Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = apparent permittivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5917 KiB  
Article
An Experimental 10-Port Microwave System for Brain Stroke Diagnosis—Potentials and Limitations
by Tomas Pokorny, Jan Redr, Hana Laierova, Barbora Smahelova and Jakub Kollar
Sensors 2025, 25(14), 4360; https://doi.org/10.3390/s25144360 - 12 Jul 2025
Viewed by 283
Abstract
Microwave imaging systems show potential as replacements for commonly used stroke diagnostic systems. We developed and tested a 10-port microwave system on a liquid head phantom with ischemic and hemorrhagic strokes of varying sizes and positions. This system allows for visualization of changes [...] Read more.
Microwave imaging systems show potential as replacements for commonly used stroke diagnostic systems. We developed and tested a 10-port microwave system on a liquid head phantom with ischemic and hemorrhagic strokes of varying sizes and positions. This system allows for visualization of changes in dielectric parameters using the TSVD Born approximation, enabling recognition of stroke position and size from the resulting images. The SVM algorithm effectively distinguishes between ischemic and hemorrhagic strokes, achieving 98% accuracy on experimental data, with 99% accuracy in ischemic scenarios and 97% in hemorrhagic scenarios. Using the TSVD Born algorithm, it was possible to precisely image changes in the absolute permittivity of different stroke locations; however, changes in stroke size were more apparent in the variations of absolute permittivity than in the reconstructed stroke size within the antenna plane. Outside this plane, changes in the S-parameters decreased depending on the distance and size of the stroke, making detection and classification more difficult. One ring of antennas around the head proved insufficient, prompting us to focus on developing a system with antennas positioned around the entire head. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

19 pages, 4565 KiB  
Article
Performance Evaluation of TEROS 10 Sensor in Diverse Substrates and Soils of Different Electrical Conductivity Using Low-Cost Microcontroller Settings
by Athanasios Fragkos, Dimitrios Loukatos, Georgios Kargas and Konstantinos G. Arvanitis
Land 2025, 14(2), 242; https://doi.org/10.3390/land14020242 - 24 Jan 2025
Viewed by 1221
Abstract
This study sheds light on the performance of the common high-precision electromagnetic sensor TEROS 10 to estimate volumetric soil water content (θ) from dry to saturation across three different substrates, six different soil types having three different levels of electrical conductivity of soil [...] Read more.
This study sheds light on the performance of the common high-precision electromagnetic sensor TEROS 10 to estimate volumetric soil water content (θ) from dry to saturation across three different substrates, six different soil types having three different levels of electrical conductivity of soil solutions (ECw), and in liquids with increasing salinity level under laboratory conditions, by using low-cost but accurate experimental IoT hardware arrangements. This performance was evaluated using statistical analysis metrics such as Root Mean Square Error (RMSE). It was found that TEROS 10 performance did not conform to the manufacturer’s specifications throughout the full scale range, although in some cases good water content estimation was provided. Some inconsistencies were identified by applying the manufacturer’s calibration equations, and thus recommendations for improvements are provided, aiming to enhance the sensor’s overall performance. TEROS 10 performance across all six soils and three substrates was improved on average from an RMSE of 0.052 and 0.078 cm3 cm−3, respectively, by using factory-derived calibration, to 0.031 and 0.031 cm3 cm−3 by using the multipoint calibration method (CAL). Furthermore, a linear calibration formula, using Raw output as the predictor variable, was tested and resulted in an RMSE of 0.026 and 0.046 cm3 cm−3 for soils and substrates, respectively. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

18 pages, 4181 KiB  
Article
Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance
by Matina Shakya, Amanda Hess, Bridget M. Wadzuk and Robert G. Traver
Sensors 2025, 25(1), 27; https://doi.org/10.3390/s25010027 - 24 Dec 2024
Viewed by 1601
Abstract
The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system’s water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, [...] Read more.
The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system’s water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance. The purpose of this research is to quantify the uncertainties that cause discrepancies between default (factory general) sensor soil moisture measurements versus calibrated sensor soil moisture measurements within a subsurface layer of GSI systems. The study uses time domain reflectometry soil moisture sensors based on the ambient soil’s dielectric properties under different soil setups in the laboratory and field. The default ‘loam’ calibration was compared to soil-specific (loamy sand) calibrations developed based on laboratory and GSI field data. The soil-specific calibration equations used a correlation between dielectric properties (real dielectric: εr, and apparent dielectric: Ka) and the volumetric water content from gravimetric samples. A paired t-test was conducted to understand any statistical significance within the datasets. Between laboratory and field calibrations, it was found that field calibration was preferred, as there was less variation in the factory general soil moisture reading compared to gravimetric soil moisture tests. Real dielectric permittivity (εr) and apparent permittivity (Ka) were explored as calibration options and were found to have very similar calibrations, with the largest differences at saturation. The εr produced a 6% difference while the Ka calibration produced a 3% difference in soil moisture measurement at saturation. Ka was chosen over εr as it provided an adequate representation of the soil and is more widely used in soil sensor technology. With the implemented field calibration, the average desaturation time of the GSI was faster by an hour, and the recovery time was quicker by a day. GSI recovery typically takes place within 1–4 days, such that an extension of a day in recovery could result in the conclusion that the system is underperforming, rather than it being the result of a limitation of the soil moisture sensors’ default calibrations. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

17 pages, 5375 KiB  
Article
Streptomyces hygroscopicus and rapamycinicus Evaluated from a U.S. Marine Sanctuary: Biosynthetic Gene Clusters Encode Antibiotic and Chemotherapeutic Secondary Metabolites
by Hannah R. Flaherty, Semra A. Aytur and John P. Bucci
J. Mar. Sci. Eng. 2024, 12(11), 2076; https://doi.org/10.3390/jmse12112076 - 17 Nov 2024
Viewed by 1803
Abstract
Cancer remains a leading cause of death worldwide. Also threatening the public is the emergence of antibiotic resistance to existing medicines. Despite the challenge to produce viable natural products to market, there continues to be a need within public health to provide new [...] Read more.
Cancer remains a leading cause of death worldwide. Also threatening the public is the emergence of antibiotic resistance to existing medicines. Despite the challenge to produce viable natural products to market, there continues to be a need within public health to provide new chemotherapeutic drugs such as those exhibiting cytotoxicity and tumor cell growth-inhibitory properties. As marine genomic research advances, it is apparent that marine-derived sediment harbors uniquely potent bioactive compounds compared to their terrestrial counterparts. The Streptomyces genus in particular produces more than 30% of all secondary metabolites currently approved for human health, thus harboring unexplored reservoirs of chemotherapeutic and antibiotic agents to combat emerging disease. The present study identifies the presence of Streptomyces hygroscopicus and rapamycinicus in environmental sediment at locations within the U.S. Stellwagen Bank National Marine Sanctuary (SBNMS) from 2017 to 2022. Sequencing and bioinformatics methods catalogued biosynthetic gene clusters (BGCs) that drive cytotoxic and antibiotic biochemical processes in samples collected from sites permittable and protected to fishing activity. Poisson regression models confirmed that Sites 1 and 3 had significantly higher occurrences of rapamycinicus than other sites (p < 0.01). Poisson regression models confirmed that Sites 1, 2 and 3 had significantly higher occurrence for Streptomyces hygroscopicus across sites (p < 0.05). Interestingly, permitted fishing sites showed a greater prevalence of both species. Statistical analyses showed a significant difference in aligned hits with polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) by site and between species with hygroscopicus showing a greater quantity than rapamycinicus among Streptomyces spp. (p < 0.05; F = 4.7 > F crit). Full article
(This article belongs to the Special Issue Benthic Microbial Community in Marine and Coastal Environment)
Show Figures

Figure 1

21 pages, 7048 KiB  
Article
Statistical Analysis of AC Breakdown Performance of Epoxy/Al2O3 Micro-Composites for High-Voltage Applications
by Changyeong Cheon, Dongmin Seo and Myungchin Kim
Appl. Sci. 2024, 14(22), 10506; https://doi.org/10.3390/app142210506 - 14 Nov 2024
Cited by 2 | Viewed by 1312
Abstract
Thanks to the performance improvement introduced by micro sized functional fillers, application of epoxy composites for electrical insulation purposes has become popular. This paper investigates the dielectric properties of epoxy micro-composites filled with alumina (Al2O3). In particular, measurements of [...] Read more.
Thanks to the performance improvement introduced by micro sized functional fillers, application of epoxy composites for electrical insulation purposes has become popular. This paper investigates the dielectric properties of epoxy micro-composites filled with alumina (Al2O3). In particular, measurements of relative permittivity, dissipation factor, and electrical breakdown are performed, and a comprehensive statistical analysis on dielectric properties was conducted. AC breakdown strength (AC-BDS) was analyzed for normal distribution using four methods (Anderson–Darling, Shapiro–Wilk, Ryan–Joiner, and Kolmogorov–Smirnov). In addition, the AC-BDS was analyzed at risk probabilities of 1%, 5%, 10%, and 50% using Weibull distribution functions. Both normal and Weibull distributions were evaluated using the Anderson–Darling (A-D) statistic and p-value. Additionally, the log-normal, gamma, and exponential distributions of AC-BDS were examined by A-D goodness-of-fit test. The hypothesis test results of AC-BDS were fit by normal and Weibull distributions, and the compliance was evaluated by p-value and each method statistics. In addition, the experimental results of AC-BDS were fit by log-normal and gamma distributions, and the goodness-of-fit was evaluated by p-value and A-D testing. On the other hand, exponential distribution was not suitable for p-value and A-D testing. The results showed that the distributions of AC-BDS were the best using log-normal distribution. Meanwhile, statistical analysis results verified the apparent effect of temperature on dielectric properties using a paired t-test. The analysis results of this paper not only contribute to better characterization of epoxy/Al2O3 micro-composites but also introduce a comprehensive approach for performing statistical analysis for electrical insulation materials. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

16 pages, 3302 KiB  
Article
Performance of Soil Moisture Sensors at Different Salinity Levels: Comparative Analysis and Calibration
by Qiuju Qi, Hai Yang, Quanping Zhou, Xiaole Han, Zhengyang Jia, Yuehua Jiang, Zi Chen, Lili Hou and Shijia Mei
Sensors 2024, 24(19), 6323; https://doi.org/10.3390/s24196323 - 29 Sep 2024
Cited by 5 | Viewed by 2989
Abstract
Soil dielectric sensors have been widely used to obtain real-time soil moisture data, which are important for water resource management. However, soluble salts in the soil significantly affect the accuracy of these sensor measurements. Therefore, it is crucial to select suitable soil dielectric [...] Read more.
Soil dielectric sensors have been widely used to obtain real-time soil moisture data, which are important for water resource management. However, soluble salts in the soil significantly affect the accuracy of these sensor measurements. Therefore, it is crucial to select suitable soil dielectric sensors for soil moisture measurements at different salinity levels. Eight mainstream sensors (EC-5, 5TE, Teros12, Hydra-probe II, TDR315L, TDR315H, TDR305H, and CS655) were selected and tested at four different soil salinity levels (EC1:5 = 3.0, 1.5, 1.0, and 0.75 dS·m−1). The measured values using the factory calibration formulas were compared at six soil moisture levels. The results showed that the measured soil moisture values from various sensors exhibited varying degrees of overestimation, which increased with increasing salinity. Only EC-5 did not exhibit distortion at high-salinity levels, with the measured values showing a good linear trend compared to the standard values. Mutational distortion of the measured apparent dielectric permittivity occurred in TDR315L, TDR315H, Hydra-probe II, and 5TE at EC1:5 = 3.0 dS·m−1. Insensitive distortion of the measured apparent dielectric permittivity occurred in Teros12 and TDR305H at EC1:5 = 3.0 dS·m−1 as well as in Teros12, TDR305H, 5TE and Hydra-probe II at EC1:5 = 1.5 dS·m−1. All tested sensors performed reasonably well at EC1:5 ≤ 1.0 dS·m−1. Seven sensors (excluding CS655) were calibrated within the distortion threshold. The soil moisture accuracy using the calibrated formulas could reach ±0.02 cm3·cm−3. At EC1:5 ≤ 1.0 dS·m−1, most sensors in this study could be applied with the factory calibration formulas. TDR series, EC-5, 5TE and Teros12 were recommended after calibration for EC1:5 > 1.0 dS·m−1. For extremely high soil salinity levels, the TDR series and EC-5 may be the best choices. Full article
(This article belongs to the Special Issue Soil Sensing and Mapping for a Sustainable Future)
Show Figures

Figure 1

14 pages, 975 KiB  
Article
Evaluation of a Multivariate Calibration Model for the WET Sensor That Incorporates Apparent Dielectric Permittivity and Bulk Soil Electrical Conductivity
by Panagiota Antonia Petsetidi and George Kargas
Land 2024, 13(9), 1490; https://doi.org/10.3390/land13091490 - 14 Sep 2024
Viewed by 1259
Abstract
The measurement of apparent dielectric permittivity (εs) by low-frequency capacitance sensors and its conversion to the volumetric water content of soil (θ) through a factory calibration is a valuable tool in precision irrigation. Under certain soil conditions, however, εs readings [...] Read more.
The measurement of apparent dielectric permittivity (εs) by low-frequency capacitance sensors and its conversion to the volumetric water content of soil (θ) through a factory calibration is a valuable tool in precision irrigation. Under certain soil conditions, however, εs readings are substantially affected by the bulk soil electrical conductivity (ECb) variability, which is omitted in default calibration, leading to inaccurate θ estimations. This poses a challenge to the reliability of the capacitance sensors that require soil-specific calibrations, considering the ECb impact to ensure the accuracy in θ measurements. In this work, a multivariate calibration equation (multivariate) incorporating both εs and ECb for the determination of θ by the capacitance WET sensor (Delta-T Devices Ltd., Cambridge, UK) is examined. The experiments were conducted in the laboratory using the WET sensor, which measured θ, εs, and ECb simultaneously over a range of soil types with a predetermined actual volumetric water content value (θm) ranging from θ = 0 to saturation, which were obtained by wetting the soils with four water solutions of different electrical conductivities (ECi). The multivariate model’s performance was evaluated against the univariate CAL and the manufacturer’s (Manuf) calibration methods with the Root Mean Square Error (RMSE). According to the results, the multivariate model provided the most accurate θ estimations, (RMSE ≤ 0.022 m3m−3) compared to CAL (RMSE ≤ 0.027 m3m−3) and Manuf (RMSE ≤ 0.042 m3m−3), across all the examined soils. This study validates the effects of ECb on θ for the WET and recommends the multivariate approach for improving the capacitance sensors’ accuracy in soil moisture measurements. Full article
Show Figures

Figure 1

29 pages, 4564 KiB  
Review
Recent Advances in Dielectric Properties-Based Soil Water Content Measurements
by Mukhtar Iderawumi Abdulraheem, Hongjun Chen, Linze Li, Abiodun Yusuff Moshood, Wei Zhang, Yani Xiong, Yanyan Zhang, Lateef Bamidele Taiwo, Aitazaz A. Farooque and Jiandong Hu
Remote Sens. 2024, 16(8), 1328; https://doi.org/10.3390/rs16081328 - 10 Apr 2024
Cited by 19 | Viewed by 6010
Abstract
Dielectric properties are crucial in understanding the behavior of water within soil, particularly the soil water content (SWC), as they measure a material’s ability to store an electric charge and are influenced by water and other minerals in the soil. However, a comprehensive [...] Read more.
Dielectric properties are crucial in understanding the behavior of water within soil, particularly the soil water content (SWC), as they measure a material’s ability to store an electric charge and are influenced by water and other minerals in the soil. However, a comprehensive review paper is needed that synthesizes the latest developments in this field, identifies the key challenges and limitations, and outlines future research directions. In addition, various factors, such as soil salinity, temperature, texture, probing space, installation gap, density, clay content, sampling volume, and environmental factors, influence the measurement of the dielectric permittivity of the soil. Therefore, this review aims to address the research gap by critically analyzing the current state-of-the-art dielectric properties-based methods for SWC measurements. The motivation for this review is the increasing importance of precise SWC data for various applications such as agriculture, environmental monitoring, and hydrological studies. We examine time domain reflectometry (TDR), frequency domain reflectometry (FDR), ground-penetrating radar (GPR), remote sensing (RS), and capacitance, which are accurate and cost-effective, enabling real-time water resource management and soil health understanding through measuring the travel time of electromagnetic waves in soil and the reflection coefficient of these waves. SWC can be estimated using various approaches, such as TDR, FDR, GPR, and microwave-based techniques. These methods are made possible by increasing the dielectric permittivity and loss factor with SWC. The available dielectric properties are further synthesized on the basis of mathematical models relating apparent permittivity to water content, providing an updated understanding of their development, applications, and monitoring. It also analyzes recent mathematical calibration models, applications, algorithms, challenges, and trends in dielectric permittivity methods for estimating SWC. By consolidating recent advances and highlighting the remaining challenges, this review article aims to guide researchers and practitioners toward more effective strategies for SWC measurements. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing of Soil Moisture)
Show Figures

Figure 1

25 pages, 5809 KiB  
Article
The Dominance of Pretransitional Effects in Liquid Crystal-Based Nanocolloids: Nematogenic 4-methoxybenzylidene-4′–butylaniline with Transverse Permanent Dipole Moment and BaTiO3 Nanoparticles
by Aleksandra Drozd-Rzoska, Joanna Łoś and Sylwester J. Rzoska
Nanomaterials 2024, 14(8), 655; https://doi.org/10.3390/nano14080655 - 9 Apr 2024
Cited by 5 | Viewed by 1878
Abstract
The report presents static, low-frequency, and dynamic dielectric properties in the isotropic liquid, nematic, and solid phases of MBBA and related nanocolloids with paraelectric BaTiO3 nanoparticles (spherical, d = 50 nm). MBBA (4-methoxybenzylidene-4′–butylaniline) is a liquid crystalline compound with a permanent dipole [...] Read more.
The report presents static, low-frequency, and dynamic dielectric properties in the isotropic liquid, nematic, and solid phases of MBBA and related nanocolloids with paraelectric BaTiO3 nanoparticles (spherical, d = 50 nm). MBBA (4-methoxybenzylidene-4′–butylaniline) is a liquid crystalline compound with a permanent dipole moment transverse to the long molecular axis. The distortions-sensitive analysis of the dielectric constant revealed its hidden pretransitional anomaly, strongly influenced by the addition of nanoparticles. The evolution of the dielectric constant in the nematic phase shows the split into two regions, with the crossover coinciding with the standard melting temperature. The ‘universal’ exponential-type behavior of the low-frequency contribution to the real part of the dielectric permittivity is found. The critical-like pretransitional behavior in the solid phase is also evidenced. This is explained by linking the Lipovsky model to the Mossotti catastrophe concept under quasi-negative pressure conditions. The explicit preference for the ‘critical-like’ evolution of the apparent activation enthalpy is worth stressing for dynamics. Finally, the long-range, ‘critical-like’ behavior of the dissipation factor (D = tgδ), covering the isotropic liquid and nematic phases, is shown. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Figure 1

17 pages, 3199 KiB  
Article
Response of the TEROS 12 Soil Moisture Sensor under Different Soils and Variable Electrical Conductivity
by Athanasios Fragkos, Dimitrios Loukatos, Georgios Kargas and Konstantinos G. Arvanitis
Sensors 2024, 24(7), 2206; https://doi.org/10.3390/s24072206 - 29 Mar 2024
Cited by 11 | Viewed by 3811
Abstract
In this work, the performance of the TEROS 12 electromagnetic sensor, which measures volumetric soil water content (θ), bulk soil electrical conductivity (σb), and temperature, is examined for a number of different soils, different θ and different levels of the electrical [...] Read more.
In this work, the performance of the TEROS 12 electromagnetic sensor, which measures volumetric soil water content (θ), bulk soil electrical conductivity (σb), and temperature, is examined for a number of different soils, different θ and different levels of the electrical conductivity of the soil solution (ECW) under laboratory conditions. For the above reason, a prototype device was developed including a low-cost microcontroller and suitable adaptation circuits for the aforementioned sensor. Six characteristic porous media were examined in a θ range from air drying to saturation, while four different solutions of increasing Electrical Conductivity (ECw) from 0.28 dS/m to approximately 10 dS/m were used in four of these porous media. It was found that TEROS 12 apparent dielectric permittivity (εa) readings were lower than that of Topp’s permittivity–water content relationship, especially at higher soil water content values in the coarse porous bodies. The differences are observed in sand (S), sandy loam (SL) and loam (L), at this order. The results suggested that the relationship between experimentally measured soil water content (θm) and εa0.5 was strongly linear (0.869 < R2 < 0.989), but the linearity of the relation θma0.5 decreases with the increase in bulk EC (σb) of the soil. The most accurate results were provided by the multipoint calibration method (CAL), as evaluated with the root mean square error (RMSE). Also, it was found that εa degrades substantially at values of σb less than 2.5 dS/m while εa returns to near 80 at higher values. Regarding the relation εab, it seems that it is strongly linear and that its slope depends on the pore water electrical conductivity (σp) and the soil type. Full article
(This article belongs to the Topic Metrology-Assisted Production in Agriculture and Forestry)
Show Figures

Figure 1

23 pages, 27774 KiB  
Article
Barium Titanate Synthesis in Water Vapor: From Mechanism to Ceramics Properties
by Anastasia A. Kholodkova, Yurii D. Ivakin, Marina N. Danchevskaya, Galina P. Muravieva, Alexander V. Egorov, Aleksey D. Smirnov, Arseniy N. Khrustalev, Levko A. Arbanas, Viktoria E. Bazarova and Andrey V. Smirnov
Inorganics 2024, 12(3), 76; https://doi.org/10.3390/inorganics12030076 - 29 Feb 2024
Viewed by 2454
Abstract
A facile and environmentally benign method for single-phase barium titanate synthesis in a water vapor medium was studied to reveal the mechanism of phase transformation of the initial simple oxide mixture and estimate the capability of the product to be used as a [...] Read more.
A facile and environmentally benign method for single-phase barium titanate synthesis in a water vapor medium was studied to reveal the mechanism of phase transformation of the initial simple oxide mixture and estimate the capability of the product to be used as a raw material for low-frequency dielectric ceramics. The composition and structure of the reactants’ mixture, treated in vapor at 130–150 °C as well as at 230 °C for various time periods, were investigated by means of XRD, SEM, TEM, EDX, and FTIR methods. The kinetics of the occurring phase transformation can be described using the Johnson–Mehl–Avrami–Erofeev equation. The reaction between the initial oxides was considered as a topochemical process with an apparent activation energy of 75–80 kJ mol−1. A crucial role in this process belonged to the water vapor medium, which facilitated the generation of the reaction zone and the spreading inward of the solid particles. The synthesized tetragonal barium titanate powder (mean particle size of 135 nm) was sintered using a conventional technique at 1250 °C to obtain ceramics with grains of about 2 μm. Capacitance measurements identified a permittivity and dielectric loss factor of the ceramics that reached 3879 and 6.7 × 10−3, respectively, at 1 kHz and room temperature. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

15 pages, 5616 KiB  
Article
Temperature-Corrected Calibration of GS3 and TEROS-12 Soil Water Content Sensors
by Paolo Nasta, Francesca Coccia, Ugo Lazzaro, Heye R. Bogena, Johan A. Huisman, Benedetto Sica, Caterina Mazzitelli, Harry Vereecken and Nunzio Romano
Sensors 2024, 24(3), 952; https://doi.org/10.3390/s24030952 - 1 Feb 2024
Cited by 9 | Viewed by 2276
Abstract
The continuous monitoring of soil water content is commonly carried out using low-frequency capacitance sensors that require a site-specific calibration to relate sensor readings to apparent dielectric bulk permittivity (Kb) and soil water content (θ). In fine-textured soils, [...] Read more.
The continuous monitoring of soil water content is commonly carried out using low-frequency capacitance sensors that require a site-specific calibration to relate sensor readings to apparent dielectric bulk permittivity (Kb) and soil water content (θ). In fine-textured soils, the conversion of Kb to θ is still challenging due to temperature effects on the bound water fraction associated with clay mineral surfaces, which is disregarded in factory calibrations. Here, a multi-point calibration approach accounts for temperature effects on two soils with medium to high clay content. A calibration strategy was developed using repacked soil samples in which the Kb-θ relationship was determined for temperature (T) steps from 10 to 40 °C. This approach was tested using the GS3 and TEROS-12 sensors (METER Group, Inc. Pullman, WA, USA; formerly Decagon Devices). Kb is influenced by T in both soils with contrasting T-Kb relationships. The measured data were fitted using a linear function θ = aKb + b with temperature-dependent coefficients a and b. The slope, a(T), and intercept, b(T), of the loam soil were different from the ones of the clay soil. The consideration of a temperature correction resulted in low RMSE values, ranging from 0.007 to 0.033 cm3 cm−3, which were lower than the RMSE values obtained from factory calibration (0.046 to 0.11 cm3 cm−3). However, each experiment was replicated only twice using two different sensors. Sensor-to-sensor variability effects were thus ignored in this study and will be systematically investigated in a future study. Finally, the applicability of the proposed calibration method was tested at two experimental sites. The spatial-average θ from a network of GS3 sensors based on the new calibration fairly agreed with the independent area-wide θ from the Cosmic Ray Neutron Sensor (CRNS). This study provided a temperature-corrected calibration to increase the accuracy of commercial sensors, especially under dry conditions, at two experimental sites. Full article
(This article belongs to the Topic Metrology-Assisted Production in Agriculture and Forestry)
Show Figures

Figure 1

20 pages, 1209 KiB  
Article
Phase Transition and Point Defects in the Ferroelectric Molecular Perovskite (MDABCO)(NH4)I3
by Francesco Cordero, Floriana Craciun, Patrizia Imperatori, Venanzio Raglione, Gloria Zanotti, Antoniu Moldovan and Maria Dinescu
Materials 2023, 16(23), 7323; https://doi.org/10.3390/ma16237323 - 24 Nov 2023
Cited by 3 | Viewed by 1263
Abstract
We measured the anelastic, dielectric and structural properties of the metal-free molecular perovskite (ABX3) (MDABCO)(NH4)I3, which has already been demonstrated to become ferroelectric below TC= 448 K. Both the dielectric permittivity measured in air on [...] Read more.
We measured the anelastic, dielectric and structural properties of the metal-free molecular perovskite (ABX3) (MDABCO)(NH4)I3, which has already been demonstrated to become ferroelectric below TC= 448 K. Both the dielectric permittivity measured in air on discs pressed from powder and the complex Young’s modulus measured on resonating bars in a vacuum show that the material starts to deteriorate with a loss of mass just above TC, introducing defects and markedly lowering TC. The elastic modulus softens by 50% when heating through the initial TC, contrary to usual ferroelectrics, which are stiffer in the paraelectric phase. This is indicative of improper ferroelectricity, in which the primary order parameter of the transition is not the electric polarization, but the orientational order of the MDABCO molecules. The degraded material presents thermally activated relaxation peaks in the elastic energy loss, whose intensities increase together with the decrease in TC. The peaks are much broader than pure Debye due to the general loss of crystallinity. This is also apparent from X-ray diffraction, but their relaxation times have parameters typical of point defects. It is argued that the major defects should be of the Schottky type, mainly due to the loss of (MDABCO)2+ and I, leaving charge neutrality, and possibly (NH4)+ vacancies. The focus is on an anelastic relaxation process peaked around 200 K at ∼1 kHz, whose relaxation time follows the Arrhenius law with τ01013 s and E0.4 eV. This peak is attributed to I vacancies (VX) hopping around MDABCO vacancies (VA), and its intensity presents a peculiar dependence on the temperature and content of defects. The phenomenology is thoroughly discussed in terms of lattice disorder introduced by defects and partition of VX among sites that are far from and close to the cation vacancies. A method is proposed for calculating the relative concentrations of VX, that are untrapped, paired with VA or forming VX–VA–VX complexes. Full article
Show Figures

Figure 1

32 pages, 5966 KiB  
Article
Electromagnetic Monitoring of Modern Geodynamic Processes: An Approach for Micro-Inhomogeneous Rock through Effective Parameters
by Kseniia Nepeina, Elena Bataleva and Pavel Alexandrov
Appl. Sci. 2023, 13(14), 8063; https://doi.org/10.3390/app13148063 - 10 Jul 2023
Cited by 4 | Viewed by 1942
Abstract
This study focuses on microscale anisotropy in rock structure and texture, exploring its influence on the macro anisotropic electromagnetic parameters of the geological media, specifically electric conductivity (σ), relative permittivity (ε), and magnetic permeability (μ). The novelty of this research lies in the [...] Read more.
This study focuses on microscale anisotropy in rock structure and texture, exploring its influence on the macro anisotropic electromagnetic parameters of the geological media, specifically electric conductivity (σ), relative permittivity (ε), and magnetic permeability (μ). The novelty of this research lies in the advancement of geophysical monitoring methods for calculating cross properties through the estimation of effective parameters—a kind of integral macroscopic characteristic of media mostly used for composite materials with inclusions. To achieve this, we approximate real geological media with layered bianisotropic media, employing the effective media approximation (EMA) averaging technique to simplify the retrieval of the effective electromagnetic parameters (e.g., apparent resistivity–inversely proportional to electrical conductivity). Additionally, we investigate the correlation between effective electromagnetic parameters and geodynamic processes, which is supported by the experimental data obtained during monitoring studies in the Tien Shan region. The observed decrease and increase in apparent electrical resistivity values of ρk over time in orthogonal azimuths leads to further ρk deviations of up to 80%. We demonstrate that transitioning to another coordinate system is equivalent to considering gradient anisotropic media. Building upon the developed method, we derive the effective electric conductivity tensor for gradient anisotropic media by modeling the process of fracturing in a rock mass. Research findings validate the concept that continuous electromagnetic monitoring can aid in identifying natural geodynamic disasters based on variations in integral macroscopic parameters such as electrical conductivity. The geodynamic processes are closely related to seismicity and stress regimes with provided constraints. Therefore, disasters such as earthquakes are damaging and seismically hazardous. Full article
(This article belongs to the Special Issue Natural Hazards and Geomorphology)
Show Figures

Figure 1

23 pages, 12370 KiB  
Article
A Central Spiral Split Rectangular-Shaped Metamaterial Absorber Surrounded by Polarization-Insensitive Ring Resonator for S-Band Applications
by Shihabun Sakib, Ahasanul Hoque, Sharul Kamal Bin Abdul Rahim, Mandeep Singh, Norsuzlin Mohd Sahar, Md. Shabiul Islam, Mohamed S. Soliman and Mohammad Tariqul Islam
Materials 2023, 16(3), 1172; https://doi.org/10.3390/ma16031172 - 30 Jan 2023
Cited by 24 | Viewed by 3600
Abstract
This paper reports a central spiral split-rectangular-shaped metamaterial absorber surrounded by a polarization-insensitive ring resonator for s-band applications. The rated absorption is 99.9% at 3.1 GHz when using a three-layer structure where the top and ground are made of copper and the center [...] Read more.
This paper reports a central spiral split-rectangular-shaped metamaterial absorber surrounded by a polarization-insensitive ring resonator for s-band applications. The rated absorption is 99.9% at 3.1 GHz when using a three-layer structure where the top and ground are made of copper and the center dielectric material is a commonly used FR-4 substrate. The central split gaps have an impact on the unit cell by increasing high absorption, and an adequate electric field is apparent in the outer split ring gap. At 3.1 GHz, the permittivity and permeability are negative and positive, respectively, so the proposed unit cell acts as an epsilon negative (ENG) metamaterial absorber. In a further analysis, Roger4450B was used as a substrate and obtained excellent absorption rates of 99.382%, 99.383%, 99.91%, and 95.17% at 1.44, 3.96, 4.205, and 5.025 GHz, respectively, in the S- and C-band regions. This unit cell acts as a single negative metamaterial (SNG) absorber at all resonance frequencies. The S11 and S21 parameters for FR-4 and Rogers4450B were simulated while keeping the polarization angle (θ and φ) at 15, 30, 45, 60, 75, and 90 degrees to measure, permittivity, permeability, reflective index, absorption, and reflection. The values of the reflective index are near zero. Near-zero reflective indexes (NZRI) are widely used in antenna gain propagation. The unit cell fabricated for the FR-4 substrate attained 99.9% absorption. S-band values in the range of (2–4) GHz can be applied for low-frequency radar detection. Full article
Show Figures

Figure 1

Back to TopTop