Review of Recent Advances in Thiazolidin-4-One Derivatives as Promising Antitubercular Agents (2021–Present)
Abstract
:1. Introduction
2. Methodology
3. Main Pathways for Synthesis of Thiazolidin-4-one Ring
4. Structure–Activity Relationship (SAR)
4.1. 2-Alkyl/Arylthiazolidin-4-ones
4.2. 2-Iminothiazolidin-4-ones (Pseudothiohydantoins)
4.3. Thiazolidine-2,4-diones
4.4. 2-Thioxothiazolidin-4-ones (Rhodanines)
5. Mechanism of Action
5.1. Enoyl-Acyl Carrier Protein Reductase (InhA)
5.2. Mycobacterial Membrane Protein Large 3 (MmpL3)
5.3. DNA Gyrase
5.4. Other Promising Targets
6. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMP | adenosine monophosphate |
ATP | adenosine triphosphate |
CA | carbonic anhydrase |
Dev/DosR | DevR/DosR dormancy regulator |
DMAD | dimethyl acetylenedicarboxylate |
DNA | deoxyribonucleic acid |
DprE1 | decaprenylphosphoryl-β-D-ribose 2′-oxidase |
FadD32 | fatty acid degradation protein D32 |
FICI | fractional inhibitory concentration index |
HadAB | (3R)-hydroxyacyl-ACP dehydratase heterodimer |
HEK-293 | human embryonic kidney cell line |
HIV | human immunodeficiency virus |
IC50 | half maximal inhibitory concentration |
InhA | enoyl-acyl carrier protein reductase |
KasA | β-ketoacyl-acyl carrier protein synthase |
Ki | inhibition constant |
MDR | multidrug-resistant |
MIC | minimum inhibitory concentration |
MmpL3 | mycobacterial membrane protein large 3 |
MptpA | Mycobacterium tuberculosis protein tyrosine phosphatase A |
MptpB | Mycobacterium tuberculosis protein tyrosine phosphatase B |
Mtb | Mycobacterium tuberculosis |
MurB | UDP-N-acetylenolpyruvoylglucosamine reductase |
Pks13 | polyketide synthase |
PS | pantothenate synthetase |
PTP1B | protein tyrosine phosphatase 1B |
QSAR | quantitative structure–activity relationship |
RAW 264.7 | adherent cell line isolated from a mouse tumor that was induced by Abelson murine leukemia virus |
SAR | structure–activity relationship |
TB | tuberculosis |
THF | tetrahydrofuran |
TZD | thiazolidine-2,4-dione |
XDR | extensively drug-resistant |
Zmp1 | zinc metalloprotease 1 |
References
- Global Tuberculosis Report 2024; World Health Organization: Geneva, Switzerland, 2024.
- Zhao, R.; Du, B.; Luo, Y.; Xue, F.; Wang, H.; Qu, D.; Han, S.; Heilbronner, S.; Zhao, Y. Antimicrobial and anti-biofilm activity of a thiazolidinone derivative against Staphylococcus aureus in vitro and in vivo. Microbiol. Spectr. 2024, 12, e02327-23. [Google Scholar] [CrossRef]
- Trotsko, N.; Kosikowska, U.; Paneth, A.; Plech, T.; Malm, A.; Wujec, M. Synthesis and antibacterial activity of new thiazolidine-2,4-dione-based chlorophenylthiosemicarbazone hybrids. Molecules 2018, 23, 1023. [Google Scholar] [CrossRef] [PubMed]
- Trotsko, N.; Kosikowska, U.; Paneth, A.; Wujec, M.; Malm, A. Synthesis and antibacterial activity of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moieties. Saudi Pharm. J. 2018, 26, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Mukhrish, Y.E.; Amri, N.J.; Al-humaidi, J.Y.; Oubella, A.; Auhmani, A.; Itto, M.Y.A. Discovery of novel thiazolidinone-1,2,3-triazole hybrids with (D)-limonene skeleton as anticancer agents: Design, synthesis and biological evaluation. J. Mol. Struct. 2024, 1308, 138127. [Google Scholar] [CrossRef]
- Szczepański, J.; Khylyuk, D.; Korga-Plewko, A.; Michalczuk, M.; Mańdziuk, S.; Iwan, M.; Trotsko, N. Rhodanine-piperazine hybrids as potential VEGFR, EGFR, and HER2 targeting anti-breast cancer agents. Int. J. Mol. Sci. 2024, 25, 12401. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, P.; Anjali; Imtiyaz, K.; Rizvi, M.A.; Nath, V.; Kumar, V.; Husain, A.; Amir, M. Design, synthesis, biological assessment and molecular modeling studies of novel imidazothiazole-thiazolidinone hybrids as potential anticancer and anti-inflammatory agents. Sci. Rep. 2024, 14, 8457. [Google Scholar] [CrossRef]
- Trotsko, N.; Przekora, A.; Zalewska, J.; Ginalska, G.; Paneth, A.; Wujec, M. Synthesis and in vitro antiproliferative and antibacterial activity of new thiazolidine-2,4-dione derivatives. J. Enzym. Inhib. Med. Chem. 2018, 33, 17–24. [Google Scholar] [CrossRef]
- Mekhlef, Y.O.; AboulMagd, A.M.; Gouda, A.M. Design, synhtesis, molecular docking, and biological evaluation of novel 2,3-diaryl-1,3-thiazolidine-4-one derivatives as potential anti-inflammatory and cytotoxic agents. Bioorg. Chem. 2023, 133, 106411. [Google Scholar] [CrossRef]
- Haroun, M.; Petrou, A.; Tratrat, C.; Kolokotroni, A.; Fesatidou, M.; Zagaliotis, P.; Gavalas, A.; Venugopala, K.N.; Sreeharsha, N.; Nair, A.B.; et al. Discovery of 5-methylthiazole-thiazolidinone conjugates as potential anti-inflammatory agents: Molecular target indetification and in silico studies. Molecules 2022, 27, 8137. [Google Scholar] [CrossRef]
- Kryshchyshyn, A.; Kaminskyy, D.; Karpenko, O.; Gzella, A.; Grellier, P.; Lesyk, R. Thiazolidinone/thiazole based hybrids—New class of antitrypanosomal agents. Eur. J. Med. Chem. 2019, 174, 292–308. [Google Scholar] [CrossRef]
- Trotsko, N.; Bekier, A.; Paneth, A.; Wujec, M.; Dzitko, K. Synthesis and in vitro anti-Toxoplasma gondii activity of novel thiazolidin-4-one derivatives. Molecules 2019, 24, 3029. [Google Scholar] [CrossRef]
- Trotsko, N. Antitubercular properties of thiazolidin-4-ones—A review. Eur. J. Med. Chem. 2021, 215, 113266. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.S.; Bhole, R.P.; Khedekar, P.B.; Chikhale, R.V. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery. Bioorg. Chem. 2021, 115, 105242. [Google Scholar] [CrossRef] [PubMed]
- Mdluli, K.; Ma, Z. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect. Disord. Drug Targets 2007, 7, 159–168. [Google Scholar] [CrossRef]
- Shao, M.; McNeil, M.; Cook, G.M.; Lu, X. MmpL3 inhibitors as antituberculosis drugs. Eur. J. Med. Chem. 2020, 200, 112390. [Google Scholar] [CrossRef] [PubMed]
- Bolla, J.R. Targeting MmpL3 for anti-tuberculosis drug development. Biochem. Soc. Trans. 2020, 48, 1463–1472. [Google Scholar] [CrossRef]
- Seboletswe, P.; Cele, N.; Singh, P. Thiazolidinone-heterocycle frameworks: A concise review of their pharmacological significance. ChemMedChem 2023, 18, e202200618. [Google Scholar] [CrossRef]
- Manjal, S.K.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem. 2017, 75, 406–423. [Google Scholar] [CrossRef]
- Trotsko, N. Thiazolidin-4-ones as a promising scaffold in the development of antibiofilm agents—A review. Int. J. Mol. Sci. 2024, 25, 325. [Google Scholar] [CrossRef]
- Mech, D.; Kurowska, A.; Trotsko, N. The bioactivity of thiazolidin-4-ones: A short review of the most recent studies. Int. J. Mol. Sci. 2021, 22, 11533. [Google Scholar] [CrossRef]
- Gupta, S.; Jha, S.; Rani, S.; Arora, P.; Kumar, S. Medicinal perspective of 2,4-thiazolidinediones derivatives: An insight into recent advancements. ChemistryOpen 2024, 13, e202400147. [Google Scholar] [CrossRef] [PubMed]
- Tarasevicius, E.L. Synthesis of 3-furfurylrhodanine and its 5-arylidene derivatives. Farmatsevtychnyi Zhurnal 1966, 6, 11–14. [Google Scholar]
- Yakubich, V.I.; Gritsyuk, L.V. Synthesis of methionine-based rhodanines. Farmatsevtychnyi Zhurnal 1984, 1, 40–43. [Google Scholar]
- Yakubich, V.I.; Fedirko, Y.M. Synthesis of asparagine acid-based rhodanines. Farmatsevtychnyi Zhurnal 1983, 5, 58–60. [Google Scholar]
- Hanefeld, W.; Jalili, M.A. Synthese und reaktionen von 3-aminorhodaninen. Arch. Pharm. 1987, 320, 323–337. [Google Scholar] [CrossRef]
- Kinugawa, J.; Nagase, H. 2-Thioxo-4-thiazolidinone-5-acetic Acid Derivatives. JP 41016285 B 14 September 1966. Available online: https://scifinder-n.cas.org/searchDetail/reference/6827c08638bc51022663f787/referenceDetails (accessed on 16 May 2025).
- Kandeel, K.A.; Youssef, A.S.A. Reaction of 5-aroylmethylene-3-benzyl-4-oxo-2-thioxo-1,3-thiazolidines with nitrile oxides. Molecules 2001, 6, 510–518. [Google Scholar] [CrossRef]
- Nagase, H. Fungicides XXII. Reaction of dimethyl acetylenedicarboxylate with dithiocarbamates, thiolcarbamates, thiosemicarbazides, and thiosemicarbazones. Chem. Pharm. Bull. 1973, 21, 279–286. [Google Scholar] [CrossRef]
- Carradori, S.; Secci, D.; Bizzarri, B.; Chimenti, P.; De Monte, C.; Guglielmi, P.; Campestre, C.; Rivanera, D.; Bordon, C.; Jones-Brando, L. Synthesis and biological evaluation of anti-Toxoplasma gondii activity of a novel scaffold of thiazolidinone derivatives. J. Enzym. Inhib. Med. Chem. 2017, 32, 746–758. [Google Scholar] [CrossRef]
- D’Ascenzio, M.; Bizzarri, B.; De Monte, C.; Carradori, S.; Bolasco, A.; Secci, D.; Rivanera, D.; Faulhaber, N.; Bordon, C.; Jones-Brando, L. Design, synthesis and biological characterization of thiazolidin-4-one derivatives as promising inhibitors of Toxoplasma gondii. Eur. J. Med. Chem. 2014, 86, 17–30. [Google Scholar] [CrossRef]
- Pan, B.; Huang, R.-Z.; Han, S.-Q.; Qu, D.; Zhu, M.-L.; Wei, P.; Ying, H.-J. Design, synthesis, and antibiofilm activity of 2-arylimino-3-aryl-thiazolidine-4-ones. Bioorg. Med. Chem. Lett. 2010, 20, 2461–2464. [Google Scholar] [CrossRef]
- Mushtaque, M.; Avecilla, F.; Azam, A. Synthesis, characterization and structure optimization of a series of thiazolidinone derivatives as Entamoeba histolytica inhibitors. Eur. J. Med. Chem. 2012, 55, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Arakelian, A.N.; Dunn, H.; Grieshammer, J.L.L.; Coleman, L.E. 2-Imino-4-oxo-5-thiazolidineacetic acid and its derivatives. J. Org. Chem. 1960, 25, 465–467. [Google Scholar] [CrossRef]
- Jangale, A.D.; Dalal, D.K. Highly efficient, combinatorial and catalyst-free approach for the synthesis of 2-benzylidenehydrazono-3-phenyl-4-thiazolidinone-5-acetates in ethanol. ChemistrySelect 2019, 4, 1323–1329. [Google Scholar] [CrossRef]
- Hosseinzadeh, N.; Hasani, M.; Foroumadi, A.; Nadsri, H.; Emami, S.; Samadi, N.; Faramarzi, M.A.; Saniee, P.; Siavoshi, F.; Abadian, N.; et al. 5-Nitro-heteroarylidene analogs of 2-thiazolyliminol-4-thiazolidinones as a novel series of antibacterial agents. Med. Chem. Res. 2013, 22, 2293–2302. [Google Scholar] [CrossRef]
- Nektegayev, I.; Lesyk, R. 3-Oxyarylthiazolidones-4 and their choleretic activity. Sci. Pharm. 1999, 67, 227–230. [Google Scholar]
- Holmberg, B.; Psilanderhielm, B. Uber einige Amidderivate von Thiocarbonglycolsauren. Chem. Zentr. 1911, Bd.I, 296–297. [Google Scholar]
- Nencki, M. Uber die Einwirkung der Monochloressigsaure auf Sulfocyansaure und Salze. J. Prakt. Chem. 1877, 16, 1–17. [Google Scholar] [CrossRef]
- Minka, A.F. Synthesis and study of 5-alkyl derivatives of rhodanine. Farmatsevtychnyi Zhurnal 1963, 5, 32–35. [Google Scholar]
- Kretov, A.E.; Bespalyi, A.S. Thiazolidine derivatives. Zhurnal Obshchei Khimii 1963, 33, 1878–1882. [Google Scholar]
- Andreasch, R. Substituted rhodanines and some of their aldehyde condensation products. XIII. J. Chem. Soc. 1917, 112, 663. [Google Scholar]
- Andreasch, R. New synthesis of 2,4-dioxythiazole and of its 3-phenyl derivative. Monatshefte Chem. 1917, 38, 203–209. [Google Scholar] [CrossRef]
- Abhale, Y.K.; Shinde, A.; Shelke, M.; Nawale, L.; Sarkar, D.; Mhaske, P.C. Synthesis of new 2-(thiazol-4-yl)thiazolidin-4-one derivatives as potential anti-mycobacterial agents. Bioorg. Chem. 2021, 115, 105192. [Google Scholar] [CrossRef] [PubMed]
- Shawky, A.M.; Almalki, F.A.; Abdalla, A.N.; Youssif, B.G.M.; Abdel-Fattah, M.M.; Hersi, F.; El-Sherief, H.A.M.; Ibrahim, N.A.; Gouda, A.M. Discovery and optimization of 2,3-diaryl-1,3-thiazolidin-4-one-based derivatives as potent and selective cytotoxic agents with anti-inflammatory activity. Eur. J. Med. Chem. 2023, 259, 115712. [Google Scholar] [CrossRef] [PubMed]
- Isidor, J.L.; McKee, R.L. Synthesis of 2-methylene-4-thiazolidinones. J. Org. Chem. 1973, 38, 3615–3617. [Google Scholar] [CrossRef]
- Volhard, J. Ueber einige Derivate des Sulfoharnstoffs. J. Prakt. Chem. 1874, 9, 6–30. [Google Scholar] [CrossRef]
- Lozinskii, M.O.; Kukota, S.N.; Pel’kis, P.S. Condensation and cyclization of (arylazo)chloroacetic acids. VIII. New 5-(arylhydrazono)-3-aryl-2-(arylamino)-4-thiazolidones and their oxidation and hydrolysis. Khimiya Geterotsiklicheskikh Soedin. 1971, 3, 171–175. [Google Scholar]
- Turkevich, N.M.; Yakubich, V.I. Synthesis and hydrazinolysis of 3-substituted rhodanines. Khimiya Geterotsiklicheskikh Soedin. 1971, 3, 121–125. [Google Scholar]
- Nomura, M.; Kinoshita, S.; Satoh, H.; Maeda, T.; Murakami, K.; Tsunoda, M.; Miyashi, H.; Awano, K. (3-Substituted benzyl)thiazolidine-2,4-diones as structurally new antihyperglycemic agents. Bioorg. Med. Chem. Lett. 1999, 9, 533–538. [Google Scholar] [CrossRef]
- Turkevich, N.M.; Vvedenskii, V.M.; Petlichnaya, L.M. Substitutions in the azolidine ring. XIII. Method of obtaining pseudothiohydantoin and 2,4-thiazolidinedione. Ukr. Khimicheskii Zhurnal 1961, 27, 680–681. [Google Scholar]
- Lesyk, R.B.; Zimenkovsky, B.S.; Golota, S.M.; Leb’yak, M.M. Synthesis of 2,4-dioxothiazolidine-5-acetic acid and its amides—Perspective synthons for obtaining combinatorial libraries of biologically active substances. Farmatsevtychnyi Zhurnal 2001, 5, 57–63. [Google Scholar]
- Orlinskii, M.M. Recyclization of 2-thioxo-1,3-thiazan-4-one and its derivatives. Zhurnal Org. Khimii 1993, 29, 2323–2324. [Google Scholar]
- Dincel, E.D.; Şatana, D.; Özbey, S.; Ulusoy-Güzeldemirci, N. Synthesis, characterization and antimicrobial evaluation of new 2-(2-thienylcarbonyl)hydrazono-3-alkyl/aryl-4-thiazolidinone and 2-aryl-3-(2-thienylcarbonyl)amino-4-thiazolidinone derivatives. J. Res. Pharm. 2022, 26, 641–654. [Google Scholar] [CrossRef]
- Othman, D.I.A.; Hamdi, A.; Abdel-Aziz, M.M.; Elfeky, S.M. Novel 2-arylthiazolidin-4-one-thiazole hybrids with potent activity against Mycobacterium tuberculosis. Bioorg. Chem. 2022, 124, 105809. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Mital, A.; Akhir, A.; Saxena, D.; Ahmad, M.N.; Dasgupta, A.; Chopra, S.; Jain, R. Pyrrole-thiazolidinone hybrids as a new structural class of broad-spectrum anti-infectives. Eur. J. Med. Chem. 2023, 260, 115757. [Google Scholar] [CrossRef]
- Birgül, S.I.D.; Kumari, J.; Tamhaev, R.; Mourey, L.; Lherbet, C.; Sriram, D.; Akdemir, A.; Küçükgüzel, I. In silico design, synthesis and antitubercular activity of novel 2-acylhydrazono-5-arylmethylene-4-thiazolidinones as enoyl-acyl carrier protein reductase inhibitors. J. Biomol. Struct. Dyn. 2024, 42, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zou, Y.; Chen, X.; Chen, J.; Wang, B.; Tian, J.; Ye, F.; Lu, Y.; Huang, H.; Lu, Y.; et al. Design, synthesis and biological evaljuation of 3-substituted-2-thioxothiazolidin-4-one (rhodanine) derivatives as antitubercular agents against Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur. J. Med. Chem. 2023, 258, 115571. [Google Scholar] [CrossRef]
- Verma, V.A.; Saundane, A.R. Synthesis of some novel 5-(8-substituted-11H-indolo [3,2-c]isoquinolin-5-ylthio)-1′,3′,4′-oxadiazol-2-amines bearing thiazolidinones and azetidinones as potential antimicrobial, antioxidant, antituberculosis, and anticancer agents. Polycycl. Aromat. Compd. 2021, 41, 871–896. [Google Scholar] [CrossRef]
- Verma, V.A.; Saundane, A.R.; Meti, R.S.; Shamrao, R.; Katkar, V. Synthesis, biological evaluation and docking studies of some new indolyl-pyridine containing thiazolidinone and azetidinone analogs. Polycycl. Aromat. Compd. 2022, 42, 1545–1559. [Google Scholar] [CrossRef]
- Alghamdi, S.; Almehmadi, M.M.; Asif, M.; Alshehri, M.M.; Kamal, M. Amtimycobacterial evaluation and microwave-assisted synthesis of N-(5-methyl-4-oxo-2-arylthiazolidin-3-yl) isonicotinamide derivatives. Pharm. Chem. J. 2022, 56, 215–219. [Google Scholar] [CrossRef]
- Dunga, A.K.; Rao Allaka, T.; Shaik, A.; Nemuri, R.; Thandlam, A.K.; Nechipadappu, S.K.; Pothana, P.; Kishore, P.V.N.N. Synthesis of novel antimicrobial indazole-linked 1,2,4-triazolylthiadiazole and 4-thiazolidinone derivatives and study of their molecular modelling. Russ. J. Gen. Chem. 2023, 93, 949–961. [Google Scholar] [CrossRef]
- Chintakunta, R.; Subbareddy, G.V. Synthesis docking studies, characterization and anti-tubercular activity of ofloxacin containing thiazolidinone derivatives. J. Young Pharm. 2022, 14, 77–81. [Google Scholar] [CrossRef]
- Salve, P.S.; Parchure, P.; Araujo, L.; Kavalapure, R.S.; Jalapure, S.S.; Sriram, D.; Krishna, V.S.; Estharla, M.R.; Alegaon, S.G. Design and synthesis of new 3-((7-chloroquinolin-4-yl)amino)thiazolidin-4-one analogs as Mycobacterium tuberculosis DNA gyrase inhibitors. Future J. Pharm. Sci. 2021, 7, 10. [Google Scholar] [CrossRef]
- Alghamdi, S.; Kamal, M.; Asif, M. Antimycobacterial assessment and microwave-assisted synthesis of 2-aryl-3-(4-methylphenylamino)thiazolidin-4-one derivatives. Lett. Org. Chem. 2022, 19, 250–255. [Google Scholar] [CrossRef]
- Bhoge, N.; Magare, B.; Mohite, P. Synthesis and biological evaluation of 3-(benzo[d]thiazol-2-yl)-2-(substituted aryl)thiazolidin-4-one derivatives. Lett. Appl. NanoBioScience 2023, 13, 19. [Google Scholar] [CrossRef]
- Trawally, M.; Demir-Yazici, K.; Dingiş-Birgül, S.I.; Kaya, K.; Akdemir, A.; Güzel-Akdemir, Ö. Mandelic acid-based spirothiazolidinones targeting M. tuberculosis: Synthesis, in vitro and in silico investigations. Bioorg. Chem. 2022, 121, 105688. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Yadava, U.; Sharma, M.I.; Upadhyay, A.; Gupt, M.P.; Dwivedi, A.R.; Khatoon, A. Synthesis, molecular structure investigation, biological evaluation and docking studies of novel spirothiazolidinones. Results Chem. 2023, 5, 100726. [Google Scholar] [CrossRef]
- Moulishankar, A.; Thirugnanasambandam, S. Quantitative structure activity relationship (QSAR) modeling study of some novel thiazolidine-4-one derivatives as potent anti-tubercular agents. J. Recept. Signal Transduct. 2023, 43, 83–92. [Google Scholar] [CrossRef]
- Ahmed, S.; Mital, A.; Akhir, A.; Saxena, D.; Jahan, K.; Dubey, G.; Bharatam, P.V.; Dasgupta, A.; Chopra, S.; Jain, R. Pyrrole-thiazolidin-4-one analogues exhibit promising anti-tuberculosis activity. Asian J. Org. Chem. 2024, 13, e202400054. [Google Scholar] [CrossRef]
- Kumar, V.; Shetty, P.; HS, A.; Chandra, K.S.; Ramu, R.; Patil, S.M.; Baliga, A.; Rai, V.M.; Shenoy, M.S.; Udupi, V.; et al. Potential fluorinated anti-MRSA thiazolidinone derivatives with antibacterial, antitubercular activity and molecular docking studies. Chem. Biodivers. 2022, 19, e202100532. [Google Scholar] [CrossRef]
- Hart, D.; Legoabe, L.J.; Jesumoroti, O.J.; Jordaan, A.; Warner, D.F.; Steventon, R.; Beteck, R.M. Nitrothiazole-thiazolidinone hybrids: Synthesis and in vitro antimicrobial evaluation. Chem. Biodivers. 2022, 19, e202200729. [Google Scholar] [CrossRef]
- Kamat, V.; Poojary, B.; Puthran, D.; Das, V.B.; Kumar, B.K.; Sankaranarayan, M.; Shetye, G.; Ma, R.; Franzblau, S.G.; Nayak, S.P. Synthesis, antimycobacterial, cytotoxicity, anti-inflammatory, in silico studies and molecular dynamics of pyrazole-embedded thiazolidin-4-one hybrids. Arch. Pharm. 2023, 356, e2200444. [Google Scholar] [CrossRef]
- Nayak, S.G.; Poojary, B.; Kamat, V.; Puthran, D. Novel thiazolidin-4-one clubbed thiophene derivatives via Gewald synthesis as anti-tubercular and anti-inflammatory agents. J. Chin. Chem. Soc. 2021, 68, 1116–1127. [Google Scholar] [CrossRef]
- Nefisath, P.; Kumar, V.; Shashiprabha; Patil, S.M.; Ramu, R.; Shradha, S.; Dasappa, J.P. 2,3,5-Trisubstituted thiazolidinone derivatives as potential antimicrobial and antitubercular agents and in silico studies. ChemistrySelect 2024, 9, e202303188. [Google Scholar] [CrossRef]
- Pasha, M.A.; Mondal, S.; Panigrahi, N.; Shetye, G.; Ma, R.; Franzblau, S.G.; Zheng, Y.-T.; Murugesan, S. One-pot synthesis of novel hydrazono-1,3-thiazolidin-4-one derivatives as anti-HIV and anti-tubercular agents: Synthesis, biological evaluation, molecular modelling and admet studies. Curr. HIV Res. 2022, 20, 255–271. [Google Scholar] [CrossRef]
- Younis, M.H.; Mohammed, E.R.; Mohamed, A.R.; Abdel-Aziz, M.M.; Georgey, H.H.; Gawad, N.M.A. Design, synthesis and anti-Mycobacterium tuberculosis evaluation of new thiazolidin-4-one and thiazolo[3,2-a][1,3,5]triazine derivatives. Bioorg. Chem. 2022, 124, 105807. [Google Scholar] [CrossRef] [PubMed]
- Angelova, V.T.; Pencheva, T.; Buyukliev, R.; Yovkova, E.K.; Valkova, I.; Momekov, G.; Vulcheva, V. Antimycobacterial activity, in silico ADME evaluation, and docking study of novel thiazolidinedione and imidazolidinone conjugates. Russ. J. Bioorg. Chem. 2021, 47, 122–133. [Google Scholar] [CrossRef]
- Angelova, V.T.; Valcheva, V.; Vassilev, N.; Buyukliev, R.; Mihaylova, R.; Momekov, G. Synthesis, in vitro antiproliferative and antimycobacterial activity of thiazolidine-2,4-dione and hydantoin derivatives. Bulg. Chem. Commun. 2017, 49, 643–651. [Google Scholar]
- Trotsko, N.; Głogowska, A.; Kaproń, B.; Kozieł, K.; Augustynowicz-Kopeć, E.; Paneth, A. The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: Design, synthesis, biological evaluation, and drug interaction analysis. J. Enzym. Inhib. Med. Chem. 2025, 40, 2442703. [Google Scholar] [CrossRef]
- Dak, M.; Šlachtova, V.; Šebela, M.; Bazgier, V.; Berka, K.; Smiejkowska, N.; Oorts, L.; Cappoen, D.; Brulikova, L. Novel heterocyclic hydroxamates as inhibitors of the mycobacterial zinc metalloprotease Zmp1 to probe its mechanism of function. Eur. J. Med. Chem. 2022, 244, 114831. [Google Scholar] [CrossRef]
- Raghu, M.S.; Kumar, C.B.P.; Yogesh Kumar, K.; Prashanth, M.K.; Alharethy, F.; Jeon, B.-H. Synthesis, biologicalevaluation and molecular docking study of pyrimidine linked thiazolidinedione derivatives as potential antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett. 2024, 103, 129707. [Google Scholar] [CrossRef]
- Maddipatla, S.; Bakchi, B.; Gadhave, R.R.; Ammara, A.; Sau, S.; Rani, B.; Nanduri, S.; Kalia, N.P.; Supuran, C.T.; Yaddanapudi, V.M. Exploring rhodanine linked enamine-carbohydrazide derivatives as mycobacterial carbonic anhydrase inhibitors: Design, synthesis, biological evaluation, and molecular docking studies. Arch. Pharm. 2024, 357, e2400064. [Google Scholar] [CrossRef] [PubMed]
- Chollet, A.; Maveyraud, L.; Lherbet, C.; Bernardes-Genisson, V. An overview on crystal structures of InhA protein: Apo-form, in complex with its natural ligands and inhibitors. Eur. J. Med. Chem. 2018, 146, 318. [Google Scholar] [CrossRef]
- Amado, P.S.M.; Woodley, C.; Cristiano, M.L.S.; O’neill, P.M. Recent advances of DprE1 inhibitors against Mycobacterium tuberculosis: Computational analysis of physicochemical and ADMET properties. ACS Omega 2022, 7, 40659–40681. [Google Scholar] [CrossRef]
- Yadav, S.; Soni, A.; Tanwar, O.; Bhadane, R.; Besra, G.S.; Kawathekar, N. DprE1 Inhibitors: Enduring aspirations for future antituberculosis drug discovery. ChemMedChem 2023, 18, e202300099. [Google Scholar] [CrossRef]
- Liang, W.G.; Mancl, J.M.; Zhao, M.; Tang, W.-J. Structural analysis of Mycobacterium tuberculosis M13 metalloprotease Zmp1 open states. Structure 2021, 29, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Suresh, A.; Srinivasarao, S.; Khetmalis, Y.M.; Nizalapur, S.; Sankaranarayanan, M.; Sekhar, K.V.G.C. Inhibitors of pantothenate synthetase of Mycobacterium tuberculosis—A medicinal chemist perspective. RSC Adv. 2020, 10, 37098. [Google Scholar] [CrossRef]
- Marrakchi, H.; Laneelle, M.-A.; Daffe, M. Mycolic acids: Structures, biosynthesis, and beyond. Chem. Biol. 2014, 21, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.T.; Abramovitch, R.B. Molecular mechanisms of MmpL3 function and inhibition. Microb. Drug Resist. 2023, 29, 190–212. [Google Scholar] [CrossRef]
- Sajid, Z.; Akhtar, T.; Ahmad, K.; Haroon, M. Molecular docking simulation and ADMET/pharmacokinetic screening of newly designed 2-(2-aryl-4-oxo-4,5-dihydrothiazol-5-yl)acetohydrazides as potential antitubercular agents. ChemistrySelect 2024, 9, e202403715. [Google Scholar] [CrossRef]
- Sharma, D.; Sharma, S.; Sinha, N.; Jain, N.; Kumar, A.; Sarkar, A.; Tyagi, J.S.; Gupta, R.K. Novel benzoic thiazolidin-4-one derivatives targeting DevR/DosR dormancy regulator of Mycobacterium tuberculosis. J. Mol. Struct. 2022, 1254, 132278. [Google Scholar] [CrossRef]
Compound | Mycobacterium tuberculosis Strains, MIC (µg/mL) | ||
---|---|---|---|
Drug-Sensitive H37Ra | MDR | XDR | |
40a | 62.5 | >125 | na |
40b | 0.48 | 3.9 | 31.25 |
40c | 31.25 | na | na |
40d | 15.63 | na | na |
40e | 1.95 | 15.63 | >125 |
40f | 15.63 | 125 | na |
40g | 7.81 | 62.5 | na |
40h | 0.12 | 1.95 | 7.81 |
40i | 0.98 | 15.63 | 125 |
40j | 3.9 | 31.25 | na |
40k | 7.81 | 125 | na |
40l | 3.9 | 62.5 | na |
40m | 0.48 | 7.81 | 15.63 |
isoniazid | 0.12 | na | na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drzał, W.; Trotsko, N. Review of Recent Advances in Thiazolidin-4-One Derivatives as Promising Antitubercular Agents (2021–Present). Molecules 2025, 30, 2201. https://doi.org/10.3390/molecules30102201
Drzał W, Trotsko N. Review of Recent Advances in Thiazolidin-4-One Derivatives as Promising Antitubercular Agents (2021–Present). Molecules. 2025; 30(10):2201. https://doi.org/10.3390/molecules30102201
Chicago/Turabian StyleDrzał, Wiktoria, and Nazar Trotsko. 2025. "Review of Recent Advances in Thiazolidin-4-One Derivatives as Promising Antitubercular Agents (2021–Present)" Molecules 30, no. 10: 2201. https://doi.org/10.3390/molecules30102201
APA StyleDrzał, W., & Trotsko, N. (2025). Review of Recent Advances in Thiazolidin-4-One Derivatives as Promising Antitubercular Agents (2021–Present). Molecules, 30(10), 2201. https://doi.org/10.3390/molecules30102201