Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (388)

Search Parameters:
Keywords = antifungal drug targets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1161 KiB  
Review
Antifungal Agents in the 21st Century: Advances, Challenges, and Future Perspectives
by Francesco Branda, Nicola Petrosillo, Giancarlo Ceccarelli, Marta Giovanetti, Andrea De Vito, Giordano Madeddu, Fabio Scarpa and Massimo Ciccozzi
Infect. Dis. Rep. 2025, 17(4), 91; https://doi.org/10.3390/idr17040091 - 1 Aug 2025
Viewed by 200
Abstract
Invasive fungal infections (IFIs) represent a growing global health threat, particularly for immunocompromised populations, with mortality exceeding 1.5 million deaths annually. Despite their clinical and economic burden—costing billions in healthcare expenditures—fungal infections remain underprioritized in public health agendas. This review examines the current [...] Read more.
Invasive fungal infections (IFIs) represent a growing global health threat, particularly for immunocompromised populations, with mortality exceeding 1.5 million deaths annually. Despite their clinical and economic burden—costing billions in healthcare expenditures—fungal infections remain underprioritized in public health agendas. This review examines the current landscape of antifungal therapy, focusing on advances, challenges, and future directions. Key drug classes (polyenes, azoles, echinocandins, and novel agents) are analyzed for their mechanisms of action, pharmacokinetics, and clinical applications, alongside emerging resistance patterns in pathogens like Candida auris and azole-resistant Aspergillus fumigatus. The rise of resistance, driven by agricultural fungicide use and nosocomial transmission, underscores the need for innovative antifungals, rapid diagnostics, and stewardship programs. Promising developments include next-generation echinocandins (e.g., rezafungin), triterpenoids (ibrexafungerp), and orotomides (olorofim), which target resistant strains and offer improved safety profiles. The review also highlights the critical role of “One Health” strategies to mitigate environmental and clinical resistance. Future success hinges on multidisciplinary collaboration, enhanced surveillance, and accelerated drug development to address unmet needs in antifungal therapy. Full article
Show Figures

Figure 1

21 pages, 6211 KiB  
Article
In Silico and In Vitro Potential Antifungal Insights of Insect-Derived Peptides in the Management of Candida sp. Infections
by Catarina Sousa, Alaka Sahoo, Shasank Sekhar Swain, Payal Gupta, Francisco Silva, Andreia S. Azevedo and Célia Fortuna Rodrigues
Int. J. Mol. Sci. 2025, 26(15), 7449; https://doi.org/10.3390/ijms26157449 - 1 Aug 2025
Viewed by 242
Abstract
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the [...] Read more.
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the target-specific binding efficacy of insect-derived antifungal peptides (n = 37) as possible alternatives to traditional antifungal treatments. Using computational methods, namely the HPEPDOCK and HDOCK platforms, molecular docking was performed to evaluate the interactions between selected key fungal targets, lanosterol 14-demethylase, or LDM (PDB ID: 5V5Z), secreted aspartic proteinase-5, or Sap-5 (PDB ID: 2QZX), N-myristoyl transferase, or NMT (PDB ID: 1NMT), and dihydrofolate reductase, or DHFR, of C. albicans. The three-dimensional peptide structure was modelled through the PEP-FOLD 3.5 tool. Further, we predicted the physicochemical properties of these peptides through the ProtParam and PEPTIDE 2.0 tools to assess their drug-likeness and potential for therapeutic applications. In silico results show that Blap-6 from Blaps rhynchopeter and Gomesin from Acanthoscurria gomesiana have the most antifungal potential against all four targeted proteins in Candida sp. Additionally, a molecular dynamics simulation study of LDM-Blap-6 was carried out at 100 nanoseconds. The overall predictions showed that both have strong binding abilities and are good candidates for drug development. In in vitro studies, Gomesin achieved complete biofilm eradication in three out of four Candida species, while Blap-6 showed moderate but consistent reduction across all species. C. tropicalis demonstrated relative resistance to complete eradication by both peptides. The present study provides evidence to support the antifungal activity of certain insect peptides, with potential to be used as alternative drugs or as a template for a new synthetic or modified peptide in pursuit of effective therapies against Candida spp. Full article
Show Figures

Figure 1

34 pages, 2026 KiB  
Review
Review of Applications of Zeolites in Dermatology: Molecular Perspectives and Translational Potentials
by James Curtis Dring, Matthew Kaczynski, Rina Maria Zureikat, Michael Kaczynski, Alicja Forma and Jacek Baj
Int. J. Mol. Sci. 2025, 26(14), 6821; https://doi.org/10.3390/ijms26146821 - 16 Jul 2025
Viewed by 499
Abstract
Zeolites, microporous aluminosilicates with tuneable physicochemical properties, have garnered increasing attention in dermatology due to their antimicrobial, detoxifying, and drug delivery capabilities. This review evaluates the structural characteristics, therapeutic mechanisms, and clinical applications of zeolites—including clinoptilolite, ZSM-5, ZIF-8, and silver/zinc-functionalized forms—across skin infections, [...] Read more.
Zeolites, microporous aluminosilicates with tuneable physicochemical properties, have garnered increasing attention in dermatology due to their antimicrobial, detoxifying, and drug delivery capabilities. This review evaluates the structural characteristics, therapeutic mechanisms, and clinical applications of zeolites—including clinoptilolite, ZSM-5, ZIF-8, and silver/zinc-functionalized forms—across skin infections, wound healing, acne management, and cosmetic dermatology. Zeolites demonstrated broad-spectrum antibacterial and antifungal efficacy, enhanced antioxidant activity, and biocompatible drug delivery in various dermatological models. Formulations such as silver–sulfadiazine–zeolite composites, Zn–clinoptilolite for acne, and zeolite-integrated microneedles offer innovative avenues for targeted therapy. Zeolite-based systems represent a promising shift toward multifunctional, localized dermatologic treatments. However, further research into long-term safety, formulation optimization, and clinical validation is essential to transition these materials into mainstream therapeutic use. Full article
Show Figures

Figure 1

10 pages, 1659 KiB  
Brief Report
Pathogen Enzyme-Mediated Alkoxyamine Homolysis as a Killing Mechanism of Aspergillus fumigatus
by Marion Filliâtre, Pierre Voisin, Seda Seren, Ines Kelkoul, Olivier Glehen, Philippe Mellet, Sophie Thétiot-Laurent, Jean Menotti, Sylvain R. A. Marque, Gérard Audran and Abderrazzak Bentaher
J. Fungi 2025, 11(7), 503; https://doi.org/10.3390/jof11070503 - 4 Jul 2025
Viewed by 486
Abstract
The emergence of antifungal-resistant Aspergillus fumigatus (A. fumigatus) became a serious public health concern, underscoring the need for new effective antifungal agents. Here, we present a strategy based on the in situ generation of radical species that are toxic to the pathogen. The [...] Read more.
The emergence of antifungal-resistant Aspergillus fumigatus (A. fumigatus) became a serious public health concern, underscoring the need for new effective antifungal agents. Here, we present a strategy based on the in situ generation of radical species that are toxic to the pathogen. The synthesis of an alkoxyamine linked to a peptide substrate recognized by A. fumigatus-secreted dipeptidyl peptidase is described. Kinetic experiments show a stable prodrug prior to enzymatic activation. Ensuing peptide cleavage and spontaneous homolysis resulted in the generation of a stable nitroxide and a reactive alkyl radical moiety. Next, the exposure of A. fumigatus spores to the prodrug lead to pathogen growth inhibition in a compound concentration-dependent fashion (e.g., 42% inhibition at 10 µg/L). Importantly, the designed alkoxyamine inhibited not only the growth of a clinical voriconazole-susceptible A. fumigatus strain, but also the growth of a strain resistant to this azole. To determine the antifungal importance of the reactive alkyl radical, its substitution with a non-radical structure did not prevent A. fumigatus growth. Furthermore, the introduction of succinic group in the peptide substrate resulted in the loss of alkoxyamine antifungal properties. Our work reports a novel chemical strategy for antifungal therapy against A. fumigatus based on the pathogen enzyme-mediated generation of toxic radicals. Significantly, these findings are timely since they could overcome the emerged resistance to conventional drugs that are known to target defined pathogen biologic mechanisms such as ergosterol synthesis. Full article
(This article belongs to the Special Issue Fungal Infections and Antifungals)
Show Figures

Graphical abstract

30 pages, 5331 KiB  
Article
Development of a Novel Drug Delivery System “Nanoemulfoam” for Topical Delivery of Terbinafine Hydrochloride as a Repurposed Therapy in Skin Cancer: Formulation, Optimization, In Vitro Characterization, Ex Vivo Transdermal Permeability, Cytotoxicity Studies, and In Silico Assessment
by Abeer A. Musallam, Reem A. Aldeeb, Riham M. Mansour, Manar Abd El-karim Kassem, Doaa Fayez Saeed, Mahmoud A. Mahdy, Rana M. Abdelnaby, Hanan M. Elnahas and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(7), 972; https://doi.org/10.3390/ph18070972 - 27 Jun 2025
Viewed by 455
Abstract
Background: Skin cancer has become a global health issue because of increasing exposure to environmental contaminants and UV radiation. Terbinafine hydrochloride (TRB), a broad-spectrum antifungal medication, has demonstrated notable anti-tumor properties in previous studies; however, its repurposing for skin cancer therapy remains underexplored. [...] Read more.
Background: Skin cancer has become a global health issue because of increasing exposure to environmental contaminants and UV radiation. Terbinafine hydrochloride (TRB), a broad-spectrum antifungal medication, has demonstrated notable anti-tumor properties in previous studies; however, its repurposing for skin cancer therapy remains underexplored. Objective: This study reports for the first time, the development of a new delivery system: a nanoemulsion (NE)–foam hybrid system, i.e., “nanoemulfoam” (NEF), designed to enhance the topical TRB delivery to the skin. The study applied this new hybrid system on TRB for managing skin cancer. Method: The TRB-loaded NEF was produced by loading TRB into a liquid NE. then this was incorporated into a liquid foam base and actuated into foam using a non-propellant mechanism. The NE was developed utilizing peppermint oil as the oil phase and Tween-20/ethanol as the surfactant/co-surfactant combination (Smix). The formulation underwent optimization using the D-optimal design that enabled the simultaneous evaluation of the impact of oil concentration and Tween 20 concentration in the Smix on the particle size (PS), zeta potential (ZP), and dissolution efficiency percent (DE%). Results: The optimal NE formula displayed a small PS of 186.60 ± 2.84 nm, ZP of −13.90 ± 0.99 mV, and DE% of 68.50 ± 1.78% (mean ± SD, n = 3). After incorporation into the foam system, the produced TRB-loaded NEF demonstrated a 7.43-fold increase in the drug transdermal flux in comparison with plain drug foam (p < 0.05). The TRB-loaded NEF showed no signs of inflammation or irritation when applied to abdominal rabbit skin, indicating its safety. The optimum formula exhibited a statistically significant 10-fold increase in cytotoxicity against A-431 skin cancer cells compared to TRB alone, along with a 1.54-fold increase in apoptosis (p < 0.05). Molecular docking studies targeting CDK2, a key regulator of cell proliferation and a known TRB target, revealed that TRB displayed highly favorable binding scores compared to the reference drug. Conclusions: The TRB-loaded NEF represents a promising nanotechnology-based approach for the topical treatment of skin cancer, supporting further investigation toward clinical translation. Full article
Show Figures

Graphical abstract

17 pages, 1584 KiB  
Article
New Therapeutic Options for Fusariosis: A Patent Review (2008–2023)
by Izadora Dillis Faccin, Túlio Máximo Salomé, Gleyce Hellen de Almeida de Souza, Leonardo da Costa Xavier, Izabel Almeida Alves, Vanessa Castro Felix Lima, Fabíola Lucini, Simone Simionatto and Luana Rossato
J. Fungi 2025, 11(6), 463; https://doi.org/10.3390/jof11060463 - 18 Jun 2025
Viewed by 627
Abstract
Fusariosis is an infection caused by the fungus Fusarium spp., which is pathogenic to both plants and humans. The disease presents several clinical manifestations and epidemiological patterns. Current treatment relies on azoles and polyenes, but increasing antifungal resistance requires the exploration of new [...] Read more.
Fusariosis is an infection caused by the fungus Fusarium spp., which is pathogenic to both plants and humans. The disease presents several clinical manifestations and epidemiological patterns. Current treatment relies on azoles and polyenes, but increasing antifungal resistance requires the exploration of new therapeutic options. This study reviewed patents related to the treatment of Fusariosis from the last 15 years (up to June 2023). The search identified 318 patents, categorized by identification code, publication date, type of application and mechanism of action, using the International Patent Classification and Cooperative Patent Classification systems. In addition, we conducted a bibliographic search in the PubMed database using the same criteria to identify the number of scientific articles. Of the 318 patents, 21 targeted Fusarium infections in humans. The years 2014 and 2018 stood out with three patents each, while the same period recorded an average of 58 published articles. The patents addressed mechanisms such as drug delivery, gene expression, immunotherapy, engineered drugs, and novel compounds. This research highlights the urgent need for continued innovation in therapeutic technologies to effectively treat Fusarium wilt. Full article
Show Figures

Figure 1

20 pages, 18302 KiB  
Article
Harnessing the Therapeutic Potential of Pomegranate Peel-Derived Bioactive Compounds in Pancreatic Cancer: A Computational Approach
by Rita Majhi, Sagar Kurmi, Hilal Tayara and Kil To Chong
Pharmaceuticals 2025, 18(6), 896; https://doi.org/10.3390/ph18060896 - 15 Jun 2025
Viewed by 659
Abstract
Background/Objectives: Pomegranate (Punica granatum) peel, often discarded as waste, contains abundant bioactive compounds such as polyphenols, vitamins, flavonoids, tannins, anthocyanins, and many more. This contributes to remarkable bioactivities, including anticancer, anti-inflammatory, antioxidant, antibacterial, and antifungal properties. Pancreatic cancer is a deadly cancer [...] Read more.
Background/Objectives: Pomegranate (Punica granatum) peel, often discarded as waste, contains abundant bioactive compounds such as polyphenols, vitamins, flavonoids, tannins, anthocyanins, and many more. This contributes to remarkable bioactivities, including anticancer, anti-inflammatory, antioxidant, antibacterial, and antifungal properties. Pancreatic cancer is a deadly cancer with a 9% survival rate. Its aggressiveness, invasiveness, quick metastasis, and poor prognosis significantly decrease the survival rate. Thus, we aim to explore pomegranate peel as a possible alternative medication for treating pancreatic cancer through virtual methods. Methods: Firstly, bioactive compounds were collected from multiple databases and screened for oral bioavailability (OB) ≥ 0.3 and drug likeness (DL) ≥ 0.18 scores. Simultaneously, network pharmacology was employed to extract the most probable targets for pancreatic cancer. Further computational analyses were performed, including molecular docking, molecular dynamics simulation, and in silico pharmacokinetics evaluation. Results: Consequently, the top 10 key targets from network analysis were AKT1, IL6, TNF, SRC, STAT3, EGFR, BCL2, HSP90AA1, HIF1A, and PTGS2. However, only AKT1, EGFR, BCL2, HSP90AA1, and PTGS2 exhibited strong binding affinities with pomegranate compounds, which are significantly declared in affected cells to enhance cancer progression. Outcomes from molecular dynamics simulations, particularly RMSD, RMSF, hydrogen bonding, and radius of gyration (Rg), confirmed stable interactions between 1-O-Galloyl-beta-D-glucose, epicatechin, phloridzin, and epicatechin gallate with respective target proteins. Conclusions: This suggests that pomegranate peels hold anticancer bioactive compounds for treating pancreatic cancer. Surprisingly, most compounds adhere to Lipinski’s and Pfizer’s rules and display no toxicity. However, as this study relies entirely on computational methods, experimental validation is necessary to confirm these findings and assess real-world efficacy and potential side effects. Full article
(This article belongs to the Special Issue The Discovery and Development of Drug Ingredients from Food Sources)
Show Figures

Figure 1

14 pages, 1234 KiB  
Article
Exploring the Potential of Plant Cytokinins Against Common Human Pathogens: In Vitro Assessment and In Silico Insights
by Jelena Lazarević, Aleksandar Veselinović, Marija Stojiljković, Miloš Petrović, Pierangela Ciuffreda and Enzo Santaniello
Plants 2025, 14(12), 1749; https://doi.org/10.3390/plants14121749 - 7 Jun 2025
Viewed by 640
Abstract
Cytokinins, plant hormones derived from adenine, are best known for regulating growth and stress responses in plants. Recent findings suggest they may also influence microbial viability, yet their direct antimicrobial potential remains underexplored. This study evaluates the antimicrobial activities of four natural cytokinins [...] Read more.
Cytokinins, plant hormones derived from adenine, are best known for regulating growth and stress responses in plants. Recent findings suggest they may also influence microbial viability, yet their direct antimicrobial potential remains underexplored. This study evaluates the antimicrobial activities of four natural cytokinins (iPA, B, K, and p-T) and their N9-ribosides (iPAR, BR, KR, and p-TR) against selected human pathogens. Using the broth microdilution method, we assessed their effects on Gram-positive and Gram-negative bacteria, as well as fungal strains. While Gram-negative species showed no susceptibility, all tested compounds exhibited bacteriostatic activity against Bacillus subtilis and Enterococcus faecalis. Most notably, kinetin (K) and kinetin riboside (KR) displayed strong antifungal activity against Candida albicans, with MIC values comparable to the reference drug nystatin. Molecular docking studies supported these findings by showing that K and KR form favorable interactions with two validated antifungal targets in Candida albicans: secreted aspartic proteinase 3 (SAP3) and dihydrofolate reductase (DHFR). This is, to our knowledge, the first report linking natural cytokinins to direct antifungal action against C. albicans supported by in silico evidence. These findings highlight the potential of K and KR as promising leads for the development of cytokinin-based antifungal agents. Full article
(This article belongs to the Special Issue Plant-Derived Natural Products: Development and Utilization)
Show Figures

Figure 1

24 pages, 2615 KiB  
Article
Functionalized Silver Nanoparticles as Multifunctional Agents Against Gut Microbiota Imbalance and Inflammation
by Mihaela Stoyanova, Vera Gledacheva, Miglena Milusheva, Mina Todorova, Nikoleta Kircheva, Silvia Angelova, Iliyana Stefanova, Mina Pencheva, Yulian Tumbarski, Bela Vasileva, Kamelia Hristova-Panusheva, Zlatina Gospodinova, Natalia Krasteva, George Miloshev, Milena Georgieva and Stoyanka Nikolova
Nanomaterials 2025, 15(11), 815; https://doi.org/10.3390/nano15110815 - 28 May 2025
Viewed by 647
Abstract
Human pathogenic fungi are the source of various illnesses, including invasive, cutaneous, and mucosal infections. One promising solution is using nanoparticles (NPs) as an antifungal agent. The current study aims to assess the antimicrobial and antifungal effects of drug-loaded silver nanoparticles (AgNPs) with [...] Read more.
Human pathogenic fungi are the source of various illnesses, including invasive, cutaneous, and mucosal infections. One promising solution is using nanoparticles (NPs) as an antifungal agent. The current study aims to assess the antimicrobial and antifungal effects of drug-loaded silver nanoparticles (AgNPs) with previously reported mebeverine analogue (MA) as a potential drug candidate targeting gut microbiota and inflammation in the gastrointestinal tract. Density Functional Theory (DFT) calculations were conducted to identify possible mechanisms by which AgNPs could prevent microorganisms from growing. In vitro and ex vivo anti-inflammatory, in vitro antimicrobial, ex vivo spasmolytic activities, and in vitro hepatic cell morphology and proliferation of drug-loaded AgNPs were assessed. The drug-loaded AgNPs were considered to have promising antifungal activity against all tested fungal strains, Aspergillus niger, Penicillium chrysogenum, and Fusarium moniliforme, and yeasts, Candida albicans, Saccharomyces cerevisiae, and good antimicrobial activity against Gram-positive and Gram-negative bacterial strains. The results of in vitro and ex vivo determination of anti-inflammatory activity indicated that the drug-loaded AgNPs preserved MA’s anti-inflammatory activity and decreased inflammation. A similar effect was observed in spasmolytic activity measurements. Drug-loaded AgNPs also influenced the morphology and proliferation of hepatic cells, indicating a potential for improved gut and liver therapeutic efficacy. Each test was performed in triplicate, and the results were reported as mean values. Based on the results, drug-loaded AgNPs might be a promising antimicrobial agent, maintaining the MA’s potential as a spasmolytic and anti-inflammatory agent. Future in vivo and preclinical experiments will contribute to establishing the in vivo properties of drug-loaded AgNPs. Full article
(This article belongs to the Special Issue Synthesis of Functional Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

17 pages, 1804 KiB  
Article
Difenoconazole-Loaded Nanostructured Lipid Carriers: Preparation, Characterization, and Evaluation
by Yinghong Li, Hu Zhang, Tingting Meng, Yuqin Zhou, Beilei Zhou, Shihan Du, Hong Yuan and Fuqiang Hu
Pharmaceuticals 2025, 18(6), 780; https://doi.org/10.3390/ph18060780 - 23 May 2025
Viewed by 554
Abstract
Background/Objectives: Difenoconazole (DFC) is a broad-spectrum fungicide. However, its application is limited due to poor aqueous solubility. Drugs with low solubility can be better absorbed using nanostructured lipid carriers (NLCs). Hence, the application of DFC in an NLC delivery system is proposed. [...] Read more.
Background/Objectives: Difenoconazole (DFC) is a broad-spectrum fungicide. However, its application is limited due to poor aqueous solubility. Drugs with low solubility can be better absorbed using nanostructured lipid carriers (NLCs). Hence, the application of DFC in an NLC delivery system is proposed. Methods: Difenoconazole-loaded nanostructured lipid carriers (DFC-NLCs) with different solid–liquid lipid ratios were prepared by solvent diffusion method. Key physicochemical parameters, including particle diameter, surface charge (zeta potential), drug encapsulation efficiency, and morphological characteristics, were systematically characterized. Using Rhizoctonia solani (R. solani) as the model strain, inhibitory efficiency of DFC-NLC dispersion was compared with that of commercial dosage forms, such as 25% DFC emulsifiable concentrate (DFC-EC) and 40% DFC suspension concentrate (DFC-SC). Additionally, uptakes of DFC-NLC dispersions in R. solani were further observed by fluorescence probe technology. The safety profiles of DFC-NLCs and commercial dosage forms were evaluated using zebrafish as the model organism. Acute toxicity studies were conducted to determine the maximum non-lethal concentration (MNLC) and 10% lethal concentration (LC10). Developmental toxicity studies were performed to observe toxic phenotypes. Results: DFC-NLC dispersions were in the nanometer range (≈200 nm) with high zeta potential, spherical in shape with encapsulation efficiency 69.1 ± 1.8%~95.0 ± 2.6%, and drug loading 7.1 ± 0.3%~9.7 ± 0.6% determined by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Compared with commercial dosage forms, the antifungal effect of the DFC-NLC on R. solani was significantly improved in in vitro antibacterial experiments (p < 0.05). The 50% effective concentration (EC50) values were 0.107 mg·L−1 (DFC-NLC), 0.211 mg·L−1 (DFC-EC), and 0.321 mg·L−1 (DFC-SC), respectively. The uptakes of FITC-labeled DFC-NLC demonstrated that an NLC was appropriate to deliver DFC into pathogen to enhance the target effect. In safety assessment studies, DFC-NLCs exhibited a superior safety profile compared with commercial formulations (p < 0.05). Conclusions: This study investigates the feasibility of NLCs as delivery systems for poorly water-soluble fungicides, demonstrating their ability to enhance antifungal efficacy and reduce environmental risks. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

25 pages, 4318 KiB  
Article
Unveiling Therapeutic Powers of Indigenous Flora: Antimicrobial, Antioxidant, and Anticancer Properties of Horwoodia dicksoniae
by Khadijah A. Altammar
Pharmaceuticals 2025, 18(5), 765; https://doi.org/10.3390/ph18050765 - 21 May 2025
Viewed by 540
Abstract
Background: Horwoodia dicksoniae Turrill. (Brassicaceae) and Stipa capensis Thunb. (Poaceae) are commonly grown in the eastern region of Saudi Arabia. Methods: This study evaluated the antibacterial and antifungal potential of these plants. H. dicksoniae extract was further subjected to antioxidant, anticancer, [...] Read more.
Background: Horwoodia dicksoniae Turrill. (Brassicaceae) and Stipa capensis Thunb. (Poaceae) are commonly grown in the eastern region of Saudi Arabia. Methods: This study evaluated the antibacterial and antifungal potential of these plants. H. dicksoniae extract was further subjected to antioxidant, anticancer, GC-MS, LC-MS/MS, and in silico analyses. Results: H. dicksoniae extract presented a higher antimicrobial efficiency than S. capensis extract by effectively inhibiting the growth of Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Bacillus subtilis, and Candida albicans. H. dicksoniae ethanolic extract also demonstrated promising antioxidant and anticancer properties against the human colon cancer cell line HCT-116. GC-MS analysis revealed the presence of 12 natural compounds in the H. dicksoniae extract, whereas LC-MS/MS analysis revealed 19 different compounds in negative ion mode and 25 in positive ion mode. Furthermore, the presence of bioactive compounds in the H. dicksoniae extract, such as flavonoids (acacetin and hesperetin) and caffeic acid, confirmed the observed antibacterial, antifungal, antioxidant, and anticancer activities. Molecular docking revealed promising interactions between various bioactive compounds and target proteins associated with antimicrobial, antioxidant, and anticancer activities. Conclusions: This study is the first to report GC-MS and LC-MS/MS analyses of H. dicksoniae ethanolic extract. The findings provide valuable insights into the potential mechanisms and therapeutic applications of the identified bioactive compounds. Thus, the present work can serve as a platform for the isolation of natural compounds from H. dicksoniae extract, which may play a significant role in the discovery and design of new drugs for the treatment of human diseases. Full article
Show Figures

Figure 1

31 pages, 4011 KiB  
Review
Progress and Prospects of Triazoles in Advanced Therapies for Parasitic Diseases
by Jaime A. Isern, Renzo Carlucci, Guillermo R. Labadie and Exequiel O. J. Porta
Trop. Med. Infect. Dis. 2025, 10(5), 142; https://doi.org/10.3390/tropicalmed10050142 - 20 May 2025
Cited by 1 | Viewed by 959
Abstract
Parasitic diseases represent a severe global burden, with current treatments often limited by toxicity, drug resistance, and suboptimal efficacy in chronic infections. This review examines the emerging role of triazole-based compounds, originally developed as antifungals, in advanced antiparasitic therapy. Their unique structural properties, [...] Read more.
Parasitic diseases represent a severe global burden, with current treatments often limited by toxicity, drug resistance, and suboptimal efficacy in chronic infections. This review examines the emerging role of triazole-based compounds, originally developed as antifungals, in advanced antiparasitic therapy. Their unique structural properties, particularly those of 1,2,3- and 1,2,4-triazole isomers, facilitate diverse binding interactions and favorable pharmacokinetics. By leveraging innovative synthetic approaches, such as click chemistry (copper-catalyzed azide–alkyne cycloaddition) and structure-based design, researchers have repurposed and optimized triazole scaffolds to target essential parasite pathways, including sterol biosynthesis via CYP51 and other novel enzymatic routes. Preclinical studies in models of Chagas disease, leishmaniasis, malaria, and helminth infections demonstrate that derivatives like posaconazole, ravuconazole, and DSM265 exhibit potent in vitro and in vivo activity, although their primarily static effects have limited their success as monotherapies in chronic cases. Combination strategies and hybrid molecules have demonstrated the potential to enhance efficacy and mitigate drug resistance. Despite challenges in achieving complete parasite clearance and managing potential toxicity, interdisciplinary efforts across medicinal chemistry, parasitology, and clinical research highlight the significant potential of triazoles as components of next-generation, patient-friendly antiparasitic regimens. These findings support the further optimization and clinical evaluation of triazole-based agents to improve treatments for neglected parasitic diseases. Full article
Show Figures

Figure 1

31 pages, 2867 KiB  
Review
A Comprehensive Review on Chemical Structures and Bioactivities of Ostropomycetidae Lichens
by Yunhui Wang, Chengyue Hao, Shuhao Jiang, Yanhu Ju, Wei Li and Zefeng Jia
J. Fungi 2025, 11(5), 369; https://doi.org/10.3390/jof11050369 - 9 May 2025
Viewed by 1134
Abstract
Lichenized fungi, recognized as an ecologically vital and pharmaceutically promising resource, hold substantial value in both environmental conservation and medicinal applications. As the second largest subclass within the lichen-forming fungi of Lecanoromycetes, Ostropomycetidae emerged as a critical reservoir of bioactive secondary metabolites. Current [...] Read more.
Lichenized fungi, recognized as an ecologically vital and pharmaceutically promising resource, hold substantial value in both environmental conservation and medicinal applications. As the second largest subclass within the lichen-forming fungi of Lecanoromycetes, Ostropomycetidae emerged as a critical reservoir of bioactive secondary metabolites. Current research has revealed that these secondary metabolites demonstrate remarkable bioactivities, positioning them as potential sources for novel pharmaceutical compounds. Despite considerable progress in characterizing chemical constituents and evaluating bioactivities within this subclass, a systematic summary of these discoveries remains absent. This review synthesizes the lichenochemical research progress, providing critical evaluations of 202 structurally characterized compounds from Ostropomycetidae lichen species over recent decades. These Ostropomycetidae-derived compounds cover the phenols, polyketides, fatty acids, terpenoids, steroids, and non-ribosomal peptides, and exhibit diverse bioactivities including antitumor, anti-inflammatory, antibacterial, antifungal, antiviral, antioxidant, anti-angiogenic, anti-neurodegenerative diseases, antitubercular, anti-herbivore, and antitrypanosomal, and so on. The aim of this review is to establish a robust chemodiversity framework and to offer strategic guidance for targeted exploration of lichen-derived drug candidates in the biological resources of Ostropomycetidae lichens. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites from Fungi)
Show Figures

Figure 1

36 pages, 8994 KiB  
Article
Identification of Microbial-Based Natural Products as Potential CYP51 Inhibitors for Eumycetoma Treatment: Insights from Molecular Docking, MM-GBSA Calculations, ADMET Analysis, and Molecular Dynamics Simulations
by Tilal Elsaman, Mohamed Khalid Alhaj Awadalla, Malik Suliman Mohamed, Eyman Mohamed Eltayib and Magdi Awadalla Mohamed
Pharmaceuticals 2025, 18(4), 598; https://doi.org/10.3390/ph18040598 - 20 Apr 2025
Viewed by 851
Abstract
Background/Objectives: Eumycetoma, caused by Madurella mycetomatis, is a chronic fungal infection with limited treatment options and increasing drug resistance. CYP51, a key enzyme in ergosterol biosynthesis, is a well-established target for azole antifungals. However, existing azole drugs demonstrate limited efficacy in treating [...] Read more.
Background/Objectives: Eumycetoma, caused by Madurella mycetomatis, is a chronic fungal infection with limited treatment options and increasing drug resistance. CYP51, a key enzyme in ergosterol biosynthesis, is a well-established target for azole antifungals. However, existing azole drugs demonstrate limited efficacy in treating eumycetoma. Microbial-based natural products, with their structural diversity and bioactivity, offer a promising source for novel CYP51 inhibitors. This study aimed to identify potential Madurella mycetomatis CYP51 inhibitors from microbial natural products using molecular docking, MM-GBSA calculations, ADMET analysis, and molecular dynamics (MD) simulations. Methods: Virtual screening was conducted on a library of microbial-based natural products using an in-house homology model of Madurella mycetomatis CYP51, with itraconazole as the reference drug. The top compounds from initial docking were refined through Standard and Extra Precision docking. MM-GBSA calculations assessed binding affinities, and ADMET analysis evaluated drug-like properties. Compounds with favorable properties underwent MD simulations. Results: The computational investigations identified 34 compounds with better docking scores and binding affinity than itraconazole. Of these, 9 compounds interacted with the heme group and key residues in the active site of Madurella mycetomatis CYP51. In silico pharmacokinetic profiling identified 3 compounds as promising candidates, and MD simulations confirmed their potential as CYP51 inhibitors. Conclusions: The study highlights microbial-derived natural products, particularly monacyclinone G, H, and I, as promising candidates for Madurella mycetomatis CYP51 inhibition, with the potential for treating eumycetoma, requiring further experimental validation. Full article
(This article belongs to the Special Issue Application of 2D and 3D-QSAR Models in Drug Design)
Show Figures

Graphical abstract

16 pages, 1966 KiB  
Article
Synthesis and Biological Evaluation of Novel 1,2,4-Triazole Derivatives Containing Amino Acid Fragments
by Haoran Shi, Mingxu Li, Zhenghong Zhou, Aidang Lu and Ziwen Wang
Molecules 2025, 30(8), 1692; https://doi.org/10.3390/molecules30081692 - 10 Apr 2025
Viewed by 2109
Abstract
Triazoles are important fragments in the development of fungicidal compounds. Fungi have gradually developed drug resistance against traditional fungicides due to long-term overuse. Therefore, there is an urgent need to discover new candidate compounds. A series of 1,2,4-triazole derivatives containing amino acid fragments [...] Read more.
Triazoles are important fragments in the development of fungicidal compounds. Fungi have gradually developed drug resistance against traditional fungicides due to long-term overuse. Therefore, there is an urgent need to discover new candidate compounds. A series of 1,2,4-triazole derivatives containing amino acid fragments were designed and synthesized based on mefentrifluconazole. All the target compounds were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. Their antifungal activities against five kinds of phytopathogenic fungi were evaluated in vitro. The results revealed that most compounds had broad-spectrum fungicidal activities at 50 μg/mL and four compounds exhibited better antifungal activity than the control drug mefentrifluconazole. Interestingly, the synthesized compounds 8d and 8k exhibited exceptional antifungal activity against Physalospora piricola, with EC50 values of 10.808 µg/mL and 10.126 µg/mL, respectively. Molecular docking studies demonstrate that the 1,2,4-triazole derivatives 8d and 8k, which incorporate amino acid groups, exhibit strong binding affinity to 14α-demethylase (CYP51). These findings highlight the potential of these compounds as effective antifungal agents. Full article
Show Figures

Graphical abstract

Back to TopTop