Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (228)

Search Parameters:
Keywords = anti-virulence drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10928 KiB  
Article
Myricetin Potentiates Antibiotics Against Resistant Pseudomonas aeruginosa by Disrupting Biofilm Formation and Inhibiting Motility Through FimX-Mediated c-di-GMP Signaling Interference
by Derong Zeng, Fangfang Jiao, Yuqi Yang, Shuai Dou, Jiahua Yu, Xiang Yu, Yongqiang Zhou, Juan Xue, Xue Li, Hongliang Duan, Yan Zhang, Jingjing Guo and Wude Yang
Biology 2025, 14(7), 859; https://doi.org/10.3390/biology14070859 - 15 Jul 2025
Viewed by 267
Abstract
Pseudomonas aeruginosa biofilm formation is critical to antibiotic resistance and persistence. Targeting cyclic di-GMP (c-di-GMP) signaling, a master biofilm formation and virulence regulator, presents a promising strategy to combat resistant bacterial infections. Myricetin, a natural polyphenolic flavonoid with documented antimicrobial and anti-biofilm activities, [...] Read more.
Pseudomonas aeruginosa biofilm formation is critical to antibiotic resistance and persistence. Targeting cyclic di-GMP (c-di-GMP) signaling, a master biofilm formation and virulence regulator, presents a promising strategy to combat resistant bacterial infections. Myricetin, a natural polyphenolic flavonoid with documented antimicrobial and anti-biofilm activities, may enhance antibiotic efficacy against Pseudomonas aeruginosa. This study evaluated the synergistic effects of myricetin combined with azithromycin, ciprofloxacin, or cefdinir against both standard and drug-resistant Pseudomonas aeruginosa strains. Antibacterial activity, biofilm disruption, and motility inhibition were experimentally assessed, while molecular dynamic (MD) simulations elucidated myricetin’s molecular mechanism of action. Our results suggested that myricetin synergistically potentiated all three antibiotics, reducing c-di-GMP synthesis by 28% (azithromycin), 57% (ciprofloxacin), and 30% (cefdinir). It enhanced bactericidal effects, suppressed biofilm formation, and impaired swimming, swarming, and twitching motility. Computational analyses revealed that myricetin binds allosterically to FimX very well, a key regulator in the c-di-GMP signaling pathway. Hence, myricetin may act as a c-di-GMP inhibitor, reversing biofilm-mediated resistance in Pseudomonas aeruginosa and augmenting antibiotic efficacy. This integrated experimental and computational approach provides a framework for developing anti-virulence and antibiotic combination therapies against recalcitrant Gram-negative pathogens. Full article
Show Figures

Figure 1

13 pages, 3732 KiB  
Article
Baicalein and Berberine Inhibit the Growth and Virulence of Clostridioides difficile
by Xue Yang, Dongming Zheng, Jiangyan Yong, Yuchen Li, Yunzhi Sun, Fei Zhao, Daiyan Tang, Yi Xie and Dongming Bi
Pathogens 2025, 14(7), 662; https://doi.org/10.3390/pathogens14070662 - 4 Jul 2025
Viewed by 470
Abstract
Clostridioides difficile is a leading pathogen involved in healthcare-associated diarrhea. With its increasing incidence, mortality, and antibiotic resistance, there is an urgent need for novel therapeutic strategies to address the infection and prevent its recurrence. Gegen Qinlian Decoction (GQD) is a traditional Chinese [...] Read more.
Clostridioides difficile is a leading pathogen involved in healthcare-associated diarrhea. With its increasing incidence, mortality, and antibiotic resistance, there is an urgent need for novel therapeutic strategies to address the infection and prevent its recurrence. Gegen Qinlian Decoction (GQD) is a traditional Chinese medicine for the treatment of diarrhea, but its main active ingredient is not known. Therefore, in this study, we evaluated the biological activity of berberine (BER) and baicalein (BAI), key components of GQD, against C. difficile. Time–kill curves and scanning electron microscopy were employed to assess their effects on C. difficile growth, while Enzyme-Linked Immunosorbnent Assay (ELISA) and cytotoxicity assays were used to examine their impact on toxin production. We also employed Quantitative Reverse Transcription PCR (qRT-PCR) to examine how BER and BAI influenced the expression of toxin-associated genes. At sub-inhibitory concentrations, these compounds exerted antibacterial activity against C. difficile by disrupting the integrity of the cell membrane and cell wall. Furthermore, BER and BAI also suppressed toxin production, demonstrating effects comparable to those of vancomycin. This suppression likely resulted from their bactericidal activity and the inhibition of toxin gene expression. This study not only highlights the potential application of GQD in treating C. difficile infections but also offers promising options for developing drugs targeting the growth and virulence of this pathogen. C. difficile infection (CDI) is a leading cause of severe diarrhea, and its treatment remains challenging due to limited drug options and its high recurrence rate. BAI and BER, the main active components of the traditional Chinese medicinal formula GQD, inhibited the growth of C. difficile by disrupting its cellular structure and significantly reduced the production of toxins associated with disease severity. Furthermore, the effects of BAI and BER on C. difficile were comparable to those of conventional antibiotics, suggesting that these compounds could be potential alternative therapies for CDI. This study not only highlights the therapeutic potential of GQD in treating CDI but also provides a replicable research strategy for the development of novel anti-CDI agents. Full article
Show Figures

Figure 1

52 pages, 8144 KiB  
Review
Multiple Strategies for the Application of Medicinal Plant-Derived Bioactive Compounds in Controlling Microbial Biofilm and Virulence Properties
by Mulugeta Mulat, Riza Jane S. Banicod, Nazia Tabassum, Aqib Javaid, Abirami Karthikeyan, Geum-Jae Jeong, Young-Mog Kim, Won-Kyo Jung and Fazlurrahman Khan
Antibiotics 2025, 14(6), 555; https://doi.org/10.3390/antibiotics14060555 - 29 May 2025
Cited by 2 | Viewed by 972
Abstract
Biofilms are complex microbial communities encased within a self-produced extracellular matrix, which plays a critical role in chronic infections and antimicrobial resistance. These enhance pathogen survival and virulence by protecting against host immune defenses and conventional antimicrobial treatments, posing substantial challenges in clinical [...] Read more.
Biofilms are complex microbial communities encased within a self-produced extracellular matrix, which plays a critical role in chronic infections and antimicrobial resistance. These enhance pathogen survival and virulence by protecting against host immune defenses and conventional antimicrobial treatments, posing substantial challenges in clinical contexts such as device-associated infections and chronic wounds. Secondary metabolites derived from medicinal plants, such as alkaloids, tannins, flavonoids, phenolic acids, and essential oils, have gained attention as promising agents against biofilm formation, microbial virulence, and antibiotic resistance. These natural compounds not only limit microbial growth and biofilm development but also disrupt communication between bacteria, known as quorum sensing, which reduces their ability to cause disease. Through progress in nanotechnology, various nanocarriers such as lipid-based systems, polymeric nanoparticles, and metal nanoparticles have been developed to improve the solubility, stability, and cellular uptake of phytochemicals. In addition, the synergistic use of plant-based metabolites with conventional antibiotics or antifungal drugs has shown promise in tackling drug-resistant microorganisms and revitalizing existing drugs. This review comprehensively discusses the efficacy of pure secondary metabolites from medicinal plants, both as individuals and in nanoformulated forms or in combination with antimicrobial agents, as alternative strategies to control biofilm-forming pathogens. The molecular mechanisms underlying their antibiofilm and antivirulence activities are discussed in detail. Lastly, the current pitfalls, limitations, and emerging directions in translating these natural compounds into clinical applications are critically evaluated. Full article
Show Figures

Figure 1

48 pages, 4356 KiB  
Review
Unlocking the Pharmacological Potential of Myricetin Against Various Pathogenesis
by Saleh A. Almatroodi and Arshad Husain Rahmani
Int. J. Mol. Sci. 2025, 26(9), 4188; https://doi.org/10.3390/ijms26094188 - 28 Apr 2025
Cited by 1 | Viewed by 1522
Abstract
Myricetin is a natural flavonoid with powerful antioxidant and anti-inflammatory potential commonly found in vegetables, fruits, nuts, and tea. The vital role of this flavonoid in the prevention and treatment of various diseases is evidenced by its ability to reduce inflammation and oxidative [...] Read more.
Myricetin is a natural flavonoid with powerful antioxidant and anti-inflammatory potential commonly found in vegetables, fruits, nuts, and tea. The vital role of this flavonoid in the prevention and treatment of various diseases is evidenced by its ability to reduce inflammation and oxidative stress, maintain tissue architecture, and modulate cell signaling pathways. Thus, this review summarizes recent evidence on myricetin, focusing precisely on its mechanisms of action in various pathogenesis, including obesity, diabetes mellitus, arthritis, osteoporosis, liver, neuro, cardio, and reproductive system-associated pathogenesis. Moreover, it has been revealed that myricetin exhibits anti-microbial properties due to obstructive virulence factors, preventing biofilm formation and disrupting membrane integrity. Additionally, synergistic potential with other drugs and the role of myricetin-based nanoformulations in different diseases are properly discussed. This review seeks to increase the understanding of myricetin’s pharmacological potential in various diseases, principally highlighting its effective mechanisms of action. Further wide-ranging research, as well as more randomized and controlled clinical trial studies, should be executed to reconnoiter this compound’s therapeutic value, safety, and usefulness against various human pathogenesis. Full article
(This article belongs to the Special Issue Effects of Bioactive Compounds in Oxidative Stress and Inflammation)
Show Figures

Figure 1

15 pages, 4461 KiB  
Article
Turmeric Oil Interferes with Quorum Sensing as an Alternative Approach to Control Aeromonas hydrophila Infection in Aquaculture
by Jing Dong, Jian Tong, Shengping Li, Xinwei Ma, Qiuhong Yang, Yongtao Liu, Shun Zhou, Xizhi Shi and Xiaohui Ai
Biology 2025, 14(5), 483; https://doi.org/10.3390/biology14050483 - 27 Apr 2025
Viewed by 503
Abstract
Aquatic products play a crucial role in meeting the increasing global demands for high-quality proteins. However, the occurrence of bacterial diseases results in significant economic losses worldwide. Aeromonas hydrophila (A. hydrophila) is the pathogen of several fish diseases. Antibiotics were widely [...] Read more.
Aquatic products play a crucial role in meeting the increasing global demands for high-quality proteins. However, the occurrence of bacterial diseases results in significant economic losses worldwide. Aeromonas hydrophila (A. hydrophila) is the pathogen of several fish diseases. Antibiotics were widely used in combating bacterial diseases in aquaculture. The increasing occurrences of antibiotic resistance necessitate the restricted use of antibiotics. Consequently, developing drugs that avoid antibiotic resistance is important for the future of aquaculture. Quorum sensing (QS) is critical for bacterial pathogens in regulating bacterial virulence and is a promising target for developing anti-infective agents. Here, we found that turmeric oil with a MIC of 256 μg/mL could dose-dependently reduce the virulence phenotypes regulated by QS, ranging from 8 to 64 μg/mL, suggesting that sub-inhibitory concentrations of turmeric oil could inhibit bacterial virulence. Further qPCR findings demonstrated that turmeric oil could significantly inhibit the transcription of aerA, ahyI, and ahyR by a 54-fold, 36-fold, and 56-fold change reduction, respectively. Cell live/dead staining and animal study results showed that turmeric oil could inhibit the pathogenicity of A. hydrophila. Fish treated with turmeric oil showed a reduced mortality rate of 60%, whereas all fish in the positive control group died. Moreover, treatment with turmeric oil could alleviate the renal injury. Collectively, the results suggested that targeting bacterial virulence might be a useful approach to combating bacterial infections, and turmeric oil could serve as a potential agent for combating A. hydrophila infections. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

15 pages, 4600 KiB  
Article
The Major Facilitator Superfamily Transporter HAP12 Is Critical in Toxoplasma gondii Survival and Virulence
by Xiaowei Chen, Tao Tang, Huiyong Ding, Hui Dong, Shaojun Long and Xun Suo
Int. J. Mol. Sci. 2025, 26(8), 3910; https://doi.org/10.3390/ijms26083910 - 21 Apr 2025
Cited by 1 | Viewed by 472
Abstract
As an important zoonotic pathogen, Toxoplasma gondii relies on a unique organelle known as the apicoplast, which has garnered significant attention as a potential drug target for anti-Toxoplasma therapy. To better understand the structure and function of the apicoplast, we previously constructed [...] Read more.
As an important zoonotic pathogen, Toxoplasma gondii relies on a unique organelle known as the apicoplast, which has garnered significant attention as a potential drug target for anti-Toxoplasma therapy. To better understand the structure and function of the apicoplast, we previously constructed a membrane protein database of the apicoplast. During this process, we identified the major facilitator superfamily (MFS) transporter protein HAP12, which partially colocalizes with the apicoplast. Evolutionary analysis revealed that HAP12 is highly conserved across the Apicomplexa family and model organisms. HAP12 depletion impaired T. gondii invasion and survival but did not affect the stability of several key organelles, including the apicoplast. Moreover, depletion of HAP12 resulted in a characteristic delayed-death phenotype in the apicoplast. Mouse virulence assays confirmed that HAP12 is an essential protein for parasite survival. This study provides new insights into potential drug and vaccine targets for combating Toxoplasma infections. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

28 pages, 1436 KiB  
Article
Repurposing High-Throughput Screening Reveals Unconventional Drugs with Antimicrobial and Antibiofilm Potential Against Methicillin-Resistant Staphylococcus aureus from a Cystic Fibrosis Patient
by Arianna Pompilio, Veronica Lupetti, Valentina Puca and Giovanni Di Bonaventura
Antibiotics 2025, 14(4), 402; https://doi.org/10.3390/antibiotics14040402 - 14 Apr 2025
Cited by 1 | Viewed by 956
Abstract
Background/Objectives: Antibiotic therapy faces challenges from rising acquired and biofilm-related antibiotic resistance rates. High resistance levels to commonly used antibiotics have been observed in methicillin-resistant Staphylococcus aureus (MRSA) strains among cystic fibrosis (CF) patients, indicating an urgent need for new antibacterial agents. This study [...] Read more.
Background/Objectives: Antibiotic therapy faces challenges from rising acquired and biofilm-related antibiotic resistance rates. High resistance levels to commonly used antibiotics have been observed in methicillin-resistant Staphylococcus aureus (MRSA) strains among cystic fibrosis (CF) patients, indicating an urgent need for new antibacterial agents. This study aimed to identify potential novel therapeutics with antibacterial and antibiofilm activities against an MRSA CF strain by screening, for the first time, the Drug Repurposing Compound Library (MedChem Express). Methods/Results: Among the 3386 compounds, a high-throughput screening-based spectrophotometric approach identified 2439 (72%), 654 (19.3%), and 426 (12.6%) drugs active against planktonic cells, biofilm formation, and preformed biofilm, respectively, although to different extents. The most active hits were 193 (5.7%), against planktonic cells, causing a 100% growth inhibition; 5 (0.14%), with excellent activity against biofilm formation (i.e., reduction ≥ 90%); and 4, showing high activity (i.e., 60% ≤ biofilm reduction < 90%) against preformed biofilms. The potential hits belonged to several primary research areas, with “cancer” being the most prevalent. After performing a literature review to identify other, already published biological properties that could be relevant to the CF lung environment (i.e., activity against other CF pathogens, and anti-inflammatory and anti-virulence potential), the most interesting hits were the following: 5-(N,N-Hexamethylene)-amiloride (diuretic), Toremifene (anticancer), Zafirlukast (antiasthmatic), Fenretide (anticancer), and Montelukast (antiasthmatic) against planktonic S. aureus cells; Hemin against biofilm formation; and Heparin, Clemastine (antihistaminic), and Bromfenac (nonsteroidal anti-inflammatory) against established biofilms. Conclusions: These findings warrant further in vitro and in vivo studies to confirm the potential of repurposing these compounds for managing lung infections caused by S. aureus in CF patients. Full article
Show Figures

Figure 1

19 pages, 3685 KiB  
Article
Safety Assessment of Lactiplantibacillus plantarum GUANKE Based on Whole-Genome Sequencing, Phenotypic, and Anti-Inflammatory Capacity Analysis
by Simin Lu, Kun Yue, Siqin He, Yuanming Huang, Zhihong Ren and Jianguo Xu
Microorganisms 2025, 13(4), 873; https://doi.org/10.3390/microorganisms13040873 - 10 Apr 2025
Cited by 1 | Viewed by 658
Abstract
Lactiplantibacillus plantarum GUANKE (L. plantarum GUANKE) is a Gram-positive bacterium isolated from the feces of healthy volunteers. Whole-genome sequencing analysis (WGS) revealed that the genome of L. plantarum GUANKE consists of one chromosome and two plasmids, with the chromosome harbors 2955 CDS, [...] Read more.
Lactiplantibacillus plantarum GUANKE (L. plantarum GUANKE) is a Gram-positive bacterium isolated from the feces of healthy volunteers. Whole-genome sequencing analysis (WGS) revealed that the genome of L. plantarum GUANKE consists of one chromosome and two plasmids, with the chromosome harbors 2955 CDS, 66 tRNAs, and 5 rRNAs. The genome is devoid of virulence factors and Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems. It contains three intact prophage regions and bacteriocin biosynthesis genes (plantaricins K, F, and E), as well as seventeen genomic islands lacking antibiotic resistance or pathogenicity determinants. Functional prediction outcomes identified that the genome of L. plantarum GUANKE is closely related to transcription, carbohydrate transport and metabolism, and amino acid transport and metabolism. Carbohydrate-active enzymes (CAZymes) analysis and GutSMASH analysis revealed that the genome of L. plantarum GUANKE contained 100 carbohydrate-active enzyme genes and two specialized metabolic gene clusters. Safety assessments confirmed that L. plantarum GUANKE neither exhibited β-hemolytic activity nor harbored detectable transferable drug resistance genes. The strain exhibited remarkable acid tolerance and bile salt resistance. Cellular adhesion assays demonstrated moderate binding capacity to Caco-2 intestinal epithelium (4.3 ± 0.007)%. In vitro analyses using lipopolysaccharide (LPS)-stimulated macrophage models demonstrated that L. plantarum GUANKE significantly suppressed the secretion of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), exhibiting dose-dependent anti-inflammatory activity. In vivo experiments showed that L. plantarum GUANKE was involved in the regulation of the apical junction pathway and interferon pathway in colon tissue of normal mice. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

20 pages, 6584 KiB  
Article
Probiotic Characterization of Lactiplantibacillus paraplantarum SDN1.2 and Its Anti-Inflammatory Effect on Klebsiella pneumoniae-Infected Mammary Glands
by Jia Cheng, Jingdi Tong, Can Li, Ziyan Wang, Hao Li, Meiyi Ren, Jinshang Song, Deyuan Song, Qinna Xie and Mingchao Liu
Vet. Sci. 2025, 12(4), 323; https://doi.org/10.3390/vetsci12040323 - 1 Apr 2025
Viewed by 668
Abstract
K. pneumoniae is a major cause of bovine mastitis worldwide, making it difficult to control due to its resistance to multiple drugs. L. paraplantarum has been explored as a promising new approach to fighting bovine mastitis. In this study, the probiotic potential and [...] Read more.
K. pneumoniae is a major cause of bovine mastitis worldwide, making it difficult to control due to its resistance to multiple drugs. L. paraplantarum has been explored as a promising new approach to fighting bovine mastitis. In this study, the probiotic potential and safety of L. paraplantarum SDN1.2, as well as its ex vivo and in vivo anti-inflammatory effects against K. pneumoniae-induced mastitis, were comprehensively investigated using bioinformatics analyses and experimental validation methods. The results revealed that L. paraplantarum SDN1.2 exhibits non-hemolytic activity, is not cytotoxic, lacks virulence genes (e.g., adhesion factors, toxins, and invasion factors) and antibiotic resistance genes (e.g., beta-lactamases and tetracycline resistance genes), as supported by whole-genome sequencing, and significantly inhibits the growth of K. pneumoniae, as evaluated by antimicrobial tests. Following further validation in vitro, L. paraplantarum SDN1.2 demonstrated the capability to inhibit the adhesion and invasion of K. pneumoniae to bMECs. In a mouse model of K. pneumoniae-induced mastitis, L. paraplantarum SDN1.2 reduced the extent of neutrophil infiltration and inflammatory lesions. Furthermore, L. paraplantarum SDN1.2 pretreatment significantly reduced myeloperoxidase (MPO) activity and the expression of inflammatory cytokines (IL-6, IL-1β, and TNF-a) in mouse mammary gland tissue. In K. pneumoniae-infected bMECs, L. paraplantarum SDN1.2 significantly lowered lactate dehydrogenase (LDH) levels and expression of inflammatory cytokines such as IL-6, IL-1β, and TNF-α. The results demonstrated that the newly isolated L. paraplantarum SDN1.2 from bovine sources exhibits promising characteristics as a safe probiotic for the alleviation of bovine mastitis due to its safety profile and anti-inflammatory and antibacterial properties. Full article
(This article belongs to the Special Issue Ruminant Mastitis: Therapies and Control)
Show Figures

Figure 1

34 pages, 1841 KiB  
Review
Biofilm-Associated Candidiasis: Pathogenesis, Prevalence, Challenges and Therapeutic Options
by Valerie Amann, Ann-Kathrin Kissmann, Carolina Firacative and Frank Rosenau
Pharmaceuticals 2025, 18(4), 460; https://doi.org/10.3390/ph18040460 - 25 Mar 2025
Cited by 3 | Viewed by 2121
Abstract
The rising prevalence of fungal infections, especially those caused by Candida species, presents a major risk to global health. With approximately 1.5 million deaths annually, the urgency for effective treatment options has never been greater. Candida spp. are the leading cause of invasive [...] Read more.
The rising prevalence of fungal infections, especially those caused by Candida species, presents a major risk to global health. With approximately 1.5 million deaths annually, the urgency for effective treatment options has never been greater. Candida spp. are the leading cause of invasive infections, significantly impacting immunocompromised patients and those in healthcare settings. C. albicans, C. parapsilosis and the emerging species C. auris are categorized as highly dangerous species because of their pathogenic potential and increasing drug resistance. This review comparatively describes the formation of microbial biofilms of both bacterial and fungal origin, including major pathogens, thereby creating a novel focus. Biofilms can further complicate treatment, as these structures provide enhanced resistance to antifungal therapies. Traditional antifungal agents, including polyenes, azoles and echinocandins, have shown effectiveness, yet resistance development continues to rise, necessitating the exploration of novel therapeutic approaches. Antimicrobial peptides (AMPs) such as the anti-biofilm peptides Pom-1 and Cm-p5 originally isolated from snails represent promising candidates due to their unique mechanisms of action and neglectable cytotoxicity. This review article discusses the challenges posed by Candida infections, the characteristics of important species, the role of biofilms in virulence and the potential of new therapeutic options like AMPs. Full article
(This article belongs to the Special Issue The 20th Anniversary of Pharmaceuticals—Advances in Pharmacology)
Show Figures

Figure 1

13 pages, 2612 KiB  
Article
Novel Insights into the Therapeutic Effect of Amentoflavone Against Aeromonas hydrophila Infection by Blocking the Activity of Aerolysin
by Jing Dong, Shengping Li, Shun Zhou, Yongtao Liu, Qiuhong Yang, Ning Xu, Yibin Yang, Bo Cheng and Xiaohui Ai
Int. J. Mol. Sci. 2025, 26(5), 2370; https://doi.org/10.3390/ijms26052370 - 6 Mar 2025
Viewed by 850
Abstract
Aeromonas hydrophila (A. hydrophila) is an opportunistic and foodborne pathogen widely spread in the environments, particularly aquatic environments. Diseases caused by A. hydrophila in freshwater aquaculture result in huge economic losses every year. The increasing emergence of antibiotic resistance has limited [...] Read more.
Aeromonas hydrophila (A. hydrophila) is an opportunistic and foodborne pathogen widely spread in the environments, particularly aquatic environments. Diseases caused by A. hydrophila in freshwater aquaculture result in huge economic losses every year. The increasing emergence of antibiotic resistance has limited the application of antibiotics in aquaculture. Aerolysin (AerA), the main virulence factor produced by A. hydrophila, has been identified as a promising target for developing drugs controlling A. hydrophila infection. Here, we found that the natural compound amentoflavone (AMF) with the MIC of 512 μg/mL against A. hydrophila could dose-dependently reduce the hemolysis of AerA, ranging from 0.5 to 4 μg/mL. Molecular docking and dynamics simulation results predicted that AMF could directly bind to domain 3 of AerA via Pro333 and Trp375 residues. Then, the binding sites were confirmed by fluorescence quenching assays. The results of heptamer formation demonstrated that the binding of AMF could affect the formation of oligomers and result in the loss of pore-forming activity. Cell viability assay showed that AerA after treatment with AMF ranging from 0.5 to 4 μg/mL could significantly reduce AerA-mediated cytotoxicity. Moreover, experimental therapeutics results showed that channel catfish infected with A. hydrophila and then administered with 20 mg/kg AMF at intervals of 12 h for 3 days could increase the survival rate by 35% compared with the positive control after a 10-day observation. These findings provided a novel approach to developing anti-infective drugs and a promising candidate for controlling A. hydrophila infection in aquaculture. Full article
(This article belongs to the Special Issue Molecular Aspects of Bacterial Infection)
Show Figures

Figure 1

14 pages, 1970 KiB  
Article
Pediococcus pentosaceus MZF16 Probiotic Strain Prevents In Vitro Cytotoxic Effects of Pseudomonas aeruginosa H103 and Prolongs the Lifespan of Caenorhabditis elegans
by Meryem Boujnane, Mohamed Zommiti, Olivier Lesouhaitier, Mounir Ferchichi, Ali Tahrioui, Amine M. Boukerb and Nathalie Connil
Pathogens 2025, 14(3), 244; https://doi.org/10.3390/pathogens14030244 - 3 Mar 2025
Viewed by 1070
Abstract
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium, responsible for several life-threatening infections due to its multiple virulence factors and problematic multi-drug resistance, hence the necessity to find alternatives such as competitive probiotics. Pediococcus pentosaceus MZF16 is an LAB strain, isolated from traditional dried [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium, responsible for several life-threatening infections due to its multiple virulence factors and problematic multi-drug resistance, hence the necessity to find alternatives such as competitive probiotics. Pediococcus pentosaceus MZF16 is an LAB strain, isolated from traditional dried meat “Ossban”, with high probiotic potential. Our study investigated the capacity of P. pentosaceus MZF16 to counteract P. aeruginosa H103 using several tests on intestinal cells (analysis of cytotoxicity, inflammation, adhesion/invasion) and on the in vivo Caenorhabditis elegans model. The effect of MZF16 on the quorum sensing of the pathogen was also examined. We found that P. pentosaceus MZF16 was able to reduce H103 cytotoxicity and inflammatory activity and prevented pathogen colonization and translocation across Caco-2/TC7 cells. MZF16 also exerted an anti-virulence effect by attenuating quorum-sensing (QS) molecules and pyoverdine production and extended C. elegans lifespan. The obtained results highlight the potential of P. pentosaceus MZF16 probiotic strain as an anti-Pseudomonas aeruginosa alternative and establish a basis for elucidating the mechanisms of P. pentosaceus MZF16 involved in countering P. aeruginosa virulence. Full article
Show Figures

Figure 1

42 pages, 3164 KiB  
Review
A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges
by Ina Gajic, Nina Tomic, Bojana Lukovic, Milos Jovicevic, Dusan Kekic, Milos Petrovic, Marko Jankovic, Anika Trudic, Dragana Mitic Culafic, Marina Milenkovic and Natasa Opavski
Antibiotics 2025, 14(3), 221; https://doi.org/10.3390/antibiotics14030221 - 21 Feb 2025
Cited by 6 | Viewed by 5187
Abstract
Background/Objectives: Antimicrobial resistance poses a major public health challenge. The World Health Organization has identified 15 priority pathogens that require prompt development of new antibiotics. This review systematically evaluates the antibacterial resistance of the most significant bacterial pathogens, currently available treatment options, as [...] Read more.
Background/Objectives: Antimicrobial resistance poses a major public health challenge. The World Health Organization has identified 15 priority pathogens that require prompt development of new antibiotics. This review systematically evaluates the antibacterial resistance of the most significant bacterial pathogens, currently available treatment options, as well as complementary approaches for the management of infections caused by the most challenging multidrug-resistant (MDR) bacteria. For carbapenem-resistant Gram-negative bacteria, treatment options include combinations of beta-lactam antibiotics and beta-lactamase inhibitors, a novel siderophore cephalosporin, known as cefiderocol, as well as older antibiotics like polymixins and tigecycline. Treatment options for Gram-positive bacteria are vancomycin, daptomycin, linezolid, etc. Although the development of new antibiotics has stagnated, various agents with antibacterial properties are currently in clinical and preclinical trials. Non-antibiotic strategies encompass antibiotic potentiators, bacteriophage therapy, antivirulence therapeutics, antimicrobial peptides, antibacterial nanomaterials, host-directed therapy, vaccines, antibodies, plant-based products, repurposed drugs, as well as their combinations, including those used alongside antibiotics. Significant challenges exist in developing new antimicrobials, particularly related to scientific and technical issues, along with policy and economic factors. Currently, most of the alternative options are not part of routine treatment protocols. Conclusions and Future Directions: There is an urgent need to expedite the development of new strategies for treating infections caused by MDR bacteria. This requires a multidisciplinary approach that involves collaboration across research, healthcare, and regulatory bodies. Suggested approaches are crucial for addressing this challenge and should be backed by rational antibiotic use, enhanced infection control practices, and improved surveillance systems for emerging pathogens. Full article
Show Figures

Figure 1

21 pages, 983 KiB  
Review
Antimicrobial Potential of Cannabinoids: A Scoping Review of the Past 5 Years
by Maria João Coelho, Maria Duarte Araújo, Márcia Carvalho, Inês Lopes Cardoso, Maria Conceição Manso and Cristina Pina
Microorganisms 2025, 13(2), 325; https://doi.org/10.3390/microorganisms13020325 - 2 Feb 2025
Cited by 3 | Viewed by 3806
Abstract
In the scenario of fighting bacterial resistance to antibiotics, natural products have been extensively investigated for their potential antibacterial activities. Among these, cannabinoids—bioactive compounds derived from cannabis—have garnered attention for their diverse biological activities, including anxiolytic, anti-inflammatory, analgesic, antioxidant, and neuroprotective properties. Emerging [...] Read more.
In the scenario of fighting bacterial resistance to antibiotics, natural products have been extensively investigated for their potential antibacterial activities. Among these, cannabinoids—bioactive compounds derived from cannabis—have garnered attention for their diverse biological activities, including anxiolytic, anti-inflammatory, analgesic, antioxidant, and neuroprotective properties. Emerging evidence suggests that cannabinoids may also possess significant antimicrobial properties, with potential applications in enhancing the efficacy of conventional antimicrobial agents. Therefore, this review examines evidence from the past five years on the antimicrobial properties of cannabinoids, focusing on underlying mechanisms such as microbial membrane disruption, immune response modulation, and interference with microbial virulence factors. In addition, their synergistic potential, when used alongside standard therapies, underscores their promise as a novel strategy to address drug resistance, although further research and clinical trials are needed to validate their therapeutic use. Overall, cannabinoids offer a promising avenue for the development of innovative treatments to combat drug-resistant infections and reduce the reliance on traditional antimicrobial agents. Full article
Show Figures

Figure 1

25 pages, 7981 KiB  
Article
Retinoids as Alternative Antifungal Agents Against Candida albicans: In Vitro and In Silico Evidence
by Terenzio Cosio, Alice Romeo, Enrico Salvatore Pistoia, Francesca Pica, Claudia Freni, Federico Iacovelli, Augusto Orlandi, Mattia Falconi, Elena Campione and Roberta Gaziano
Microorganisms 2025, 13(2), 237; https://doi.org/10.3390/microorganisms13020237 - 22 Jan 2025
Cited by 1 | Viewed by 1684
Abstract
Candida albicans (C. albicans) is the most common pathogen responsible for a wide spectrum of human infections ranging from superficial mucocutaneous mycoses to systemic life-threatening diseases. Its main virulence factors are the morphological transition between yeast and hyphal forms and the [...] Read more.
Candida albicans (C. albicans) is the most common pathogen responsible for a wide spectrum of human infections ranging from superficial mucocutaneous mycoses to systemic life-threatening diseases. Its main virulence factors are the morphological transition between yeast and hyphal forms and the ability to produce biofilm. Novel antifungal strategies are required given the severity of systemic candidiasis, especially in immunocompromised patients, and the lack of effective anti-biofilm treatments. We previously demonstrated that all-trans retinoic acid (ATRA), an active metabolite of vitamin A, exerted an inhibitory effect on Candida growth, yeast–hyphal transition and biofilm formation. Here, we further investigated the possible anti-Candida potential of trifarotene and tazarotene, which are the other two molecules belonging to the retinoid family, compared to ATRA. The results indicate that both drugs were able to suppress Candida growth, germination and biofilm production, although trifarotene was proven to be more effective than tazarotene, showing effectiveness comparable to ATRA. In silico studies suggest that all three retinoids may exert antifungal activity through their molecular interactions with the heat shock protein (Hsp) 90 and 14α-demethylase of C. albicans. Moreover, interactions between retinoids and ergosterol have been observed, suggesting that those compounds have great potential against C. albicans infections. Full article
(This article belongs to the Special Issue Microbe–Host Interactions in Human Infections)
Show Figures

Figure 1

Back to TopTop