. Researchers can leverage this analysis to enhance future models and methodologies for studying outage patterns, ensuring that artificial intelligence (AI)-driven methods can contribute to improving management strategies. The broader impact of this study is to ensure that the insights gained can be applied to strengthen the reliability and resilience of power grids or energy systems in general. Full article
(This article belongs to the Special Issue Artificial Intelligence in Energy Sector)
Show Figures

Figure 1

50 pages, 6411 KB  
Article
AI-Enhanced Eco-Efficient UAV Design for Sustainable Urban Logistics: Integration of Embedded Intelligence and Renewable Energy Systems
by Luigi Bibbò, Filippo Laganà, Giuliana Bilotta, Giuseppe Maria Meduri, Giovanni Angiulli and Francesco Cotroneo
Energies 2025, 18(19), 5242; https://doi.org/10.3390/en18195242 - 2 Oct 2025
Abstract
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic [...] Read more.
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic components and artificial intelligence (AI), with the aim of reducing environmental impact and enabling autonomous navigation in complex urban environments. The UAV platform incorporates brushless DC motors, high-density LiPo batteries and perovskite solar cells to improve energy efficiency and increase flight range. The Deep Q-Network (DQN) allocates energy and selects reference points in the presence of wind and payload disturbances, while an integrated sensor system monitors motor vibration/temperature and charge status to prevent failures. In urban canyon and field scenarios (wind from 0 to 8 m/s; payload from 0.35 to 0.55 kg), the system reduces energy consumption by up to 18%, increases area coverage by 12% for the same charge, and maintains structural safety factors > 1.5 under gust loading. The approach combines sustainable materials, efficient propulsion, and real-time AI-based navigation for energy-conscious flight planning. A hybrid methodology, combining experimental design principles with finite-element-based structural modelling and AI-enhanced monitoring, has been applied to ensure structural health awareness. The study implements proven edge-AI sensor fusion architectures, balancing portability and telemonitoring with an integrated low-power design. The results confirm a reduction in energy consumption and CO2 emissions compared to traditional delivery vehicles, confirming that the proposed system represents a scalable and intelligent solution for last-mile delivery, contributing to climate resilience and urban sustainability. The findings position the proposed UAV as a scalable reference model for integrating AI-driven navigation and renewable energy systems in sustainable logistics. Full article
Show Figures

Figure 1

27 pages, 1835 KB  
Article
Can Green Policy Enhance Corporate Environmental Performance? Evidence from China’s New Energy Demonstration City Policy
by Ruotong Liu, Yike Wang and Chengkun Liu
Energies 2025, 18(19), 5238; https://doi.org/10.3390/en18195238 - 2 Oct 2025
Abstract
Global efforts to achieve carbon neutrality increasingly rely on institutional green policy that reshape corporate environmental behavior. This study examines whether green policy improves corporate environmental performance (EP). Using panel data of the A-share listed firms from 2010 to 2022, we exploit the [...] Read more.
Global efforts to achieve carbon neutrality increasingly rely on institutional green policy that reshape corporate environmental behavior. This study examines whether green policy improves corporate environmental performance (EP). Using panel data of the A-share listed firms from 2010 to 2022, we exploit the rollout of pilot cities as a quasi-natural experiment and apply a difference-in-differences (DID) framework, supplemented by double machine learning (DML) and robustness tests. The results show that the New Energy Demonstration City (NEDC) policy notably increases EP, with stronger effects for state-owned enterprises, large firms, and regulated industries. Mechanism analysis indicates that artificial intelligence innovation capacity and the stringency of regional environmental regulation amplify the policy’s effectiveness, revealing a “innovation–regulation” dual mechanism. By focusing on integrated EP rather than single outcomes, this paper extends the literature on green policy instruments. It demonstrates that structural policies combining fiscal incentives and regulatory constraints can correct market failures and foster long-term green transition. Beyond China, the findings provide insights for other developing economies where market-based instruments alone may be insufficient to trigger low-carbon transformation. Full article
(This article belongs to the Special Issue Sustainable Energy Futures: Economic Policies and Market Trends)
Show Figures

Figure 1

15 pages, 2373 KB  
Article
LLM-Empowered Kolmogorov-Arnold Frequency Learning for Time Series Forecasting in Power Systems
by Zheng Yang, Yang Yu, Shanshan Lin and Yue Zhang
Mathematics 2025, 13(19), 3149; https://doi.org/10.3390/math13193149 - 2 Oct 2025
Abstract
With the rapid evolution of artificial intelligence technologies in power systems, data-driven time-series forecasting has become instrumental in enhancing the stability and reliability of power systems, allowing operators to anticipate demand fluctuations and optimize energy distribution. Despite the notable progress made by current [...] Read more.
With the rapid evolution of artificial intelligence technologies in power systems, data-driven time-series forecasting has become instrumental in enhancing the stability and reliability of power systems, allowing operators to anticipate demand fluctuations and optimize energy distribution. Despite the notable progress made by current methods, they are still hindered by two major limitations: most existing models are relatively small in architecture, failing to fully leverage the potential of large-scale models, and they are based on fixed nonlinear mapping functions that cannot adequately capture complex patterns, leading to information loss. To this end, an LLM-Empowered Kolmogorov–Arnold frequency learning (LKFL) is proposed for time series forecasting in power systems, which consists of LLM-based prompt representation learning, KAN-based frequency representation learning, and entropy-oriented cross-modal fusion. Specifically, LKFL first transforms multivariable time-series data into text prompts and leverages a pre-trained LLM to extract semantic-rich prompt representations. It then applies Fast Fourier Transform to convert the time-series data into the frequency domain and employs Kolmogorov–Arnold networks (KAN) to capture multi-scale periodic structures and complex frequency characteristics. Finally, LKFL integrates the prompt and frequency representations through an entropy-oriented cross-modal fusion strategy, which minimizes the semantic gap between different modalities and ensures full integration of complementary information. This comprehensive approach enables LKFL to achieve superior forecasting performance in power systems. Extensive evaluations on five benchmarks verify that LKFL sets a new standard for time-series forecasting in power systems compared with baseline methods. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science, 2nd Edition)
Show Figures

Figure 1

46 pages, 3207 KB  
Article
Evaluating the Usability and Ethical Implications of Graphical User Interfaces in Generative AI Systems
by Amna Batool and Waqar Hussain
Computers 2025, 14(10), 418; https://doi.org/10.3390/computers14100418 - 2 Oct 2025
Abstract
The rapid development of generative artificial intelligence (GenAI) has revolutionized how individuals and organizations interact with technology. These systems, ranging from conversational agents to creative tools, are increasingly embedded in daily life. However, their effectiveness relies heavily on the usability of their graphical [...] Read more.
The rapid development of generative artificial intelligence (GenAI) has revolutionized how individuals and organizations interact with technology. These systems, ranging from conversational agents to creative tools, are increasingly embedded in daily life. However, their effectiveness relies heavily on the usability of their graphical user interfaces (GUIs), which serve as the primary medium for user interaction. Moreover, the design of these interfaces must align with ethical principles such as transparency, fairness, and user autonomy to ensure responsible usage. This study evaluates the usability of GUIs for three widely-used GenAI applications, including ChatGPT (GPT-4), Gemini (1.5), and Claude (3.5 Sonnet) , using a heuristics-based and user-based testing approach (experimental-qualitative investigation). A total of 12 participants from a research organization in Australia, participated in structured usability evaluations, applying 14 usability heuristics to identify key issues and ethical concerns. The results indicate that Claude’s GUI is the most usable among the three, particularly due to its clean and minimalistic design. However, all applications demonstrated specific usability issues, such as insufficient error prevention, lack of shortcuts, and limited customization options, affecting the efficiency and effectiveness of user interactions. Despite these challenges, each application exhibited unique strengths, suggesting that while functional, significant enhancements are needed to fully support user satisfaction and ethical usage. The insights of this study can guide organizations in designing GenAI systems that are not only user-friendly but also ethically sound. Full article
Back to TopTop