Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = anti-print scan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 12281 KiB  
Article
Investigation of Surface Properties and Antibacterial Activity of 3D-Printed Polyamide 12-Based Samples Coated by a Plasma SiOxCyHz Amorphous Thin Film Approved for Food Contact
by Mario Nicotra, Raphael Palucci Rosa, Valentina Trovato, Giuseppe Rosace, Roberto Canton, Anna Rita Loschi, Stefano Rea, Mahmoud Alagawany, Carla Sabia and Alessandro Di Cerbo
Polymers 2025, 17(12), 1678; https://doi.org/10.3390/polym17121678 - 17 Jun 2025
Viewed by 474
Abstract
Microbial contamination and biofilm formation on food contact materials (FCMs) represent critical challenges within the food supply chain, compromising food safety and quality while increasing the risk of foodborne illnesses. Traditional materials often lack sufficient microbial resistance to contamination, creating a high demand [...] Read more.
Microbial contamination and biofilm formation on food contact materials (FCMs) represent critical challenges within the food supply chain, compromising food safety and quality while increasing the risk of foodborne illnesses. Traditional materials often lack sufficient microbial resistance to contamination, creating a high demand for innovative antimicrobial surfaces. This study assessed the effectiveness of a nanosized deposited SiOxCyHz coating approved for food contact on 3D-printed polyamide 12 (PA12) disk substrates, aiming at providing antimicrobial and anti-biofilm functionality to mechanical components and packaging material in the food supply chain. The coating was applied using plasma-enhanced chemical vapor deposition (PECVD) and characterized through Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and contact angle measurements. Coated PA12 samples exhibited significantly enhanced hydrophobicity, with an average water contact angle of 112.9°, thus improving antibacterial performance by markedly reducing bacterial adhesion. Microbiological assays revealed a significant (p < 0.001) bactericidal activity (up to 4 logarithms after 4 h, ≥99.99%) against Gram-positive and Gram-negative bacteria, including notable foodborne pathogens such as L. monocytogenes, S. aureus, E. coli, and S. typhimurium. SiOxCyHz-coated PA12 surfaces exhibited strong antibacterial activity, representing a promising approach for coating additive-manufactured components and equipment for packaging production in the food and pharmaceutical supply chain able to enhance safety, extend product shelf life, and reduce reliance on chemical sanitizers. Full article
Show Figures

Figure 1

17 pages, 19160 KiB  
Article
A Complementary Approach for Securing and Anti-Counterfeiting of Valuable Documents Based on Encryption of Computer-Generated Hologram
by Zakaria E. Ahmed, Rania M. Abdelazeem, Yasser A. Attia, Tawfik A. Khattab, Claas Falldorf, Ralf B. Bergmann and Mostafa Agour
Sensors 2025, 25(8), 2410; https://doi.org/10.3390/s25082410 - 10 Apr 2025
Viewed by 746
Abstract
We present a novel approach for securing valuable documents using a complementary approach based on the encryption of computer-generated holograms (CGHs). The proposed approach utilizes the well-known iterative Fourier transform algorithm (IFTA) to generate a phase-only CGH for valuable digital and/or physical documents. [...] Read more.
We present a novel approach for securing valuable documents using a complementary approach based on the encryption of computer-generated holograms (CGHs). The proposed approach utilizes the well-known iterative Fourier transform algorithm (IFTA) to generate a phase-only CGH for valuable digital and/or physical documents. The generated CGH is then secured by binary phase randomization, which is implemented using the symmetric encryption technique, exclusive OR (XOR). The reconstruction process for the calculated secured CGHs varied slightly depending on whether the documents were digital or physical. For digital documents, reconstruction was performed using a symmetric decryption key followed by an inverse Fourier transform (IFFT). On the other hand, the reconstruction of the physical document involved two additional processes: printing and scanning. To evaluate the quality of the digital reconstruction, the speckle signal-to-noise ratio (SSNR) was estimated for both printed grayscale and binary CGHs. The security analysis of the XOR-encrypted CGH was quantitatively evaluated to ensure the level of protection against various cryptographic attacks such as plaintext and brute-force attacks. The results revealed that the combination of phase CGHs and the XOR encryption/decryption provides robust cryptographic protection for valuable documents, benefiting document security and anti-counterfeiting. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 5657 KiB  
Article
Development and Characterization of Printlets of Lamivudine for Pediatric Patients Using Selective Laser Sintering
by Canberk Kayalar, Swaroop Jalandar Pansare, Gereziher Sibhat, Mathew Kuttolamadom, Ziyaur Rahman and Mansoor A. Khan
Pharmaceuticals 2025, 18(3), 356; https://doi.org/10.3390/ph18030356 - 1 Mar 2025
Viewed by 1098
Abstract
Background: Lamivudine is widely used alone or in combination with other anti-HIV drugs in the infant to adolescent age groups of pediatric populations. Compounding of medications is frequently used for pediatric patients. However, many issues have been reported for the compounded formulation such [...] Read more.
Background: Lamivudine is widely used alone or in combination with other anti-HIV drugs in the infant to adolescent age groups of pediatric populations. Compounding of medications is frequently used for pediatric patients. However, many issues have been reported for the compounded formulation such as assay, stability, safety, and efficacy. Three-dimensional printing can overcome these issues. Objective: The aim of this study was to understand the effect of process and formulation variables on lamivudine printlets for pediatric populations using selective laser sintering. Methods: The Plackett–Burman screening design was used to prepare 12 formulations to study six variables, namely, laser scanning speed (130–150 °C), surface temperature (105–120 °C), chamber temperature (250–350 mm/s), sucrose (0–30%), hydroxypropyl methylcellulose (0–42%), and Kollidon® CL-M (0–5%). The formulations were tested for dissolution, disintegration, hardness, assay, X-ray diffraction, differential scanning calorimetry, stability, and pharmacokinetics in Sprague Dawley rats. Results: The assay of the printlet formulations varied between 93.1 and 103.5% and the disintegration time was 2.8 ± 1.2 (F1) to 43.7 ± 2.7 (F10) s. Due to high surface temperatures, the unsintered powder in the printing chamber experienced significant changes in crystallinity. No statistical significance was observed between the pharmacokinetic parameters of the printlets and commercial tablets (p > 0.05). The maximum plasma concentration (Cmax), time to reach maximum plasma concentration (Tmax), and area under the curve (AUC) of the printlets and commercial tablets were 295.5 ± 33.0 and 305.0 ± 70.1 ng/mL, 0.5 ± 0.0 and 1.0 ± 0.8 h, and 1414.1 ± 174.0 and 1987.2 ± 700.5 ng.h/mL, respectively. Conclusions: In summary, fast-disintegrating and dissolving 3D printed lamivudine was found to be bioequivalent to commercial formulation of lamivudine. Thus, it is a viable method for dispensing personalized lamivudine printlets for pediatric populations. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

16 pages, 6197 KiB  
Case Report
Limb-Sparing Surgery and Stifle Arthrodesis Using Patient-Specific 3D-Printed Guides and Endoprosthesis for Distal Femoral Chondrosarcoma in a Dog: A Case Report
by Enrico Panichi, Marco Tabbì, Gaetano Principato, Valentina Dal Magro, Fabio Valentini, Marco Currenti and Francesco Macrì
Animals 2025, 15(5), 673; https://doi.org/10.3390/ani15050673 - 26 Feb 2025
Viewed by 1543
Abstract
Limb-sparing techniques for appendicular primary bone tumors are still associated with a high rate of complications. Three-dimensional (3D)-printed patient-specific instruments could reduce these complications. The aim of this study is to describe a limb-sparing surgery using 3D-printed patient-specific guides (PSGs) and an endoprosthesis [...] Read more.
Limb-sparing techniques for appendicular primary bone tumors are still associated with a high rate of complications. Three-dimensional (3D)-printed patient-specific instruments could reduce these complications. The aim of this study is to describe a limb-sparing surgery using 3D-printed patient-specific guides (PSGs) and an endoprosthesis (PSE) to treat femoral chondrosarcoma in a dog. An eight-year-old female Golden Retriever presented with persistent lameness of the right hind limb, reluctance to move and difficulty in maintaining a standing position. Palpation of the right femur revealed an approximately 4 cm painful lesion. Cytological analysis of the needle aspiration supported the clinical and radiological suggestion of a cartilaginous bone neoplasm. Computed tomography (CT) scans suggested the presence of an aggressive lesion on the right distal femur. CT scans of the femur and tibia were then reconstructed using a bone tissue algorithm and processed with computer-aided design (CAD) software, which allowed for performing virtual surgical planning (VSP) and the fabrication of both the PSG and the PSE. Anti-inflammatory drugs and monoclonal antibodies were used for pain management while waiting for surgery. Adjuvant chemotherapy was also administered. An ostectomy of the distal third of the femur to completely remove the tumor was performed with the designed PSG, while the bone defect was filled with the designed PSE. Histopathological examination of the osteotomized bone segment confirmed a grade 2 central chondrosarcoma. There was no excessive tumor growth during the 28 days between the CT scans and surgery. Both PSG and PSE fitted perfectly to the bone surfaces. PSG eliminated the need for intraoperative imaging and ensured a faster and more accurate osteotomy. PSE optimized load sharing and eliminated the complications of the commercial endoprosthesis, such as incongruity and the need for manual intraoperative adjustment. Overall, the use of VSP, 3D-printed PSG and PSE significantly reduced surgical time, risk of infection and intra- and postoperative complications. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

19 pages, 3520 KiB  
Article
Electrochemical Detection of Diclofenac Using a Screen-Printed Electrode Modified with Graphene Oxide and Phenanthroline
by Ana-Raluca Măghinici, Alexandra-Virginia Bounegru and Constantin Apetrei
Chemosensors 2025, 13(2), 55; https://doi.org/10.3390/chemosensors13020055 - 7 Feb 2025
Viewed by 1470
Abstract
In recent years, interest in screen-printed electrodes (SPEs) has grown due to their wide range of applications. Diclofenac (DCF), a widely used non-steroidal anti-inflammatory drug, is a subject of interest in pharmaceutical research as well as environmental research, primarily due to its environmental [...] Read more.
In recent years, interest in screen-printed electrodes (SPEs) has grown due to their wide range of applications. Diclofenac (DCF), a widely used non-steroidal anti-inflammatory drug, is a subject of interest in pharmaceutical research as well as environmental research, primarily due to its environmental contamination and therapeutic applications. This study describes the development and characterization of an innovative screen-printed sensor based on graphene oxide (GO) and phenanthroline (PHEN) for the rapid and highly sensitive determination of diclofenac. The modified sensor was characterized by Fourier Transform Infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The electrochemical behavior of the screen-printed electrodes was assessed through cyclic voltammetry (CV) in phosphate buffer solution (PBS) and potassium ferrocyanide/potassium ferricyanide solution. The cyclic voltammograms of the electrodes modified with GO and PHEN revealed peaks in PBS related to redox processes of PHEN immobilized in the carbonaceous matrix. Additionally, the active surface area of the electrodes was found to be larger for the modified carbon screen-printed electrode with GO and PHEN, which also showed improved sensitivity to the detection of DCF. The limit of detection (1.53 nM) and the sensitivity of the novel sensor were promising, and these performance characteristics enabled the sensitive detection of DCF in different pharmaceutical products. The selectivity was confirmed to be appropriate based on recovery studies conducted with the pharmaceutical products, which produced values close to 100%. Full article
(This article belongs to the Special Issue Electrochemical Biosensors and Bioassays Based on Nanomaterials)
Show Figures

Figure 1

12 pages, 3832 KiB  
Article
Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications
by Michał P. Nowak, Bogusz Stępak, Mateusz Pielach, Yuriy Stepanenko, Tomasz Wojciechowski, Bartosz Bartosewicz, Urszula Chodorow, Marcin Jakubaszek, Przemysław Wachulak and Piotr Nyga
Coatings 2024, 14(10), 1298; https://doi.org/10.3390/coatings14101298 - 11 Oct 2024
Viewed by 2226
Abstract
Plasmonic structural color originates from the scattering and absorption of visible light by metallic nanostructures. Stacks consisting of thin, disordered semicontinuous metal films are attractive plasmonic color media, as they can be mass-produced using industry-proven physical vapor deposition techniques. These films are comprised [...] Read more.
Plasmonic structural color originates from the scattering and absorption of visible light by metallic nanostructures. Stacks consisting of thin, disordered semicontinuous metal films are attractive plasmonic color media, as they can be mass-produced using industry-proven physical vapor deposition techniques. These films are comprised of random nano-island structures of various sizes and shapes resonating at different wavelengths. When irradiated with short-pulse lasers, the nanostructures are locally restructured, and their optical response is altered in a spectrally selective manner. Therefore, various colors are obtained. We demonstrate the generation of structural plasmonic colors through femtosecond laser modification of a thin aluminum film–isolator–metal mirror (TAFIM) structure. Laser-induced structuring of TAFIM’s top aluminum film significantly alters the sample’s specular and diffuse reflectance depending on the fluence value and the number of times a region is scanned. A “negative image” effect is possible, where a dark field observation mode image is a negative of a bright field mode image. This effect is visible using an optical microscope, the naked eye, and a digital camera. The use of self-passivating aluminum results in a long-lasting, non-fading coloration effect. The reported technique could be used in anti-counterfeiting and security applications, as well as in plasmonic color printing and macroscopic and microscopic marking for personalized fine arts and aesthetic products such as jewelry. Full article
(This article belongs to the Special Issue Optical Coatings: From Materials to Applications)
Show Figures

Figure 1

18 pages, 5341 KiB  
Article
Functional Silsesquioxanes—Tailoring Hydrophobicity and Anti-Ice Properties of Polylactide in 3D Printing Applications
by Roksana Konieczna, Robert E. Przekop, Daria Pakuła, Julia Głowacka, Katarzyna Ziętkowska, Rafał Kozera and Bogna Sztorch
Materials 2024, 17(19), 4850; https://doi.org/10.3390/ma17194850 - 1 Oct 2024
Cited by 2 | Viewed by 1401
Abstract
To explore the tailoring of hydrophobicity in 3D-printed polylactide (PLA) composites for advanced applications using additive manufacturing (AM), this study focuses on the use of Fused Deposition Modeling (FDM) 3D printing. PLA, a material derived from renewable sources, is favored for its eco-friendliness [...] Read more.
To explore the tailoring of hydrophobicity in 3D-printed polylactide (PLA) composites for advanced applications using additive manufacturing (AM), this study focuses on the use of Fused Deposition Modeling (FDM) 3D printing. PLA, a material derived from renewable sources, is favored for its eco-friendliness and user accessibility. Nonetheless, PLA’s inherent hydrophilic properties result in moisture absorption, negatively affecting its performance. This research aims to modify PLA with organosilicon compounds to enhance its hydrophobic and anti-icing properties. Incorporating fluorinated siloxane derivatives led to significant increases in water contact angles by up to 39%, signifying successful hydrophobic modification. Mechanical testing demonstrated that the addition of organosilicon additives did not compromise the tensile strength of PLA and, in some instances, improved impact resistance, especially with the use of OSS-4OFP:2HEX:2TMOS, which resulted in an increase in the tensile strength value of 25% and increased impact strength by 20% compared to neat PLA. Differential scanning calorimetry (DSC) analysis indicated that the modified PLA exhibited reduced cold crystallization temperatures without altering the glass transition or melting temperatures. These results suggest that organosilicon-modified PLA has the potential to expand the material’s application in producing moisture and ice-resistant 3D-printed prototypes for various industrial uses, thereby facilitating the creation of more durable and versatile 3D-printed components. Full article
(This article belongs to the Special Issue Materials for Additive Manufacturing Processes)
Show Figures

Figure 1

39 pages, 42293 KiB  
Article
Biomimetic Approach for Enhanced Mechanical Properties and Stability of Self-Mineralized Calcium Phosphate Dibasic–Sodium Alginate–Gelatine Hydrogel as Bone Replacement and Structural Building Material
by Alberto T. Estevez and Yomna K. Abdallah
Processes 2024, 12(5), 944; https://doi.org/10.3390/pr12050944 - 7 May 2024
Cited by 7 | Viewed by 2861
Abstract
Mineralized materials are gaining increased interest recently in a number of fields, especially in bone tissue engineering as bone replacement materials as well as in the architecture-built environment as structural building materials. Until the moment, there has not been a unified sustainable approach [...] Read more.
Mineralized materials are gaining increased interest recently in a number of fields, especially in bone tissue engineering as bone replacement materials as well as in the architecture-built environment as structural building materials. Until the moment, there has not been a unified sustainable approach that addresses this multi-scale application objective by developing a self-mineralized material with minimum consumption of materials and processes. Thus, in the current study, a hydrogel developed from sodium alginate, gelatine, and calcium phosphate dibasic (CPDB) was optimized in terms of rheological properties and mineralization capacity through the formation of hydroxyapatite crystals. The hydrogel composition process adopted a three-stage, thermally induced chemical cross-linking to achieve a stable and enhanced hydrogel. The 6% CPDB-modified SA–gelatine hydrogel achieved the best rheological properties in terms of elasticity and hardness. Different concentrations of epigallocatechin gallate were tested as well as a rheological enhancer to optimize the hydrogel and to boost its anti-microbial properties. However, the results from the addition of EPGCG were not considered significant; thus, the 6% CPDB-modified SA–gelatine hydrogel was further tested for mineralization by incubation in various media, without and with cells, for 7 and 14 days, respectively, using scanning electron microscopy. The results revealed significantly enhanced mineralization of the hydrogel by forming hydroxyapatite platelets of the air-incubated hydrogel (without cells) in non-sterile conditions, exhibiting antimicrobial properties as well. Similarly, the air-incubated bioink with osteosarcoma SaOs-2 cells exhibited dense mineralized topology with hydroxyapatite crystals in the form of faceted spheres. Finally, the FBS-incubated hydrogel and FBS-incubated bioink, incubated for 7 and 14 days, respectively, exhibited less densely mineralized topology and less distribution of the hydroxyapatite crystals. The degradation rate of the hydrogel and bioink incubated in FBS after 14 days was determined by the increase in dimensions of the 3D-printed samples, which was between 5 to 20%, with increase in the bioink samples dimensions in comparison to their dimensions post cross-linking. Meanwhile, after 14 days, the hydrogel and bioink samples incubated in air exhibited shrinkage: a 2% decrease in the dimensions of the 3D-printed samples in comparison to their dimensions post cross-linking. The results prove the capacity of the developed hydrogel in achieving mineralized material with anti-microbial properties and a slow-to-moderate degradation rate for application in bone tissue engineering as well as in the built environment as a structural material using a sustainable approach. Full article
Show Figures

Figure 1

18 pages, 9469 KiB  
Article
Enhanced Fluorescence Characteristics of SrAl2O4: Eu2+, Dy3+ Phosphor by Co-Doping Gd3+ and Anti-Counterfeiting Application
by Peng Gao, Quanxiao Liu, Jiao Wu, Jun Jing, Wenguan Zhang, Junying Zhang, Tao Jiang, Jigang Wang, Yuansheng Qi and Zhenjun Li
Nanomaterials 2023, 13(14), 2034; https://doi.org/10.3390/nano13142034 - 9 Jul 2023
Cited by 8 | Viewed by 3306
Abstract
A series of long-afterglow luminescent materials (SrAl2O4: Eu2+ (SAOE), SrAl2O4: Eu2+, Dy3+ (SAOED) and SrAl2O4: Eu2+, Dy3+, Gd3+ (SAOEDG)) was synthesized via [...] Read more.
A series of long-afterglow luminescent materials (SrAl2O4: Eu2+ (SAOE), SrAl2O4: Eu2+, Dy3+ (SAOED) and SrAl2O4: Eu2+, Dy3+, Gd3+ (SAOEDG)) was synthesized via the combustion method. Temperature and concentration control experiments were conducted on these materials to determine the optimal reaction temperature and ion doping concentration for each sample. The crystal structure and luminescent properties were analyzed via X-ray diffraction (XRD), photoluminescence (PL), and afterglow attenuation curves. The outcomes demonstrate that the kind of crystal structure and the location of the emission peak were unaffected by the addition of ions. The addition of Eu2+ to the matrix’s lattice caused a broad green emission with a central wavelength of 508 nm, which was attributed to the characteristic 4f65d1 to 4f7 electronic dipole, which allowed the transition of Eu2+ ions. While acting as sensitizers, Dy3+ and Gd3+ could produce holes to create a trap energy level, which served as an electron trap center to catch some of the electrons produced by the excitation of Eu2+ but did not itself emit light. After excitation ceased, this allowed them to gently transition to the ground state to produce long-afterglow luminescence. It was observed that with the addition of sensitizer ions, the luminous intensity of the sample increased, and the afterglow duration lengthened. The elemental structure and valence states of the doped ions were determined with an X-ray photoelectron spectrometer (XPS). Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to characterize the samples. The results show that the sample was synthesized successfully, and the type and content of ions in the fluorescent powder could be determined. The fluorescence lifetime, quantum yield, bandgap value, afterglow decay time, and coordinate position in the coherent infrared energy (CIE) diagram of the three best sample groups were then analyzed and compared. Combining the prepared phosphor with ink provides a new idea and method for the field of anti-counterfeiting through screen printing. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Figure 1

19 pages, 11163 KiB  
Article
Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties
by Elena Cojocaru, Jana Ghitman, Gratiela Gradisteanu Pircalabioru, Anamaria Zaharia, Horia Iovu and Andrei Sarbu
Polymers 2023, 15(13), 2854; https://doi.org/10.3390/polym15132854 - 28 Jun 2023
Cited by 9 | Viewed by 2817
Abstract
This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with [...] Read more.
This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin–polyethylene glycol–indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing. Full article
(This article belongs to the Special Issue Functional Polymers for Drug Delivery System II)
Show Figures

Graphical abstract

11 pages, 3305 KiB  
Article
Simple Immunosensor Based on Carboxyl-Functionalized Multi-Walled Carbon Nanotubes @ Antimony-Doped Tin Oxide Composite Membrane for Aflatoxin B1 Detection
by Guanglei Chu, Zengning Liu, Yanyan Zhang, Yemin Guo, Xia Sun and Ming Li
Micromachines 2023, 14(5), 996; https://doi.org/10.3390/mi14050996 - 3 May 2023
Cited by 4 | Viewed by 2146
Abstract
This paper presents a novel nano-material composite membrane for detecting aflatoxin B1 (AFB1). The membrane is based on carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH) @ antimony-doped tin oxide (ATO)-chitosan (CS). To prepare the immunosensor, MWCNTs-COOH were dissolved in the CS solution, [...] Read more.
This paper presents a novel nano-material composite membrane for detecting aflatoxin B1 (AFB1). The membrane is based on carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH) @ antimony-doped tin oxide (ATO)-chitosan (CS). To prepare the immunosensor, MWCNTs-COOH were dissolved in the CS solution, but some MWCNTs-COOH formed aggregates due to the intertwining of carbon nanotubes, blocking some pores. ATO was added to the solution containing MWCNTs-COOH, and the gaps were filled by adsorbing hydroxide radicals to form a more uniform film. This greatly increased the specific surface area of the formed film, resulting in a nano-composite film that was modified on screen-printed electrodes (SPCEs). The immunosensor was then constructed by immobilizing anti-AFB1 antibodies (Ab) and bovine serum albumin (BSA) on an SPCE successively. The assembly process and effect of the immunosensor were characterized using scanning electron microscopy (SEM), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). Under optimized conditions, the prepared immunosensor exhibited a low detection limit of 0.033 ng/mL with a linear range of 1 × 10−3–1 × 103 ng/mL. The immunosensor demonstrated good selectivity, reproducibility, and stability. In summary, the results suggest that the MWCNTs-COOH@ATO-CS composite membrane can be used as an effective immunosensor for detecting AFB1. Full article
Show Figures

Figure 1

16 pages, 6059 KiB  
Article
A Co3O4 Nanoparticle-Modified Screen-Printed Electrode Sensor for the Detection of Nitrate Ions in Aquaponic Systems
by Nguyen Thi Dieu Thuy, Xiaochan Wang, Guo Zhao, Tingyu Liang and Zaihan Zou
Sensors 2022, 22(24), 9730; https://doi.org/10.3390/s22249730 - 12 Dec 2022
Cited by 15 | Viewed by 2766
Abstract
In this study, a screen-printed electrode (SPE) modified with cobalt oxide nanoparticles (Co3O4 NPs) was used to create an all-solid-state ion-selective electrode used as a potentiometric ion sensor for determining nitrate ion (NO3) concentrations in aquaculture water. [...] Read more.
In this study, a screen-printed electrode (SPE) modified with cobalt oxide nanoparticles (Co3O4 NPs) was used to create an all-solid-state ion-selective electrode used as a potentiometric ion sensor for determining nitrate ion (NO3) concentrations in aquaculture water. The effects of the Co3O4 NPs on the characterization parameters of the solid-contact nitrate ion-selective electrodes (SC-NO3-ISEs) were investigated. The morphology, physical properties and analytical performance of the proposed NO3-ion selective membrane (ISM)/Co3O4 NPs/SPEs were studied by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), potentiometric measurements, and potentiometric water layer tests. Once all conditions were optimized, it was confirmed that the screen-printed electrochemical sensor had high potential stability, anti-interference performance, good reproducibility, and no water layer formation between the selective membrane and the working electrode. The developed NO3-ISM/Co3O4 NPs/SPE showed a Nernstian slope of −56.78 mV/decade for NO3 detection with a wide range of 10−7–10−2 M and a quick response time of 5.7 s. The sensors were successfully used to measure NO3 concentrations in aquaculture water. Therefore, the electrodes have potential for use in aquaponic nutrient solution applications with precise detection of NO3 in a complicated matrix and can easily be used to monitor other ions in aquaculture water. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

16 pages, 4473 KiB  
Article
Voltammetric Study for the Determination of Diclofenac in Aqueous Solutions Using Electro-Activated Carbon Electrodes
by Silvia Berto, Enrico Cagno, Enrico Prenesti, Giulia Aragona, Stefano Bertinetti, Agnese Giacomino, Paolo Inaudi, Mery Malandrino, Emanuele Terranova and Ornella Abollino
Appl. Sci. 2022, 12(16), 7983; https://doi.org/10.3390/app12167983 - 9 Aug 2022
Cited by 9 | Viewed by 2288
Abstract
Diclofenac (DCF) is a nonsteroidal anti-inflammatory drug to treat pain and inflammatory diseases. The high consumption of the drug leads to a significant change in the ecosystem. With the aim of optimizing a fast screening analysis for DCF detection on many samples with [...] Read more.
Diclofenac (DCF) is a nonsteroidal anti-inflammatory drug to treat pain and inflammatory diseases. The high consumption of the drug leads to a significant change in the ecosystem. With the aim of optimizing a fast screening analysis for DCF detection on many samples with a sensitive and cheap procedure, we considered electrochemical methods using carbon-based electrodes as sensors. The electrochemical behavior of the DCF was studied on glassy carbon electrodes (GCE) and on screen-printed carbon electrodes (SPCEs) from two different suppliers after an anodic activation. The surface of the SPCEs was analyzed by scanning electron microscope (SEM) and Energy Dispersive Spectrometry (EDS). On all the activated electrodes, the voltammetric procedure (Differential Pulse Voltammetry) for the determination of DCF was optimized by the Experimental Design method, and the linearity range of the response, as well as the calibration and limit parameters (limits of detection—LoD; limit of quantification—LoQ), were defined. Analyses on SPCEs were performed both by immersing the electrode in the solution and by deposing a drop of solution on the electrode. DCF signals are stabilized by the polishing process and enhanced by the anodic activation and acid pH. The electrochemical response of DCF is not reversible, and its by-products tend to be adsorbed on the surfaces, particularly on GCE. The lowest limit parameters were obtained using the GCE (LoD = 1.6 µg L−1) and the SPCE, having the smallest surface, immersed in solution (LoD = 7 µg L−1). Full article
(This article belongs to the Special Issue Pollution Control Chemistry II)
Show Figures

Figure 1

21 pages, 4892 KiB  
Article
Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application
by Oleksandr Matvieiev, Renáta Šelešovská, Marian Vojs, Marián Marton, Pavol Michniak, Vojtěch Hrdlička, Michal Hatala, Lenka Janíková, Jaromíra Chýlková, Jana Skopalová, Petr Cankař and Tomáš Navrátil
Biosensors 2022, 12(4), 241; https://doi.org/10.3390/bios12040241 - 13 Apr 2022
Cited by 28 | Viewed by 4720
Abstract
New screen-printed sensor with a boron-doped diamond working electrode (SP/BDDE) was fabricated using a large-area linear antenna microwave chemical deposition vapor system (LA-MWCVD) with a novel precursor composition. It combines the advantages of disposable printed sensors, such as tailored design, low cost, and [...] Read more.
New screen-printed sensor with a boron-doped diamond working electrode (SP/BDDE) was fabricated using a large-area linear antenna microwave chemical deposition vapor system (LA-MWCVD) with a novel precursor composition. It combines the advantages of disposable printed sensors, such as tailored design, low cost, and easy mass production, with excellent electrochemical properties of BDDE, including a wide available potential window, low background currents, chemical resistance, and resistance to passivation. The newly prepared SP/BDDEs were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Their electrochemical properties were investigated by cyclic voltammetry and electrochemical impedance spectroscopy using inner sphere ([Fe(CN)6]4−/3−) and outer sphere ([Ru(NH3)6]2+/3+) redox probes. Moreover, the applicability of these new sensors was verified by analysis of the anti-inflammatory drug lornoxicam in model and pharmaceutical samples. Using optimized differential pulse voltammetry in Britton–Robinson buffer of pH 3, detection limits for lornoxicam were 9 × 10−8 mol L−1. The oxidation mechanism of lornoxicam was investigated using bulk electrolysis and online electrochemical cell with mass spectrometry; nine distinct reaction steps and corresponding products and intermediates were identified. Full article
Show Figures

Figure 1

16 pages, 1869 KiB  
Article
Electrochemical Development of an Immunosensor for Detection Polychlorinated biphenyls (PCBs) for Environmental Analysis
by Samia Alsefri, Thanih Balbaied and Eric Moore
Chemosensors 2021, 9(11), 307; https://doi.org/10.3390/chemosensors9110307 - 28 Oct 2021
Cited by 14 | Viewed by 3973
Abstract
Polychlorinated biphenyls (PCBs) are a highly toxic family of synthetic chemical compounds. PCBs are widely spread in the environment and their toxicity can cause serious ailments to living organisms such as cancer; therefore, developing a device for the detection of PCBs in the [...] Read more.
Polychlorinated biphenyls (PCBs) are a highly toxic family of synthetic chemical compounds. PCBs are widely spread in the environment and their toxicity can cause serious ailments to living organisms such as cancer; therefore, developing a device for the detection of PCBs in the environment is significant. In this paper, polyclonal primary anti-PCB antibodies were immobilized onto a gold screen-printed electrode with the purpose of creating an electrochemical immunosensor for the detection of Aroclor 1254. It was modified with 11-mercaptoundecanoic acid (11-MUA) and the activation of the carboxylic acid terminal was performed by cross-linking 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hyrodsuccinmide (NHS) on the electrode surface. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS), linear sweep voltammetry, atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle measurement were employed to characterize SAM development on the gold electrode. Using a competitive assay, a 0.09 ng/mL−1 limit of detection and a linear range of 0.101–220 ng/mL−1 were determined. The self-assembled monolayers (SAM) were successful in encapsulating the PCBs on the immunosensor. The electrochemical detection showed better resolution when compared to traditional methods such as the ELISA optical technique. The novel electrochemical immunosensor approach that is discussed in this paper has the potential to offer rapid sample screening in a portable, disposable format and could contribute to the effective control and prevention of PCBs in the environment. Full article
(This article belongs to the Special Issue Electrochemical Immunosensor)
Show Figures

Figure 1

Back to TopTop