Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = anti-tobacco mosaic virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 11160 KiB  
Article
Discovery of Crinasiadine, Trisphaeridine, Bicolorine, and Their Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents
by Zhan Hu, Jincheng Guo, Dejun Ma, Ziwen Wang, Yuxiu Liu and Qingmin Wang
Int. J. Mol. Sci. 2025, 26(3), 1103; https://doi.org/10.3390/ijms26031103 - 27 Jan 2025
Cited by 1 | Viewed by 1129
Abstract
Plant viral diseases cause great harm to crops in terms of yield and quality. Natural products have been providing an excellent source of novel chemistry, inspiring the development of novel synthetic pesticides. The Amaryllidaceae alkaloids crinasiadine (3a), trisphaeridine (4a), [...] Read more.
Plant viral diseases cause great harm to crops in terms of yield and quality. Natural products have been providing an excellent source of novel chemistry, inspiring the development of novel synthetic pesticides. The Amaryllidaceae alkaloids crinasiadine (3a), trisphaeridine (4a), and bicolorine (5a) were selected as parent structures, and a series of their derivatives were designed, synthesized, and investigated for their anti-plant virus effects for the first time. Compounds 13b and 18 exhibited comparable inhibitory activities to ningnanmycin against tobacco mosaic virus (TMV). Preliminary research into the mechanism, involving transmission electron microscopy and molecular docking studies, suggests that compound 18 may interfere with the elongation phase of the TMV assembly process. This study provides some important information for the research and development of agrochemicals with phenanthridine structures. Full article
(This article belongs to the Special Issue Antiviral Drug Design, Synthesis and Molecular Mechanisms)
Show Figures

Graphical abstract

11 pages, 3326 KiB  
Article
One-Step Multiplex RT-PCR Method for Detection of Melon Viruses
by Sheng Han, Tingting Zhou, Fengqin Zhang, Jing Feng, Chenggui Han and Yushanjiang Maimaiti
Microorganisms 2024, 12(11), 2337; https://doi.org/10.3390/microorganisms12112337 - 15 Nov 2024
Viewed by 1281
Abstract
This study presents a one-step multiplex reverse transcription polymerase chain reaction (RT-PCR) method for the simultaneous detection of multiple viruses affecting melon crops. Viruses such as Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Squash mosaic virus (SqMV), [...] Read more.
This study presents a one-step multiplex reverse transcription polymerase chain reaction (RT-PCR) method for the simultaneous detection of multiple viruses affecting melon crops. Viruses such as Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Squash mosaic virus (SqMV), Tobacco mosaic virus (TMV), Papaya ring spot virus (PRSV), and Melon yellow spot virus (MYSV) pose a great threat to melons. The mixed infection of these viruses is the most common observation in the melon-growing fields. In this study, we surveyed northern Xingjiang (Altay, Changji, Wujiaqu, Urumqi, Turpan, and Hami) and southern Xingjiang (Aksu, Bayingolin, Kashgar, and Hotan) locations in Xinjiang province and developed a one-step multiplex RT-PCR to detect these melon viruses. The detection limits of this multiplex PCR were 103 copies/μL for ZYMV and MYSV and 102 copies/μL for WMV, SqMV, PRSV, CMV, and TMV. The detection results in the field showed 242 samples were infected by one or more viruses. The multiplex RT-PCR protocol demonstrated rapid, simultaneous, and relatively effective detection of viruses such as WMV, CMV, ZYMV, SqMV, TMV, PRSV, and MYSV. The technique is designed to identify these melon viruses in a single reaction, enhancing diagnostic efficiency and reducing costs, thus serving as a reference for muskmelon anti-virus breeding in Xinjiang. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

19 pages, 2398 KiB  
Review
The Use of Bacteria, Actinomycetes and Fungi in the Bioprotection of Solanaceous Crops against Tobacco Mosaic Virus (TMV)
by Anna Trojak-Goluch
Agriculture 2024, 14(8), 1220; https://doi.org/10.3390/agriculture14081220 - 24 Jul 2024
Cited by 1 | Viewed by 2403
Abstract
Tobacco mosaic virus (TMV) is one of the most persistent and infectious plant viruses. The substantial economic losses caused by TMV in the production of tobacco and vegetables (especially in the Solanaceae family) are prompting the introduction of innovative solutions that effectively inhibit [...] Read more.
Tobacco mosaic virus (TMV) is one of the most persistent and infectious plant viruses. The substantial economic losses caused by TMV in the production of tobacco and vegetables (especially in the Solanaceae family) are prompting the introduction of innovative solutions that effectively inhibit infection by this pathogen. Biological control agents based on bacteria of the genera Pseudomonas, Bacillus, Pantoea and actinomycetes are becoming increasingly popular in the fight against TMV. Some fungi, including Fusarium spp., Trichoderma spp., Alternaria spp. and Sepedonium spp., as well as wood-rotting fungi, also exhibit high anti-TMV activity. This article presents a comprehensive review of recent scientific advances in the bioprotection of selected solanaceous crops against TMV. It provides information on the structure of the virus, its host range, pathogenicity and the severity of losses caused in pepper, tomato and tobacco production. The review characterises environmentally safe techniques involving biological control agents naturally occurring in the environment and the bioactive compounds extracted from them. It also identifies their effects on crops at the morphological, physiological and molecular levels. In addition, the manuscript outlines prospects for the future applications of beneficial micro-organisms and active compounds derived from them in the protection against TMV. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

11 pages, 2478 KiB  
Article
Antiviral Activity of Ailanthone from Ailanthus altissima on the Rice Stripe Virus
by Qingwei Tan, Jianxuan Zhu, Yuanyuan Ju, Xinlin Chi, Tangdan Cao, Luping Zheng and Qijian Chen
Viruses 2024, 16(1), 73; https://doi.org/10.3390/v16010073 - 31 Dec 2023
Cited by 2 | Viewed by 1835
Abstract
Rice stripe disease caused by the rice stripe virus (RSV), which infects many Poaceae species in nature, is one of the most devastating plant viruses in rice that causes enormous losses in production. Ailanthone is one of the typical C20 quassinoids synthesized [...] Read more.
Rice stripe disease caused by the rice stripe virus (RSV), which infects many Poaceae species in nature, is one of the most devastating plant viruses in rice that causes enormous losses in production. Ailanthone is one of the typical C20 quassinoids synthesized by the secondary metabolism of Ailanthus altissima, which has been proven to be a biologically active natural product with promising prospects and great potential for use as a lead structure for pesticide development. Based on the achievement of the systemic infection and replication of RSV in Nicotiana benthamiana plants and rice protoplasts, the antiviral properties of Ailanthone were investigated by determining its effects on viral-coding RNA gene expression using reverse transcription polymerase chain reaction, and Western blot analysis. Ailanthone exhibited a dose-dependent inhibitory effect on RSV NSvc3 expression in the assay in both virus-infected tobacco plants and rice protoplasts. Further efforts revealed a potent inhibitory effect of Ailanthone on the expression of seven RSV protein-encoding genes, among which NS3, NSvc3, NS4, and NSvc4 are the most affected genes. These facts promoted an extended and greater depth of understanding of the antiviral nature of Ailanthone against plant viruses, in addition to the limited knowledge of its anti-tobacco mosaic virus properties. Moreover, the leaf disc method introduced and developed in the study for the detection of the antiviral activity of Ailanthone facilitates an available and convenient screening method for anti-RSV natural products or synthetic chemicals. Full article
(This article belongs to the Special Issue Plant Virus Epidemiology and Control 2023)
Show Figures

Figure 1

17 pages, 1991 KiB  
Article
Vaccination against Epstein–Barr Latent Membrane Protein 1 Protects against an Epstein–Barr Virus-Associated B Cell Model of Lymphoma
by Wesley I. Soo Hoo, Kaylie Higa and Alison A. McCormick
Biology 2023, 12(7), 983; https://doi.org/10.3390/biology12070983 - 11 Jul 2023
Cited by 1 | Viewed by 2473
Abstract
In this study, we demonstrate that expression of viral latent membrane protein 1 (LMP1) in a mouse B cell line renders the animals responsive to protection from a 38C13-LMP1 tumor challenge with a novel vaccine. The Epstein–Barr virus (EBV) preferentially infects circulating B [...] Read more.
In this study, we demonstrate that expression of viral latent membrane protein 1 (LMP1) in a mouse B cell line renders the animals responsive to protection from a 38C13-LMP1 tumor challenge with a novel vaccine. The Epstein–Barr virus (EBV) preferentially infects circulating B lymphocytes, has oncogenic potential, and is associated with a wide variety of B cell lymphomas. EBV is ectotrophic to human cells, and currently there are no B cell animal models of EBV-associated lymphoma that can be used to investigate vaccine immunotherapy. Since most EBV-infected human tumor cells express latent membrane protein 1 (LMP1) on their surface, this viral antigen was tested as a potential target for an anticancer vaccine in a mouse model. Here, we describe a new mouse model of LMP1-expressing B cell lymphoma produced with plasmid transduction of 38C13 into mouse B cells. The expression of LMP-1 was confirmed with a western blot analysis and immunocytochemistry. We then designed a novel LMP1 vaccine, by fusing viral antigen LMP1 surface loop epitopes to the surface of a viral antigen carrier, the Tobacco Mosaic virus (TMV). Vaccinated mice produced high titer antibodies against the TMV-LMP1 vaccine; however, cellular responses were at the baseline, as measured with IFNγ ELISpot. Despite this, the vaccine showed significant protection from a 38C13-LMP1 tumor challenge. To provide additional immune targets, we compared TMV-LMP1 peptide immunization with DNA immunization with the full-length LMP1 gene. Anti-LMP1 antibodies were significantly higher in TMV-LMP1-vaccinated mice compared to the DNA-immunized mice, but, as predicted, DNA-vaccinated mice had improved cellular responses using IFNγ ELISpot. Surprisingly, the TMV-LMP1 vaccine provided protection from a 38C13-LMP1 tumor challenge, while the DNA vaccine did not. Thus, we demonstrated that LMP1 expression in a mouse B cell line is responsive to antibody immunotherapy that may be applied to EBV-associated disease. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

15 pages, 1576 KiB  
Article
Design, Synthesis and Various Bioactivity of Acylhydrazone-Containing Matrine Analogues
by Wanjun Ni, Hongjian Song, Lizhong Wang, Yuxiu Liu and Qingmin Wang
Molecules 2023, 28(10), 4163; https://doi.org/10.3390/molecules28104163 - 18 May 2023
Cited by 13 | Viewed by 2632
Abstract
Compounds with acylhydrazone fragments contain amide and imine groups that can act as electron donors and acceptors, so they are easier to bind to biological targets and thus generally exhibit significant biological activity. In this work, acylhydrazone fragments were introduced to the C-14 [...] Read more.
Compounds with acylhydrazone fragments contain amide and imine groups that can act as electron donors and acceptors, so they are easier to bind to biological targets and thus generally exhibit significant biological activity. In this work, acylhydrazone fragments were introduced to the C-14 or C-11 position of matrine, a natural alkaloid, aiming to enhance their biological activities. The result of this bioassay showed that many synthesized compounds exhibited excellent anti-virus activity against the tobacco mosaic virus (TMV). Seventeen out of 25 14-acylhydrazone matrine derivatives and 17 out of 20 11-butanehydrazone matrine derivatives had a higher inhibitory activity against TMV than the commercial antiviral agent Ribavirin (the in vitro activity, in vivo inactivation, curative and protection activities at 500 µg/mL were 40.9, 36.5 ± 0.9, 38.0 ± 1.6 and 35.1 ± 2.2%, respectively), and four 11-butanehydrazone matrine derivatives even had similar to or higher activity than the most efficient antiviral agent Ningnanmycin (55.4, 57.8 ± 1.4, 55.3 ± 0.5 and 60.3 ± 1.2% at 500 µg/mL for the above four test modes). Among them, the N-benzyl-11-butanehydrazone of matrine formed with 4-bromoindole-3-carboxaldehyde exhibited the best anti-TMV activity (65.8, 71.8 ± 2.8, 66.8 ± 1.3 and 69.5 ± 3.1% at 500 µg/mL; 29, 33.5 ± 0.7, 24.1 ± 0.2 and 30.3 ± 0.6% at 100 µg/mL for the above four test modes), deserving further investigation as an antiviral agent. Other than these, the two series of acylhydrazone-containing matrine derivatives were evaluated for their insecticidal and fungicidal activities. Several compounds were found to have good insecticidal activities against diamondback moth (Plutella xylostella) and mosquito larvae (Culex pipiens pallens), showing broad biological activities. Full article
(This article belongs to the Special Issue Emerging Trends in Pesticides Discovery Based on Natural Products)
Show Figures

Figure 1

15 pages, 2057 KiB  
Article
Natural Products for Pesticides Discovery: Structural Diversity Derivation and Biological Activities of Naphthoquinones Plumbagin and Juglone
by Kaihua Wang, Beibei Wang, Henan Ma, Ziwen Wang, Yuxiu Liu and Qingmin Wang
Molecules 2023, 28(8), 3328; https://doi.org/10.3390/molecules28083328 - 9 Apr 2023
Cited by 13 | Viewed by 2900
Abstract
Plant diseases and insect pests seriously affect the yield and quality of crops and are difficult to control. Natural products are an important source for the discovery of new pesticides. In this work, naphthoquinones plumbagin and juglone were selected as parent structures, and [...] Read more.
Plant diseases and insect pests seriously affect the yield and quality of crops and are difficult to control. Natural products are an important source for the discovery of new pesticides. In this work, naphthoquinones plumbagin and juglone were selected as parent structures, and a series of their derivatives were designed, synthesized and evaluated for their fungicidal activities, antiviral activities and insecticidal activities. We found that the naphthoquinones have broad-spectrum anti-fungal activities against 14 types of fungus for the first time. Some of the naphthoquinones showed higher fungicidal activities than pyrimethanil. Compounds I, I-1e and II-1a emerged as new anti-fungal lead compounds with excellent fungicidal activities (EC50 values: 11.35–17.70 µg/mL) against Cercospora, arachidicola Hori. Some compounds also displayed good to excellent antiviral activities against the tobacco mosaic virus (TMV). Compounds I-1f and II-1f showed similar level of anti-TMV activities with ribavirin, and could be used as new antiviral candidates. These compound also exhibited good to excellent insecticidal activities. Compounds II-1d and III-1c displayed a similar level of insecticidal activities with matrine, hexaflumuron and rotenone against Plutella xylostella. In current study, plumbagin and juglone were discovered as parent structures, which lays a foundation for their application in plant protection. Full article
Show Figures

Graphical abstract

12 pages, 2800 KiB  
Article
Discovery of Barakacin and Its Derivatives as Novel Antiviral and Fungicidal Agents
by Yongyue Gao, Xingxing He, Lili Yan, Hongyu Zhang, Sijia Liu, Qian Ma, Peiyao Zhang, Yan Zhang, Zijun Zhang, Ziwen Wang, Aidang Lu and Qingmin Wang
Molecules 2023, 28(7), 3032; https://doi.org/10.3390/molecules28073032 - 29 Mar 2023
Cited by 5 | Viewed by 2274
Abstract
Pesticides are essential for the development of agriculture. It is urgent to develop green, safe and efficient pesticides. Bisindole alkaloids have unique and concise structures and broad biological activities, which make them an important leading skeleton in the creation of new pesticides. In [...] Read more.
Pesticides are essential for the development of agriculture. It is urgent to develop green, safe and efficient pesticides. Bisindole alkaloids have unique and concise structures and broad biological activities, which make them an important leading skeleton in the creation of new pesticides. In this work, we synthesized bisindole alkaloid barakacin in a simple seven-step process, and simultaneously designed and synthesized a series of its derivatives. Biological activity research indicated that most of these compounds displayed good antiviral activities against tobacco mosaic virus (TMV). Among them, compound 14b exerted a superior inhibitory effect in comparison to commercially available antiviral agent ribavirin, and could be expected to become a novel antiviral candidate. Molecular biology experiments and molecular docking research found that the potential target of compound 14b was TMV coat protein (CP). These compounds also showed broad-spectrum anti-fungal activities against seven kinds of plant fungi. Full article
(This article belongs to the Special Issue Emerging Trends in Pesticides Discovery Based on Natural Products)
Show Figures

Figure 1

20 pages, 7717 KiB  
Article
NbMLP43 Ubiquitination and Proteasomal Degradation via the Light Responsive Factor NbBBX24 to Promote Viral Infection
by Liyun Song, Yubing Jiao, Hongping Song, Yuzun Shao, Daoshun Zhang, Chengying Ding, Dong An, Ming Ge, Ying Li, Lili Shen, Fenglong Wang and Jinguang Yang
Cells 2023, 12(4), 590; https://doi.org/10.3390/cells12040590 - 11 Feb 2023
Cited by 5 | Viewed by 2846
Abstract
The ubiquitin–proteasome system (UPS) plays an important role in virus–host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana [...] Read more.
The ubiquitin–proteasome system (UPS) plays an important role in virus–host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana benthamiana against potato virus Y (PVY) infection. PVY infection strongly induced NbMLP43 transcription but decreased NbMLP43 at the protein level. We verified that B-box zinc finger protein 24 (NbBBX24) interacted directly with NbMLP43 and that NbBBX24, a light responsive factor, acted as an essential intermediate component targeting NbMLP43 for its ubiquitination and degradation via the UPS. PVY, tobacco mosaic virus, (TMV) and cucumber mosaic virus (CMV) infections could promote NbMLP43 ubiquitination and proteasomal degradation to enhance viral infection. Ubiquitination occurred at lysine 38 (K38) within NbMLP43, and non-ubiquitinated NbMLP43(K38R) conferred stronger resistance to RNA viruses. Overall, our results indicate that the novel NbMLP43 protein is a target of the UPS in the competition between defense and viral anti-defense and enriches existing theoretical studies on the use of UPS by viruses to promote infection. Full article
Show Figures

Figure 1

11 pages, 1372 KiB  
Article
Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents
by Wanjun Ni, Lizhong Wang, Hongjian Song, Yuxiu Liu and Qingmin Wang
Molecules 2022, 27(21), 7563; https://doi.org/10.3390/molecules27217563 - 4 Nov 2022
Cited by 6 | Viewed by 2187
Abstract
Matrine derivatives were reported to have various biological activities, especially the ester, amide or sulfonamide derivatives of matrine deriving from the hydroxyl or carboxyl group at the end of the branch chain after the D ring of matrine is opened. In this work, [...] Read more.
Matrine derivatives were reported to have various biological activities, especially the ester, amide or sulfonamide derivatives of matrine deriving from the hydroxyl or carboxyl group at the end of the branch chain after the D ring of matrine is opened. In this work, to investigate whether moving away all functional groups from the C-11 branch chain could have an impact on the bioactivities, such as anti-tobacco mosaic virus (TMV), insecticidal and fungicidal activities, a variety of N-substituted-11-butyl matrine derivatives were synthesized. The obtained bioassay result showed that most N-substituted-11-butyl matrine derivatives had obviously enhanced anti-TMV activity compared with matrine, especially many compounds had good inhibitory activity close to that of commercialized virucide Ningnanmycin (inhibition rate 55.4, 57.8 ± 1.4, 55.3 ± 0.5 and 60.3 ± 1.2% at 500 μg/mL; 26.1, 29.7 ± 0.2, 24.2 ± 1.0 and 27.0 ± 0.3% at 100 μg/mL, for the in vitro activity, in vivo inactivation, curative and protection activities, respectively). Notably, N-benzoyl (7), N-benzyl (16), and N-cyclohexylmethyl-11-butyl (19) matrine derivatives had higher anti-TMV activity than Ningnanmycin at both 500 and 100 μg/mL for the four test modes, showing high potential as anti-TMV agent. Furthermore, some compounds also showed good fungicidal activity or insecticidal activity. Full article
Show Figures

Figure 1

13 pages, 1509 KiB  
Article
Synthesis and Biological Activity of Novel Oxazinyl Flavonoids as Antiviral and Anti-Phytopathogenic Fungus Agents
by Yucong Ma, Lu Wang, Aidang Lu and Wei Xue
Molecules 2022, 27(20), 6875; https://doi.org/10.3390/molecules27206875 - 13 Oct 2022
Cited by 13 | Viewed by 2291
Abstract
A series of oxazinyl flavonoids were synthesized on the basis of flavone. The structures of all target compounds were characterized by 1H NMR, 13C NMR, and HRMS. The effect of the different substituent on the N-position of oxazinyl flavonoids against tobacco [...] Read more.
A series of oxazinyl flavonoids were synthesized on the basis of flavone. The structures of all target compounds were characterized by 1H NMR, 13C NMR, and HRMS. The effect of the different substituent on the N-position of oxazinyl flavonoids against tobacco mosaic virus (TMV) activities and plant pathogen activities was systematically investigated. In vivo anti-TMV activity showed that most of the compounds showed moderate-to-excellent antiviral activities against TMV at 500 μg/mL. Compounds 6b, 6d, 6j6k, and 6n6q showed better antiviral activities than ribavirin (a commercially available antiviral agent) and apigenin. In particular, compounds 6n and 6p even displayed slightly higher activities than ningnanmycin, which were expected to become new antiviral candidates. Antiviral mechanism research by molecular docking exhibited that compounds 6n and 6p could interact with TMV CP and inhibit virus assembly. Then, the antifungal activities of these compounds against six kinds of plant pathogenic fungi were tested, and the results showed that these oxazinyl flavonoids had broad-spectrum fungicidal activities. Compounds 6h exhibited antifungal activity of up to 91% against Physalospora piricola and might become a candidate drug for new fungicides. Full article
(This article belongs to the Special Issue Biological Activities of Natural Products III)
Show Figures

Figure 1

14 pages, 2240 KiB  
Article
Antiviral and Antifungal of Ulva fasciata Extract: HPLC Analysis of Polyphenolic Compounds
by Emad H. El-Bilawy, Al-Naji A. Al-Mansori, Fatimah O. Alotibi, Abdulaziz A. Al-Askar, Amr A. Arishi, Islam I. Teiba, Abd El-Naser Sabry, Mohsen Mohamed Elsharkawy, Ahmed A. Heflish, Said I. Behiry and Ahmed Abdelkhalek
Sustainability 2022, 14(19), 12799; https://doi.org/10.3390/su141912799 - 7 Oct 2022
Cited by 19 | Viewed by 3551
Abstract
The increasing usage of chemical control agents, as well as fungicides to manage plant diseases, causes human and environmental health problems. Macroalgae represent a reservoir for a tremendous variety of secondary metabolites that display a wide range of biological activities. However, their anti-phytopathogenic [...] Read more.
The increasing usage of chemical control agents, as well as fungicides to manage plant diseases, causes human and environmental health problems. Macroalgae represent a reservoir for a tremendous variety of secondary metabolites that display a wide range of biological activities. However, their anti-phytopathogenic properties are still being studied. The current study was conducted to investigate whether or not the macroalgae Ulva fasciata extract exhibits antifungal and antiviral activities. In this regard, the organic extracts of U. fasciata were tested for their capabilities against tobacco mosaic virus (TMV) and three molecularly identified fungal isolates, Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea with accession numbers OP363619, OP363620, and OP363621, respectively. Among the three tested extract concentrations, 100 µg/mL had the best biological activity against B. cinerea and TMV, with 69.26%and 81.25% inhibition rates, respectively. The HPLC analysis of chemical profiling of the extract showed the presence of a number of phenolic and flavonoid compounds widely known to display many biological activities. In this line, the 4-Hydroxybenzoic acid was the highest phenolic compound (12.3 µg/mL) present in the extract, followed by ferulic acid (9.05 µg/mL). The 7-hydroxyflavone (12.45 µg/mL) was the highest flavonoid in the organic extract of U. faciata followed by rutin, which recorded a concentration of 7.62 µg/ mL. The results of this study show that the U. fasciata extract has antiviral and antifungal properties, which makes it a possible source of natural antimicrobial agents. Full article
Show Figures

Figure 1

13 pages, 2294 KiB  
Article
Antifungal, Antiviral, and HPLC Analysis of Phenolic and Flavonoid Compounds of Amphiroa anceps Extract
by Emad H. El-Bilawy, Al-Naji A. Al-Mansori, Seham A. Soliman, Fatimah O. Alotibi, Abdulaziz A. Al-Askar, Amr A. Arishi, Abd El-Naser Sabry, Mohsen Mohamed Elsharkawy, Ahmed A. Heflish, Said I. Behiry and Ahmed Abdelkhalek
Sustainability 2022, 14(19), 12253; https://doi.org/10.3390/su141912253 - 27 Sep 2022
Cited by 12 | Viewed by 3287
Abstract
The increasing use of chemical control agents and pesticides to prevent plant disease has resulted in several human and environmental health problems. Seaweeds, e.g., Amphiroa anceps extracts, have significant antimicrobial activities against different human pathogens. However, their anti-phytopathogenic activities are still being investigated. [...] Read more.
The increasing use of chemical control agents and pesticides to prevent plant disease has resulted in several human and environmental health problems. Seaweeds, e.g., Amphiroa anceps extracts, have significant antimicrobial activities against different human pathogens. However, their anti-phytopathogenic activities are still being investigated. In the present investigation, three fungal isolates were isolated from root rot and grey mold symptomatic strawberry plants and were molecularly identified by ITS primers to Fusarium culmorum, Rhizoctonia solani, and Botrytis cinerea with accession numbers MN398396, MN398398, and MN398400, respectively. In addition, the organic extract of the red alga Amphiroa anceps was assessed for its antifungal activity against the three identified fungal isolates and tobacco mosaic virus (TMV) infection. At 100 µg/mL, the A. anceps extract had the best biological activity against R. solani, B. cinerea, and TMV infection, with inhibition rates of 66.67%, 40.61%, and 81.5%, respectively. Contrarily, the A. anceps extract exhibited lower activity against F. culmorum, causing inhibition in the fungal mycelia by only 4.4% at the same concentration. The extract’s HPLC analysis revealed the presence of numerous phenolic compounds, including ellagic acid and gallic acid, which had the highest concentrations of 19.05 and 18.36 µg/mL, respectively. In this line, the phytochemical analysis also showed the presence of flavonoids, with the highest concentration recorded for catechin at 12.45 µg/mL. The obtained results revealed for the first time the effect of the A. anceps extract against the plant fungal and viral pathogens, making the seaweed extract a promising source for natural antimicrobial agents. Full article
Show Figures

Figure 1

18 pages, 5092 KiB  
Article
Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties
by Lili Li, Rongxin Yang, Jianhua Liu, Jingjing Zhang, Hongjian Song, Yuxiu Liu and Qingmin Wang
Molecules 2022, 27(18), 5758; https://doi.org/10.3390/molecules27185758 - 6 Sep 2022
Cited by 3 | Viewed by 2453
Abstract
Based on the scaffolds widely used in drug design, a series of novel tryptophan derivatives containing 2,5-diketopiperazine and acyl hydrazine moieties have been designed, synthesized, characterized, and evaluated for their biological activities. The bioassay results showed that the target compounds possessed moderate to [...] Read more.
Based on the scaffolds widely used in drug design, a series of novel tryptophan derivatives containing 2,5-diketopiperazine and acyl hydrazine moieties have been designed, synthesized, characterized, and evaluated for their biological activities. The bioassay results showed that the target compounds possessed moderate to good antiviral activities against tobacco mosaic virus (TMV), among which compounds 4, 9, 14, 19, and 24 showed higher inactivation, curative, and protection activities in vivo than that of ribavirin (39 ± 1, 37 ± 1, 39 ± 1 at 500 mg/L) and comparable to that of ningnanmycin (58 ± 1, 55 ± 1, 57 ± 1% at 500 mg/L). Thus, these compounds are a promising candidate for anti-TMV development. Most of these compounds showed broad-spectrum fungicidal activities against 13 kinds of phytopathogenic fungi and selective fungicidal activities against Alternaria solani, Phytophthora capsica, and Sclerotinia sclerotiorum. Additionally, some of these compounds exhibited larvicidal activities against Tetranychus cinnabarinus, Plutella xylostella, Culex pipiens pallens, Mythimna separata, Helicoverpa armigera, and Pyrausta nubilalis. Full article
(This article belongs to the Special Issue Advances in Novel Pesticide Discovery)
Show Figures

Graphical abstract

10 pages, 797 KiB  
Article
Indole Alkaloids and Chromones from the Stem Bark of Cassia alata and Their Antiviral Activities
by Pei-Song Yang, Jia-Meng Dai, Xue-Jiao Gu, Wen Xiong, De-Quan Huang, Shi-Yu Qiu, Jun-Na Zheng, Yong Li, Feng-Xian Yang and Min Zhou
Molecules 2022, 27(10), 3129; https://doi.org/10.3390/molecules27103129 - 13 May 2022
Cited by 17 | Viewed by 2975
Abstract
The Cassia (Leguminosae) genus has attracted a lot of attention as a prolific source of alkaloids and chromones with diverse structures and biological properties. The aim of this study is to screen the antiviral compounds from Cassia alata. The extract of the [...] Read more.
The Cassia (Leguminosae) genus has attracted a lot of attention as a prolific source of alkaloids and chromones with diverse structures and biological properties. The aim of this study is to screen the antiviral compounds from Cassia alata. The extract of the stem bark of this plant was separated using silica gel, MCI, ODS C18, and Sephadex LH-20 column chromatography, as well as semi-preparative HPLC. As a result, three new indole alkaloids, alataindoleins A–C (1–3); one new chromone, alatachromone A (4); and a new dimeric chromone-indole alkaloid, alataindolein D (5) were isolated. Their structures were determined by means of HRESIMS and extensive 1D and 2D NMR spectroscopic studies. Interestingly, alataindolein D (5) represents a new type of dimeric alkaloid with an unusual N-2−C-16’ linkage, which is biogenetically derived from a chromone and an indole alkaloid via an intermolecular nucleophilic substitution reaction. Compounds 1–5 were tested for their anti-tobacco mosaic virus (TMV) and anti-rotavirus activities, and the results showed that compounds 2–4 showed high anti-TMV activities with inhibition rates of 44.4%, 66.5%, and 52.3%, respectively. These rates were higher than those of the positive control (with inhibition rate of 32.8%). Compounds 1 and 5 also showed potential anti-TMV activities with inhibition rates of 26.5% and 31.8%, respectively. In addition, compounds 1–5 exhibited potential anti-rotavirus activities with therapeutic index (TI) values in the range of 9.75~15.3. The successful isolation and structure identification of the above new compounds provided materials for the screening of antivirus drugs, and contributed to the development and utilization of C. alata. Full article
Show Figures

Graphical abstract

Back to TopTop