Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (385)

Search Parameters:
Keywords = antimycobacterial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 874 KiB  
Review
Liposome-Encapsulated Antibiotics for the Therapy of Mycobacterial Infections
by Metin Yıldırım and Nejat Düzgüneş
Antibiotics 2025, 14(7), 728; https://doi.org/10.3390/antibiotics14070728 - 20 Jul 2025
Viewed by 476
Abstract
About a quarter of the world’s population is infected with Mycobacterium tuberculosis. Growing antibiotic resistance by this microorganism is a major problem in the therapy of the disease. M. avium-M. intracellulare that emerged as a major opportunistic infection of HIV/AIDS continues to [...] Read more.
About a quarter of the world’s population is infected with Mycobacterium tuberculosis. Growing antibiotic resistance by this microorganism is a major problem in the therapy of the disease. M. avium-M. intracellulare that emerged as a major opportunistic infection of HIV/AIDS continues to afflict immunocompromised individuals. We describe the use of liposome-encapsulated antibiotics in the experimental and clinical therapy of mycobacterial infections, as well as recent experimental liposomal vaccines against tuberculosis. Liposome-mediated intravenous or inhalational delivery of antibiotics enhances the antibacterial effects of the drugs, particularly for infections of resident macrophages, where the liposomes are passively targeted. Despite experimental successes of liposomal antibiotics in the treatment of mycobacterial and other bacterial infections, applications of this method to the clinic have been lagging. This review underscores the significance of liposomes in the treatment of mycobacterial infections, encompassing their synthesis methods, limitations, and both preclinical and clinical studies, providing guidance for the development of future therapeutic approaches and innovative antimicrobial strategies. Full article
Show Figures

Figure 1

14 pages, 2845 KiB  
Article
Heparin-Binding Hemagglutinin-Induced Trained Immunity in Macrophages: Implications for Antimycobacterial Defense
by Yongqiang Li, Xiuping Jia, Jinhua Tang, Huilian Qiao, Jiani Zhou and Yueyun Ma
Biomolecules 2025, 15(7), 959; https://doi.org/10.3390/biom15070959 - 4 Jul 2025
Viewed by 389
Abstract
Tuberculosis (TB) is a major global health threat, with the current Bacillus Calmette–Guérin (BCG) vaccine having limited efficacy against adult pulmonary disease. Trained immunity (TI) is a form of innate immune memory that enhances antimicrobial defense. It is characterized by the epigenetic and [...] Read more.
Tuberculosis (TB) is a major global health threat, with the current Bacillus Calmette–Guérin (BCG) vaccine having limited efficacy against adult pulmonary disease. Trained immunity (TI) is a form of innate immune memory that enhances antimicrobial defense. It is characterized by the epigenetic and metabolic reprogramming of innate immune cells and holds promise as a promising approach to prevent TB. In this study, we investigated the capacity of heparin-binding hemagglutinin (HBHA), a methylated antigen of Mycobacterium tuberculosis, to induce TI in murine RAW264.7 macrophages, human-derived THP-1 macrophages, and human peripheral blood mononuclear cells (hPBMCs). HBHA-trained macrophages exhibited the enhanced expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) following secondary lipopolysaccharide stimulation. The epigenetic profiling indicated elevated levels of H3K4me1 and H3K4me3 histone marks at cytokine gene loci. Further, metabolic analysis revealed heightened lactate production and the increased expression of glycolytic enzymes. Functionally, HBHA-trained macrophages exhibited improved control of intracellular mycobacteria, as evidenced by a significant reduction in colony-forming units following BCG infection. These findings elucidate that HBHA induces a functional TI phenotype via coordinated epigenetic and metabolic changes, and suggest HBHA may serve as a valuable tool for studying TI and its relevance to host defense against mycobacterial infections, pending further in vivo and clinical validation. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

49 pages, 5285 KiB  
Review
Insights into Natural Products from Marine-Derived Fungi with Antimycobacterial Properties: Opportunities and Challenges
by Muhammad Azhari, Novi Merliani, Marlia Singgih, Masayoshi Arai and Elin Julianti
Mar. Drugs 2025, 23(7), 279; https://doi.org/10.3390/md23070279 - 3 Jul 2025
Viewed by 693
Abstract
Tuberculosis (TB) poses a persistent global health threat exacerbated by the emergence of drug-resistant strains; hence, there is a continuous quest for novel antimicrobial agents. Despite efforts to develop effective therapies, existing treatments require a relatively long duration of therapy to eradicate the [...] Read more.
Tuberculosis (TB) poses a persistent global health threat exacerbated by the emergence of drug-resistant strains; hence, there is a continuous quest for novel antimicrobial agents. Despite efforts to develop effective therapies, existing treatments require a relatively long duration of therapy to eradicate the pathogen due to its virulence factors, pathogenesis patterns, and ability to enter dormant states. This can lead to a higher risk of treatment failure due to poor patient adherence to the complex regimen. As a result, considerable research is necessary to identify alternative antituberculosis agents. The marine environment, particularly marine-derived fungi, has recently gained interest due to its potential as an abundant source of bioactive natural products. This review covers 19 genera of marine-derived fungi and 139 metabolites, 131 of which exhibit antimycobacterial activity. The integrated dataset pinpoints the fungal genera and chemical classes that most frequently yield potent antimycobacterial hits while simultaneously exposing critical gaps, such as the minimal evaluation of compounds against dormant bacilli and the presence of underexplored ecological niches and fungal genera. Several compounds exhibit potent activity through uncommon mechanisms, including the inhibition of mycobacterial protein tyrosine phosphatases (MptpB/MptpA), protein kinase PknG, ATP synthase and the disruption of mycobacterial DNA via G-quadruplex stabilization. Structure–activity relationship (SAR) trends are highlighted for the most potent agents, illuminating how specific functional groups underpin target engagement and potency. This review also briefly proposes a dereplication strategy and approaches for toxicity mitigation in the exploration of marine-derived fungi’s natural products. Through this analysis, we offer insights into the potency and challenges of marine-derived fungi’s natural products as hit compounds or scaffolds for further antimycobacterial research. Full article
Show Figures

Figure 1

21 pages, 3837 KiB  
Article
Evaluation of the In Vitro Activity of Bedaquiline, Delamanid, and Clofazimine Against Mycobacterium abscessus Complex and Their Antibiofilm Potential
by Katarzyna Kania, Katarzyna Wójcik, Alicja Skórkowska and Karolina Klesiewicz
Pathogens 2025, 14(6), 582; https://doi.org/10.3390/pathogens14060582 - 11 Jun 2025
Viewed by 752
Abstract
Mycobacterium abscessus complex (MABc) poses a major therapeutic challenge due to its intrinsic multidrug resistance and ability to form biofilms. This study evaluated the in vitro activity of three antimycobacterial agents—bedaquiline, delamanid, and clofazimine—on 20 clinical MABc isolates, including M. abscessus subsp. abscessus [...] Read more.
Mycobacterium abscessus complex (MABc) poses a major therapeutic challenge due to its intrinsic multidrug resistance and ability to form biofilms. This study evaluated the in vitro activity of three antimycobacterial agents—bedaquiline, delamanid, and clofazimine—on 20 clinical MABc isolates, including M. abscessus subsp. abscessus, massiliense, and bolletii, with a focus on biofilm-forming phenotypes. Biofilm analysis showed that the rough colony morphotypes were mostly weak biofilm formers, while the smooth and mixed morphotypes were predominantly moderate or strong biofilm formers. A statistically significant association was observed between the mixed colony morphology and strong biofilm formation (p = 0.032). Importantly, bedaquiline exhibited potent and consistent activity across all isolates, regardless of the biofilm-forming ability, with MIC values ranging from 0.125 to 1 µg/mL. In contrast, delamanid and clofazimine showed limited efficacy, with MIC values exceeding 16 µg/mL and 8 µg/mL, respectively. These findings strongly support the role of bedaquiline as a promising core agent for future combination therapies targeting drug-resistant MABc infections, including biofilm-associated infections. Our results, among the first from Poland, highlight the critical need for incorporating novel agents such as bedaquiline into therapeutic strategies against this difficult-to-treat pathogen. Full article
Show Figures

Graphical abstract

20 pages, 863 KiB  
Review
A Review of the Ethnomedicine, Phytochemistry, Pharmacology and Toxicological Studies on Ptaeroxylon obliquum (Thunb.) Radlk. (Rutaceae)
by Ntanganedzeni Makumbane, Sanah Malomile Nkadimeng, Edward Thato Khunoana and Thanyani Emelton Ramadwa
Plants 2025, 14(12), 1746; https://doi.org/10.3390/plants14121746 - 6 Jun 2025
Viewed by 620
Abstract
Ptaeroxylon obliquum (Thunb.) Radlk. (Rutaceae) is traditionally used for a range of purposes, including ethnoveterinary medicine and to treat various human ailments such as tuberculosis, inflammatory diseases, and bacterial and fungal infections. This review aims to comprehensively summarize the traditional uses, phytochemistry, toxicology, [...] Read more.
Ptaeroxylon obliquum (Thunb.) Radlk. (Rutaceae) is traditionally used for a range of purposes, including ethnoveterinary medicine and to treat various human ailments such as tuberculosis, inflammatory diseases, and bacterial and fungal infections. This review aims to comprehensively summarize the traditional uses, phytochemistry, toxicology, in silico, and pharmacological activities of P. obliquum and discuss the advances made to date. The phytochemistry of P. obliquum revealed the abundance of secondary metabolites such as coumarins and chromones, essential oils, and several other classes of bioactive compounds. A total of 80 secondary metabolites have been reported from this plant species. In vitro studies on P. obliquum explored its therapeutic potential and reported pharmacological properties such as antifungal, antibacterial, antiparasitic, antimycobacterial, anti-inflammatory, and antiproliferative activities. This review highlights the diversity of the medicinal use of P. obliquum and encourages its preservation. Future research should focus on the efficacy of P. obliquum’s most promising bioactive compounds, and the ADME (absorption, distribution, metabolism, and excretion) pharmacological activities may help determine therapeutic potential in in vivo animal models and validate the wide range of traditional uses of P. obliquum. Full article
(This article belongs to the Special Issue Phytochemistry, Pharmacology, and Toxicity of Medicinal Plants)
Show Figures

Figure 1

10 pages, 1058 KiB  
Case Report
The Underestimated Threat—Mycobacterium Genavense Infection: A Case Report
by Jannik Sonnenberg, Gert Gabriels, Ioana Diana Olaru, Sebastian Mühl, Julia Fischer, Hermann Pavenstädt, Jonel Trebicka, Kai-Henrik Peiffer and Phil-Robin Tepasse
Infect. Dis. Rep. 2025, 17(3), 60; https://doi.org/10.3390/idr17030060 - 1 Jun 2025
Viewed by 522
Abstract
Background/Objectives: Nontuberculous mycobacteria (NTM) represent a heterogeneous group of pathogens with increasing global prevalence and significant geographical variation in species distribution. NTM infections, often affecting immunocompromised individuals, are difficult to diagnose due to nonspecific clinical presentations and laboratory findings. This case study presents [...] Read more.
Background/Objectives: Nontuberculous mycobacteria (NTM) represent a heterogeneous group of pathogens with increasing global prevalence and significant geographical variation in species distribution. NTM infections, often affecting immunocompromised individuals, are difficult to diagnose due to nonspecific clinical presentations and laboratory findings. This case study presents a rare extrapulmonary NTM infection in a 73-year-old man, initially misdiagnosed as sarcoidosis, highlighting the diagnostic and therapeutic challenges posed by such infections. Methods: The patient, a pigeon fancier, presented with recurrent fever and pancytopenia. Extensive diagnostics included blood cultures, bone marrow aspiration, and histopathology. Initial cultures and serological tests remained negative. Results: Bone marrow aspiration revealed epithelioid granulomas, initially leading to the provisional diagnosis of sarcoidosis. However, after six weeks, M. genavense was isolated from mycobacterial blood cultures from bone marrow aspirant. Antimicrobial therapy with azithromycin, rifampicin, and ethambutol was initiated. Following the initiation of appropriate antimycobacterial therapy, the patient developed immune reconstitution inflammatory syndrome (IRIS), which was managed with supportive care. The patient’s condition improved, and no further febrile episodes occurred post-treatment, marking the successful conclusion of NTM therapy. Conclusions: This case underscores the diagnostic complexity of extrapulmonary NTM infections, particularly in immunocompromised patients. Misdiagnosis can delay appropriate treatment. M. genavense, though rare, should be considered in patients with a fever of unknown origin, especially with a background of immunosuppression. Prompt mycobacterial testing and tailored antibiotic therapy are crucial to improving outcomes in NTM infections. Full article
(This article belongs to the Section Tuberculosis and Mycobacteriosis)
Show Figures

Figure 1

21 pages, 3061 KiB  
Article
Design, Synthesis, and In Vitro Evaluation of 4-(Arylchalcogenyl)methyl)-1H-1,2,3-triazol-1-yl-menadione: Exploring Their Potential Against Tuberculosis
by Nathália L. B. Santos, Luana S. Gomes, Ruan C. B. Ribeiro, Alcione S. de Carvalho, Maria Cristina S. Lourenço, Laís Machado Marins, Sandy Polycarpo Valle, Thiago H. Doring, Adriano D. Andricopulo, Aldo S. de Oliveira, Vitor F. Ferreira, Fernando de C. da Silva, Luana da Silva Magalhães Forezi and Vanessa Nascimento
Pharmaceuticals 2025, 18(6), 797; https://doi.org/10.3390/ph18060797 - 26 May 2025
Viewed by 753
Abstract
Background/Objectives: In this study, a novel series of 4-(arylchalcogenyl)methyl)-1H-1,2,3-Triazol-1-yl-menadione derivatives were synthesized to explore their potential as new antituberculosis (anti-TB) agents. Selenium-containing compounds are known for their significant antimycobacterial activity, which motivated their inclusion in the design. Methods: The target compounds were synthesized [...] Read more.
Background/Objectives: In this study, a novel series of 4-(arylchalcogenyl)methyl)-1H-1,2,3-Triazol-1-yl-menadione derivatives were synthesized to explore their potential as new antituberculosis (anti-TB) agents. Selenium-containing compounds are known for their significant antimycobacterial activity, which motivated their inclusion in the design. Methods: The target compounds were synthesized via a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, affording yields ranging from 34% to 93%. All compounds were evaluated in vitro for anti-TB activity against Mycobacterium tuberculosis H37Rv (ATCC 27294), as well as a drug-resistant strain (T113/09). Results: Several selenium-containing derivatives exhibited promising activity. Compounds 9b and 9g were equipotent to the first-line anti-TB drug, and one compound surpassed its activity. Notably, compounds 9a, 9b, 9g, and 9h also showed efficacy against the INH- and RIF-resistant Mtb strain T113/09. Conclusions: The efficacy of selenium-containing triazole-menadione hybrids against both sensitive and resistant Mtb strains highlight their potential as candidates for addressing antimicrobial resistance in TB treatment. Further investigations are required to understand their mechanisms of action and assess their in vivo therapeutic potential.. Full article
Show Figures

Figure 1

26 pages, 6425 KiB  
Review
Review of Recent Advances in Thiazolidin-4-One Derivatives as Promising Antitubercular Agents (2021–Present)
by Wiktoria Drzał and Nazar Trotsko
Molecules 2025, 30(10), 2201; https://doi.org/10.3390/molecules30102201 - 17 May 2025
Viewed by 1052
Abstract
Tuberculosis (TB) remains one of the leading causes of mortality worldwide, exacerbated by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains. In the pursuit of novel therapeutic strategies, thiazolidin-4-one derivatives have gained significant attention due to their structural diversity [...] Read more.
Tuberculosis (TB) remains one of the leading causes of mortality worldwide, exacerbated by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains. In the pursuit of novel therapeutic strategies, thiazolidin-4-one derivatives have gained significant attention due to their structural diversity and broad-spectrum biological activities. This review provides a comprehensive summary of recent advances (2021–present) in the synthesis, structure–activity relationship (SAR), and mechanisms of action of thiazolidin-4-one derivatives as promising antitubercular agents. A detailed discussion of synthetic pathways is presented, including classical and multi-component reactions leading to various subclasses such as thiazolidine-2,4-diones, rhodanines, and pseudothiohydantoins. The SAR analysis highlights key functional groups that enhance antimycobacterial activity, such as halogen substitutions and heterocyclic linkers, while molecular docking and in vitro studies elucidate interactions with key Mtb targets including InhA, MmpL3, and DNA gyrase. Several compounds demonstrate potent inhibitory effects with MIC values lower than or comparable to first-line TB drugs, alongside favorable cytotoxicity profiles. These findings underscore the potential of thiazolidin-4-one scaffolds as a valuable platform for the development of next-generation antitubercular therapeutics. Full article
(This article belongs to the Special Issue Design, Synthesis, and Analysis of Potential Drugs, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 6098 KiB  
Article
Secondary Metabolites from a New Antibiotic-Producing Endophytic Streptomyces Isolate Inhibited Pathogenic and Multidrug-Resistant Mycobacterium tuberculosis Strains
by Govinda Raju Vadankula, Arshad Rizvi, Haider Ali, Rakhi Khunjamayum, V. V. Ramprasad Eedara, Vijay Nema, Debananda Singh Ningthoujam, Katragadda Suresh Babu, Prakasham Reddy Shetty, Shekhar C. Mande and Sharmistha Banerjee
Trop. Med. Infect. Dis. 2025, 10(5), 117; https://doi.org/10.3390/tropicalmed10050117 - 23 Apr 2025
Cited by 1 | Viewed by 1164
Abstract
The long regimen of drug therapy, the emergence of drug-resistance (DR), and infections with non-tuberculous mycobacteria (NTMs) are alarming challenges in controlling tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (M.tb), necessitating the pursuit of new, broad-spectrum anti-mycobacterials. With more than [...] Read more.
The long regimen of drug therapy, the emergence of drug-resistance (DR), and infections with non-tuberculous mycobacteria (NTMs) are alarming challenges in controlling tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (M.tb), necessitating the pursuit of new, broad-spectrum anti-mycobacterials. With more than two-thirds of the clinically useful antibiotics originating from the bacterial phylum Actinomycetota, and their enormous diversity in India, we explored atypical environments for new bacterial strains with potential anti-M.tb activity. In this study, we the examined the secondary metabolites of soil and endophytic bacterial isolates from the wetland niches of Manipur, India, and determined their anti-mycobacterial properties using viability assays. The ethyl acetate culture filtrate extracts of one of the isolates, named Streptomyces sp. SbAr007, showed broad-spectrum anti-mycobacterial activity against laboratory M.tb strains H37Ra and H37Rv, a clinical drug-resistant M.tb and non-tuberculous mycobacteria (NTM). The isolate was characterized for its phenotype and genetic identity, which indicated its closeness to Streptomyces samsunensis, Streptomyces malaysiensis, and Streptomyces solisilvae. Further, macrophage infection assays showed that the extracts could effectively control the intracellular mycobacterial growth but had negligible cytotoxicity to PBMCs from healthy donors. LC-MS identified an unusual combination of antibiotics in these culture filtrate extracts, which can be further explored for specific active molecules or as a formulation against DR-TB. Full article
Show Figures

Figure 1

19 pages, 3154 KiB  
Case Report
Detection of a Mixed-Strain Infection with Drug- and Multidrug-Resistant Mycobacterium avium Subspecies hominissuis in a Dog with Generalized Lymphadenomegaly
by Cinzia Marianelli, Angelo Leonori, Romana Stecco and Carlo Giannantoni
Antibiotics 2025, 14(4), 416; https://doi.org/10.3390/antibiotics14040416 - 19 Apr 2025
Viewed by 613
Abstract
Background Members of the Mycobacterium avium complex (MAC) have been documented to cause severe and disseminated infections in dogs, although such cases are sporadically reported. In this study, a comprehensive account of a rare case of generalised lymphadenomegaly caused by a mixed-strain infection [...] Read more.
Background Members of the Mycobacterium avium complex (MAC) have been documented to cause severe and disseminated infections in dogs, although such cases are sporadically reported. In this study, a comprehensive account of a rare case of generalised lymphadenomegaly caused by a mixed-strain infection with drug- and multidrug-resistant Mycobacterium avium subspecies hominissuis (Mah) in a Maremma sheepdog is presented. Methods Laboratory investigations, as well as the monitoring of the clinical signs displayed by the animal, were conducted throughout the course of a two-year drug therapy (based on rifampicin, azithromycin, and ciprofloxacin) and a two-year post-treatment follow-up period, until the death of the dog. Laboratory examinations included both solid and broth cultures from fine-needle aspiration samples of lymph nodes, molecular typing by 8-locus MIRUVNTR analysis and SNPs typing of five genetic regions (gyrB, rpsA, 3′hsp65, ITS and rpoB), and drug susceptibility testing towards seven antimycobacterial drugs. Results The results indicated the presence of two distinct genotypes of Mah, which exhibited different phenotypic characteristics, such as different drug susceptibility profiles and growth abilities in broth and solid media, suggesting a mixed-strain infection. Resistances to ethambutol alone, to ethambutol and clarithromycin, and to ethambutol, clarithromycin, rifampicin, and doxycycline were detected over the study. Conclusions Although the Mah strains isolated during the course of therapy showed sensitivity to the regiment, the complete eradication of the infection was never achieved. It has been hypothesised that the presence of drug-resistant and multidrug-resistant Mah strains in the animal may have been established at the onset of the infection or soon thereafter. The exposure to therapy has been suggested as a potential factor that could have favoured the growth of resistant strains, thereby rendering the therapy ineffective. The implications that the distinct phenotypic and genotypic profiles of Mah described here may have had for disease dynamics and control are discussed. Full article
Show Figures

Figure 1

19 pages, 3255 KiB  
Review
Insights into Active Site Cysteine Residues in Mycobacterium tuberculosis Enzymes: Potential Targets for Anti-Tuberculosis Intervention
by Abayomi S. Faponle, James W. Gauld and Sam P. de Visser
Int. J. Mol. Sci. 2025, 26(8), 3845; https://doi.org/10.3390/ijms26083845 - 18 Apr 2025
Viewed by 668
Abstract
Cysteine, a semi-essential amino acid, is found in the active site of a number of vital enzymes of the bacterium Mycobacterium tuberculosis (Mtb) and in particular those that relate to its survival, adaptability and pathogenicity. Mtb is the causative agent of [...] Read more.
Cysteine, a semi-essential amino acid, is found in the active site of a number of vital enzymes of the bacterium Mycobacterium tuberculosis (Mtb) and in particular those that relate to its survival, adaptability and pathogenicity. Mtb is the causative agent of tuberculosis, an infectious disease that affects millions of people globally. Common anti-tuberculosis targets are focused on immobilizing a vital cysteine amino acid residue in enzymes that plays critical roles in redox and non-redox catalysis, the modulation of the protein, enzyme activity, protein structure and folding, metal coordination, and posttranslational modifications of newly synthesized proteins. This review examines five Mtb enzymes that contain an active site cysteine residue and are considered as key targets for anti-tuberculosis drugs, namely alkyl hydroperoxide reductase (AhpC), dihydrolipoamide dehydrogenase (Lpd), aldehyde dehydrogenase (ALDH), methionine aminopeptidase (MetAP) and cytochromes P450. AhpC and Lpd protect Mtb against oxidative and nitrosative stress, whereas AhpC neutralizes peroxide/peroxynitrite substrates with two active site cysteine residues. Mtb ALDH detoxifies aldehydes, using a nucleophilic active site cysteine to form an oxyanion thiohemiacetal intermediate, whereas MtMetAP’s active site cysteine is essential for substrate recognition. The P450s metabolize various endogenous and exogenous compounds. Targeting these critical active site cysteine residues could disrupt enzyme functions, presenting a promising avenue for developing anti-mycobacterial agents. Full article
Show Figures

Figure 1

20 pages, 4379 KiB  
Article
Dual GSK-3β/HDAC Inhibitors Enhance the Efficacy of Macrophages to Control Mycobacterium tuberculosis Infection
by Sadaf Kalsum, Ruilan Xu, Mira Akber, Shengjie Huang, Maria Lerm, Yuqing Chen, Magda Lourda, Yang Zhou and Susanna Brighenti
Biomolecules 2025, 15(4), 550; https://doi.org/10.3390/biom15040550 - 9 Apr 2025
Viewed by 880
Abstract
Multitarget drug discovery, including host-directed therapy, is particularly promising for tuberculosis (TB) due to the resilience of Mycobacterium tuberculosis (Mtb) as well as the complexity of the host’s immune response. In this proof-of-concept study, we used high-content imaging to test a novel panel [...] Read more.
Multitarget drug discovery, including host-directed therapy, is particularly promising for tuberculosis (TB) due to the resilience of Mycobacterium tuberculosis (Mtb) as well as the complexity of the host’s immune response. In this proof-of-concept study, we used high-content imaging to test a novel panel of dual glycogen synthase kinase 3 beta (GSK-3β) and histone deacetylase (HDAC) 1 and 6 inhibitor candidates for their efficacy in reducing the growth of green fluorescent protein (GFP)-expressing mycobacteria in human primary macrophages. We demonstrate that all ten test compounds, also including the GSK-3β inhibitor SB415286, exhibit an antimycobacterial effect of 20–60% at low micromolar doses and are non-toxic to host cells. Mtb growth showed a positive correlation with the respective 50% inhibitory concentration (IC50) values of GSK-3β, HDAC1, and HDAC6 in each compound, indicating that compounds with a potent IC50 value for HDAC1, in particular, corresponded to higher antimycobacterial activity. Furthermore, the results from multiparametric flow cytometry and a customized multiplex RNA array demonstrated that SB415286 and selected compounds, C02 and C06, could modulate immune polarization and inflammation in Mtb-infected macrophages involving an enhanced expression of CCL2, IL-10 and S100A9, but a decrease in inflammatory mediators including COX-2, TNF-α, and NFκB. These data suggest that GSK-3β inhibition alone can decrease the intracellular growth of mycobacteria and regulate macrophage inflammation, while dual GSK-3β/HDAC inhibitors enhance this efficacy. Accordingly, the tailored design of dual GSK-3β/HDAC inhibitors could represent an innovative approach to host-directed therapy in TB. Full article
(This article belongs to the Special Issue Tuberculosis: Immunopathogenesis and Therapeutic Strategies)
Show Figures

Graphical abstract

9 pages, 265 KiB  
Opinion
Proposing Bromo-Epi-Androsterone (BEA) for Stiff Person Syndrome (SPS)
by Coad Thomas Dow
Microorganisms 2025, 13(4), 824; https://doi.org/10.3390/microorganisms13040824 - 5 Apr 2025
Cited by 1 | Viewed by 793
Abstract
SPS is characterized by progressive spasmodic muscular rigidity. SPS is thought to be an autoimmune disease with a prominent feature of antibodies against glutamic acid decarboxylase (GAD). GAD is responsible for the enzymatic conversion of glutamic acid (glutamate) into the inhibitory neurotransmitter gamma-aminobutyric [...] Read more.
SPS is characterized by progressive spasmodic muscular rigidity. SPS is thought to be an autoimmune disease with a prominent feature of antibodies against glutamic acid decarboxylase (GAD). GAD is responsible for the enzymatic conversion of glutamic acid (glutamate) into the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Reduced GABA activity leads to increased excitability in the central nervous system, resulting in muscle rigidity and spasms characteristic of SPS. While SPS is rare, anti-GAD antibodies seen in SPS are also seen in the much more common autoimmune disease, type 1 diabetes (T1D). There is evolving research showing that the anti-GAD antibodies of T1D are produced in response to the presence of mycobacterial heat shock protein 65 (mHSP65), and the mHSP65 is produced in response to an occult infection by a bacterium, Mycobacterium avium subspecies Paratuberculosis (MAP). Humans are broadly exposed to MAP in food, water, and air. There are linear and conformational similarities between the epitopes of GAD and mHSP65. This article proposes that MAP is also an infectious trigger for SPS. Dehydroepiandrosterone (DHEA) is a principal component of the steroid metabolome; it plateaus in young adults and then steadily declines. Bromo-epi-androsterone (BEA) is a potent synthetic analog of DHEA; unlike DHEA, it is non-androgenic, non-anabolic, and an effective modulator of immune dysregulation. BEA is also an anti-infective agent and has been shown to benefit mycobacterial infections, including tuberculosis and leprosy. With the immune stabilizing capacity of BEA as well as its anti-mycobacterial properties, there is reason to believe that a randomized clinical trial with BEA may be beneficial for SPS. Full article
(This article belongs to the Special Issue Advances in Human Infection)
24 pages, 7266 KiB  
Article
A Simple In Vitro Method to Determine Bactericidal Activity Against Mycobacterium abscessus Under Hypoxic Conditions
by Ruth Feilcke, Robert Eckenstaler, Markus Lang, Adrian Richter and Peter Imming
Antibiotics 2025, 14(3), 299; https://doi.org/10.3390/antibiotics14030299 - 13 Mar 2025
Viewed by 995
Abstract
Background/Objectives: Non-replicating persisters (NRPs) of Mycobacterium abscessus are a bacterial subpopulation that can survive in the host under unfavorable conditions, such as hypoxia or nutrient starvation. The eradication of these bacteria is difficult, which is one reason for the long treatment duration [...] Read more.
Background/Objectives: Non-replicating persisters (NRPs) of Mycobacterium abscessus are a bacterial subpopulation that can survive in the host under unfavorable conditions, such as hypoxia or nutrient starvation. The eradication of these bacteria is difficult, which is one reason for the long treatment duration and treatment failure. The drug discovery process should therefore contain methods to screen activity against NRPs. Methods: A hypoxic environment is used to generate NRPs of M. abscessus that are termed low-oxygen persisters (LOPs). For this, an oxidation process is used to transition a replicating culture of M. abscessus distributed in microtiter plates within a sealable box into LOPs. Colony counting, automated object counting, bactericidal activity determination of known agents, and confocal laser scanning microscopy are used to study the obtained culture. Results: The obtained culture shows typical attributes of non-replicating cells, such as significantly reduced replication, the reversibility of the LOP state under aerobic conditions, delayed regrowth on solid medium, altered morphological patterns on a single-cell level, and phenotypical resistance against a variety of clinically relevant antimycobacterial compounds. The study reveals metronidazole and niclosamide as bactericidal against M. abscessus LOPs. These compounds can be used as LOP verification compounds within the described model. Conclusions: Our model is easily implemented and quickly identifies compounds that are inactive under hypoxic conditions. It can therefore accelerate the identification of clinically effective antimycobacterial drug substances, and can be a helpful tool during the drug development process. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

17 pages, 1414 KiB  
Article
Antimicrobial and Anticancer Potential of Polyketides Isolated from the Caribbean Marine Sponge Plakortis halichondrioides
by Carlos Jiménez-Romero, Luis A. Amador, Gabriel Castro-Falcón and Abimael D. Rodríguez
Drugs Drug Candidates 2025, 4(1), 6; https://doi.org/10.3390/ddc4010006 - 15 Feb 2025
Viewed by 810
Abstract
Background/Objectives: The marine sponge Plakortis halichondrioides is notable for its capacity to accumulate a large array of secondary metabolites. The present research aims at discovering new secondary metabolites from P. halichondrioides with potential applications in medicine. Methods: Plakortilactone (1) and seco [...] Read more.
Background/Objectives: The marine sponge Plakortis halichondrioides is notable for its capacity to accumulate a large array of secondary metabolites. The present research aims at discovering new secondary metabolites from P. halichondrioides with potential applications in medicine. Methods: Plakortilactone (1) and seco-plakortide F acid (2), two new polyketides, along with known manadodioxan D (3), 13-oxo-plakortide F (4), plakortide F (5), and manadodioxan E (6), were isolated from P. halichondrioides. We achieved the structural elucidation of 1 and 2 using modern spectroscopic methods. The relative stereochemistry of 1 was proposed on the basis of 1D- and 2D-NMR data in combination with molecular modeling studies. Additionally, the absolute configuration of 2 was established through chemical correlation to 5. We screened some of the isolated compounds against the malaria parasite Plasmodium falciparum 3D7 non-resistant (wild-type resistant) strain, the tuberculosis bacterium Mycobacterium tuberculosis, the prostate cancer cell line DU-145, and the melanoma cell line A-2058. Results: minimal activity was detected for 2 against these cancer cells. In contrast, 3 and 4 displayed activity against DU-145 cells with IC50 values of 1.6 µg/mL and 4.5 µg/mL, respectively, and A-2058 cells with IC50s of 2.6 µg/mL and 7.7 µg/mL, respectively. In the antiplasmodial activity assay 3 appeared more active (IC50 = 1.7 µg/mL) than 4 (IC50 = 3.1 µg/mL). Meanwhile, 2 displayed only moderate activity (IC50 = 39.3 µg/mL). In the antimycobacterial activity assay 2 exhibited moderate inhibition (MIC = 75.1 µg/mL). In contrast, a 1:1 mixture of 3 and 4 demonstrated higher activity (MIC = 26.3 µg/mL). Conclusions: the biological activity data together with ADMET predictions indicated favorable pharmacokinetic properties for 3. Full article
(This article belongs to the Collection Chirality in Drugs and Drug Candidates)
Show Figures

Graphical abstract

Back to TopTop