Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Procedures
2.3.1. Preparation of Screen-Printed Sensors with Chemically Deposited BDDE
2.3.2. Electrochemical Characterization of Tested Sensors
2.3.3. Voltammetric Analysis of Lornoxicam
3. Results and Discussion
3.1. Surface/Material Characterization
3.2. Electrochemical Characterization
3.2.1. Cyclic Voltammetry
3.2.2. Electrochemical Impedance Spectroscopy
3.3. Application
3.3.1. Voltammetric Behavior of Lornoxicam and Mechanism of Its Electrochemical Oxidation
3.3.2. Determination of Lornoxicam in Model Solutions
3.3.3. Intra- and Inter-Electrode Repeatability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Li, Y.T.; Li, D.W.; Long, Y.T. Recent developments and applications of screen-printed electrodes in environmental assays-a review. Anal. Chim. Acta 2012, 734, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Taleat, Z.; Khoshroo, A.; Mazloum-Ardakani, M. Screen-printed electrodes for biosensing: A review (2008–2013). Microchim. Acta 2014, 181, 865–891. [Google Scholar] [CrossRef]
- Barton, J.; Garcia, M.B.G.; Santos, D.H.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta 2016, 183, 503–517. [Google Scholar] [CrossRef]
- Costa-Rama, E.; Fernandez-Abedul, M.T. Paper-based screen-printed electrodes: A new generation of low-cost electroanalytical platforms. Biosensors 2021, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Hatamie, A.; Rahmati, R.; Rezvani, E.; Angizi, S.; Simchi, A. Yttrium hexacyanoferrate microflowers on freestanding three-dimensional graphene substrates for ascorbic acid detection. ACS Appl. Nano Mater. 2019, 2, 2212–2221. [Google Scholar] [CrossRef]
- Saenchoopa, A.; Klangphukhiew, S.; Somsub, R.; Talodthaisong, C.; Patramanon, R.; Daduang, J.; Daduang, S.; Kulchat, S. A disposable electrochemical biosensor based on screen-printed carbon electrodes modified with silver nanowires/hpmc/chitosan/urease for the detection of mercury (ii) in water. Biosensors 2021, 11, 351. [Google Scholar] [CrossRef]
- Antuna-Jimenez, D.; Gonzalez-Garcia, M.B.; Hernandez-Santos, D.; Fanjul-Bolado, P. Screen-printed electrodes modified with metal nanoparticles for small molecule sensing. Biosensors 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Tyszczuk-Rotko, K.; Kozak, J.; Czech, B. Screen-printed voltammetric sensors—Tools for environmental water monitoring of painkillers. Sensors 2022, 22, 2437. [Google Scholar] [CrossRef]
- Beitollahi, H.; Mohammadi, S.Z.; Safaei, M.; Tajik, S. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: A review. Anal. Met. 2020, 12, 1547–1560. [Google Scholar] [CrossRef]
- Pohanka, M. Screen printed electrodes in biosensors and bioassays. A review. Int. J. Electrochem. Sci. 2020, 15, 11024–11035. [Google Scholar] [CrossRef]
- Stankovic, D.M.; Milanovic, Z.; Svorc, L.; Stankovic, V.; Jankovic, D.; Mirkovic, M.; Duric, S.V. Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. Diam. Relat. Mater. 2021, 113, 108277. [Google Scholar] [CrossRef]
- Patel, K.; Hashimoto, K.; Fujishima, A. Application of boron-doped cvd-diamond film to photoelectrode. Denki Kagaku 1992, 60, 659. [Google Scholar] [CrossRef] [Green Version]
- Swain, G.M.; Ramesham, R. The electrochemical activity of boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 1993, 65, 345–351. [Google Scholar] [CrossRef]
- Swain, G.M.; Anderson, A.B.; Angus, J.C. Applications of diamond thin films in electrochemistry. MRS Bull. 1998, 23, 56–60. [Google Scholar] [CrossRef]
- Fujishima, A.; Einaga, Y.; Rao, T.N.; Tryk, D.A. Diamond Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Luong, J.H.T.; Male, K.B.; Glennon, J.D. Boron-doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. Analyst 2009, 134, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Schwarzova-Peckova, K.; Vosahlova, J.; Barek, J.; Sloufova, I.; Pavlova, E.; Petrak, V.; Zavazalova, J. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes. Electrochim. Acta 2017, 243, 170–182. [Google Scholar] [CrossRef]
- Selesovska, R.; Krankova, B.; Stepankova, M.; Martinkova, P.; Janikova, L.; Chylkova, J.; Vojs, M. Influence of boron content on electrochemical properties of boron-doped diamond electrodes and their utilization for leucovorin determination. J. Electroanal. Chem. 2018, 821, 2–9. [Google Scholar] [CrossRef]
- Yang, N.J.; Yu, S.Y.; Macpherson, J.V.; Einaga, Y.; Zhao, H.Y.; Zhao, G.H.; Swain, G.M.; Jiang, X. Conductive diamond: Synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 2019, 48, 157–204. [Google Scholar] [CrossRef] [PubMed]
- Barek, J.; Fischer, J.; Navratil, T.; Peckova, K.; Yosypchuk, B.; Zima, J. Nontraditional electrode materials in environmental analysis of biologically active organic compounds. Electroanalysis 2007, 19, 2003–2014. [Google Scholar] [CrossRef]
- Peckova, K.; Musilova, J.; Barek, J. Boron-doped diamond film electrodes—New tool for voltammetric determination of organic substances. Crit. Rev. Anal. Chem. 2009, 39, 148–172. [Google Scholar] [CrossRef]
- Peckova, K.; Barek, J. Boron doped diamond microelectrodes and microelectrode arrays in organic electrochemistry. Curr. Org. Chem. 2011, 15, 3014–3028. [Google Scholar] [CrossRef]
- Muzyka, K.; Sun, J.; Fereja, T.H.; Lan, Y.; Zhang, W.; Xu, G. Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Anal. Met. 2019, 11, 397–414. [Google Scholar] [CrossRef]
- Baluchova, S.; Danhel, A.; Dejmkova, H.; Ostatna, V.; Fojta, M.; Schwarzova-Peckova, K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules—A review. Anal. Chim. Acta 2019, 1077, 30–66. [Google Scholar] [CrossRef] [PubMed]
- Toghill, K.E.; Compton, R.G. Metal nanoparticle modified boron doped diamond electrodes for use in electroanalysis. Electroanalysis 2010, 22, 1947–1956. [Google Scholar] [CrossRef]
- Svitkova, J.; Ignat, T.; Svorc, L.; Labuda, J.; Barek, J. Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Crit. Rev. Anal. Chem. 2016, 46, 248–256. [Google Scholar] [CrossRef]
- Matvieiev, O.; Selesovska, R.; Janikova, L. Modification of boron-doped diamond electrode and its application. Sci. Pap. Univ. Pardubic. Ser. A 2021, 27, 73–102. [Google Scholar]
- Couto, R.A.S.; Lima, J.L.F.C.; Quinaz, M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 2016, 146, 801–814. [Google Scholar] [CrossRef]
- Camargo, J.R.; Orzari, L.O.; Araujo, D.A.G.; de Oliveira, P.R.; Kalinke, C.; Rocha, D.P.; dos Santos, A.L.; Takeuchi, R.M.; Munoz, R.A.A.; Bonacin, J.A.; et al. Development of conductive inks for electrochemical sensors and biosensors. Microchem. J. 2021, 164, 105998. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Carbonaceous nanomaterials employed in the development of electrochemical sensors based on screen-printing technique—A review. Catalysts 2020, 10, 680. [Google Scholar] [CrossRef]
- Hatala, M.; Gemeiner, P.; Lorencova, L.; Mikula, M.; Hvojnik, M.; Pavlickova, M.; Haz, A.; Kosnac, D.; Bertok, T.; Tkac, J. Screen-printed conductive carbon layers for dye-sensitized solar cells and electrochemical detection of dopamine. Chem. Pap. 2021, 75, 3817–3829. [Google Scholar] [CrossRef]
- Arumugasamy, S.K.; Govindaraju, S.; Yun, K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl. Surf. Sci. 2020, 508, 145294. [Google Scholar] [CrossRef]
- Rashid, J.I.A.; Kannan, V.; Ahmad, M.H.; Mon, A.A.; Taufik, S.; Miskon, A.; Ong, K.K.; Yusof, N.A. An electrochemical sensor based on gold nanoparticles-functionalized reduced graphene oxide screen printed electrode for the detection of pyocyanin biomarker in pseudomonas aeruginosa infection. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111625. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.H.; Nolan, J.K.; Park, H.; Lam, S.; Fattah, M.; Page, J.C.; Joe, H.E.; Jun, M.B.G.; Lee, H.; Kim, S.J.; et al. Facile fabrication of flexible glutamate biosensor using direct writing of platinum nanoparticle-based nanocomposite ink. Biosens. Bioelectron. 2019, 131, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Terzi, F.; Zanfrognini, B.; Ruggeri, S.; Dossi, N.; Casagrande, G.M.; Piccin, E. Amperometric paper sensor based on cu nanoparticles for the determination of carbohydrates. Sensor. Actuat. B Chem. 2017, 245, 352–358. [Google Scholar] [CrossRef]
- Shen, J.; Dudik, L.; Liu, C.C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensor. Actuat. B Chem. 2007, 125, 106–113. [Google Scholar] [CrossRef]
- Raza, W.; Ahmad, K. A highly selective fe@zno modified disposable screen printed electrode based non-enzymatic glucose sensor (spe/fe@zno). Mater. Lett. 2018, 212, 231–234. [Google Scholar] [CrossRef]
- Sljukic, B.R.; Kadara, R.O.; Banks, C.E. Disposable manganese oxide screen printed electrodes for electroanalytical sensing. Anal. Met. 2011, 3, 105–109. [Google Scholar] [CrossRef]
- Skopalova, J.; Bartak, P.; Bednar, P.; Tomkova, H.; Ingr, T.; Lorencova, I.; Kucerova, P.; Papousek, R.; Borovcova, L.; Lemr, K. Carbon fiber brush electrode as a novel substrate for atmospheric solids analysis probe (asap) mass spectrometry: Electrochemical oxidation of brominated phenols. Anal. Chim. Acta 2018, 999, 60–68. [Google Scholar] [CrossRef]
- Meloun, M.; Militky, J.; Forina, M. Chemometrics for Analytical Chemistry, Volume 1: Pc-Aided Statistical Data Analysis, Volume 2: Pc-Aided Regression and Related Methods; Ellis Horwood: Chichester, UK, 1992; p. 175. [Google Scholar]
- Meloun, M.; Militky, J. Statistical Analysis of Experimental Data; Academia: Prague, Czech Republic, 2006. [Google Scholar]
- Mortet, V.; Taylor, A.; Zivcova, Z.V.; Machon, D.; Frank, O.; Hubik, P.; Tremouilles, D.; Kavan, L. Analysis of heavily boron-doped diamond raman spectrum. Diam. Relat. Mater. 2018, 88, 163–166. [Google Scholar] [CrossRef]
- Moreira, J.C.; Barek, J. Analysis of carcinogenic nitrated polycyclic aromatic-hydrocarbons—A review. Quim. Nova 1995, 18, 362–367. [Google Scholar]
- Pruvost, F.; Deneuville, A. Analysis of the fano in diamond. Diam. Relat. Mater. 2001, 10, 531–535. [Google Scholar] [CrossRef]
- Marton, M.; Vojs, M.; Zdravecka, E.; Himmerlich, M.; Haensel, T.; Krischok, S.; Kotlar, M.; Michniak, P.; Vesely, M.; Redhammer, R. Raman spectroscopy of amorphous carbon prepared by pulsed arc discharge in various gas mixtures. J. Spectrosc. 2013, 2013, 467079. [Google Scholar] [CrossRef]
- Bernard, M.; Deneuville, A.; Muret, P. Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from raman spectroscopy. Diam. Relat. Mater. 2004, 13, 282–286. [Google Scholar] [CrossRef]
- Alehashem, S.; Chambers, F.; Strojek, J.W.; Swain, G.M.; Ramesham, R. Cyclic voltammetric studies of charge-transfer reactions at highly boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 1995, 67, 2812–2821. [Google Scholar] [CrossRef]
- Strojek, J.W.; Granger, M.C.; Swain, G.M.; Dallas, T.; Holtz, M.W. Enhanced signal-to-background ratios in voltammetric measurements made at diamond thin-film electrochemical interfaces. Anal. Chem. 1996, 68, 2031–2037. [Google Scholar] [CrossRef]
- Ferro, S.; De Battisti, A. Electron transfer reactions at conductive diamond electrodes. Electrochim. Acta 2002, 47, 1641–1649. [Google Scholar] [CrossRef]
- Granger, M.C.; Swain, G.M. The influence of surface interactions on the reversibility of ferri/ferrocyanide at boron--doped diamond thin--film electrodes. J. Electrochem. Soc. 1999, 146, 4551–4558. [Google Scholar] [CrossRef]
- Friso, F.; Trasatti, S. Electron transfer at boron-doped diamond electrodes. Comparison with pt, au and ruo2. Collect. Czech. Chem. Commun. 2003, 68, 1621–1635. [Google Scholar] [CrossRef]
- Bard, A.J. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: The challenge. J. Am. Chem. Soc. 2010, 132, 7559–7567. [Google Scholar] [CrossRef]
- Macpherson, J.V. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 2015, 17, 2935–2949. [Google Scholar] [CrossRef]
- Nicholson, R.S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Fischer, A.E.; Show, Y.; Swain, G.M. Electrochemical performance of diamond thin-film electrodes from different commercial sources. Anal. Chem. 2004, 76, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, G.; Adams, R.N. Determination of diffusion coefficients by flow injection analysis. Anal. Chem. 1982, 54, 2618–2620. [Google Scholar] [CrossRef]
- Kovach, P.M.; Deakin, M.R.; Wightman, R.M. Electrochemistry at partially blocked carbon-fiber microcylinder electrodes. J. Phys. Chem. 1986, 90, 4612–4617. [Google Scholar] [CrossRef]
- Oliveira, S.C.B.; Oliveira-Brett, A.M. Voltammetric and electrochemical impedance spectroscopy characterization of a cathodic and anodic pre-treated boron doped diamond electrode. Electrochim. Acta 2010, 55, 4599–4605. [Google Scholar] [CrossRef]
- Radhofer-Welte, S.; Rabasseda, X. Lornoxicam, a new potent nsaid with an improved tolerability profile. Drugs Today 2000, 36, 55–76. [Google Scholar] [CrossRef]
- Helmy, H.S.; El-Sahar, A.E.; Sayed, R.H.; Shamma, R.N.; Salama, A.H.; Elbaz, E.M. Therapeutic effects of lornoxicam-loaded nanomicellar formula in experimental models of rheumatoid arthritis. Int. J. Nanomed. 2017, 12, 7015–7023. [Google Scholar] [CrossRef] [Green Version]
- Mentes, O.; Bagci, M. Postoperative pain management after inguinal hernia repair: Lornoxicam versus tramadol. Hernia 2009, 13, 427–430. [Google Scholar] [CrossRef]
- Torriero, A.A.J.; Tonn, C.E.; Sereno, L.; Raba, J. Electrooxidation mechanism of non-steroidal anti-inflammatory drug piroxicam at glassy carbon electrode. J. Electroanal. Chem. 2006, 588, 218–225. [Google Scholar] [CrossRef]
- Selesovska, R.; Hlobenova, F.; Skopalova, J.; Cankar, P.; Janikova, L.; Chylkova, J. Electrochemical oxidation of anti-inflammatory drug meloxicam and its determination using boron doped diamond electrode. J. Electroanal. Chem. 2020, 858. [Google Scholar] [CrossRef]
- Bozal, B.; Uslu, B. Applications of carbon based electrodes for voltammetric determination of lornoxicam in pharmaceutical dosage form and human serum. Comb. Chem. High Throughput Screen. 2010, 13, 599–609. [Google Scholar] [CrossRef] [PubMed]
Electrode | Cathodic Limit (mV) | Anodic Limit (mV) | Potential Window (mV) |
---|---|---|---|
BDDE | −1090 | +2230 | 3320 |
SP/BDDE | −1350 | +1900 | 3250 |
1LM-SP/BDDE | −1190 | +2000 | 3190 |
2LM-SP/BDDE | −1180 | +1890 | 3070 |
3LM-SP/BDDE | −1150 | +1880 | 3030 |
Electrode | jpa (nA mm−2) | jpc (nA mm−2) | jpa/jpc | Epa (mV) | Epc (mV) | ΔEp (mV) |
---|---|---|---|---|---|---|
BDDE | 857 | −829 | 1.03 | 367 | 221 | 146 |
SP/BDDE | 634 | −535 | 1.18 | 283 | −112 | 395 |
1LM-SP/BDDE | 777 | −665 | 1.17 | 195 | 19 | 176 |
2LM-SP/BDDE | 874 | −816 | 1.07 | 193 | 60 | 133 |
3LM-SP/BDDE | 939 | −882 | 1.06 | 187 | 72 | 115 |
Electrode | jpa (nA mm−2) | jpc (nA mm−2) | jpa/jpc | Epa (mV) | Epc (mV) | ΔEp (mV) |
---|---|---|---|---|---|---|
BDDE | 1283 | −1266 | 1.01 | −47 | −111 | 64 |
SP/BDDE | 1094 | −1144 | 0.96 | −194 | −279 | 85 |
1LM-SP/BDDE | 1059 | −1024 | 1.03 | −200 | −265 | 65 |
2LM-SP/BDDE | 1179 | −1162 | 1.01 | −192 | −251 | 59 |
3LM-SP/BDDE | 1142 | −1144 | 1.00 | −192 | −253 | 61 |
Electrode | Slope (a) (nA s1/2 mV−1/2 mm−2) | Intercept (a) (nA mm−2) | r | Slope (c) (nA s1/2 mV−1/2 mm−2) | Intercept (c) (nA mm−2) | R | ΔEp 1 (mV) | k0app 1 (cm s−1) |
---|---|---|---|---|---|---|---|---|
[Fe(CN)6]4−/3− | ||||||||
BDDE | (55.7 ± 1.1) | (284 ± 18) | 0.9964 | −(55.10 ± 0.91) | −(265 ± 15) | 0.9974 | 146.8 | 1.31 × 10−3 |
SP/BDDE | (43.11 ± 0.80) | (190 ± 13) | 0.9967 | −(38.10 ± 0.61) | −(147.5 ± 10) | 0.9979 | 394.7 | 3.80 × 10−5 |
1LM-SP/BDDE | (56.5 ± 1.0) | (190 ± 17) | 0.9970 | −(46.21 ± 0.60) | −(187.4 ± 10) | 0.9984 | 176.5 | 6.41 × 10−4 |
2LM-SP/BDDE | (65.10 ± 1.12) | (270 ± 19) | 0.9972 | −(55.71 ± 0.80) | −(271 ± 13) | 0.9982 | 132.9 | 1.12 × 10−3 |
3LM-SP/BDDE | (72.41 ± 0.90) | (207 ± 15) | 0.9985 | −(66.51 ± 0.81) | −(208 ± 13) | 0.9986 | 115.0 | 1.42 × 10−3 |
[Ru(NH3)6]2+/3+ | ||||||||
BDDE | (124.61 ± 0.50) | (32.6 ± 8.3) | 0.9996 | −(130.21 ± 0.31) | (37.8 ± 5.6) | 0.9998 | 63.5 | 2.83 × 10−3 |
SP/BDDE | (98.21 ± 0.50) | (88.7 ± 7.8) | 0.9995 | −(123.31 ± 0.20) | (60.4 ± 3.6) | 0.9999 | 85.3 | 2.14 × 10−3 |
1LM-SP/BDDE | (104.91 ± 0.811) | (7 ± 13) | 0.9990 | −(109.00 ± 0.80) | (48 ± 13) | 0.9990 | 65.5 | 2.76 × 10−3 |
2LM-SP/BDDE | (122.2 ± 1.3) | −(49 ± 20) | 0.9980 | −(125.91 ± 0.60) | (91.4 ± 9.8) | 0.9996 | 59.5 | 2.98 × 10−3 |
3LM-SP/BDDE | (127.6 ± 1.6) | −(121 ± 27) | 0.9968 | −(127.10 ± 0.50) | (99.1 ± 7.9) | 0.9997 | 61.5 | 2.91 × 10−3 |
RS (Ω) | RCT (kΩ) | Yo (µMho sn) | N | Yo (µMho s1/2) | |
---|---|---|---|---|---|
[Fe(CN)6]4−/3− | |||||
BDDE | 105 | 11.7 | 0.77 | 0.90 | --- |
SP/BDDE | 499 | 40.1 | 0.75 | 0.95 | --- |
1LM-SP/BDDE | 319 | 21.6 | 0.14 | 0.92 | --- |
2LM-SP/BDDE | 149 | 7.7 | 0.49 | 0.93 | --- |
3LM-SP/BDDE | 119 | 2.4 | 2.17 | 0.86 | --- |
[Ru(NH3)6]2+/3+ | RS (Ω) | RCT (Ω) | Yo (µMho sn) | N | Yo (µMho s1/2) |
BDDE | 189 | 1016 | 1.5 | 0.80 | 93 |
SP/BDDE | 479 | 121 | 2.4 | 0.88 | 581 |
1LM-SP/BDDE | 351 | 151 | 11.1 | 0.62 | 34 |
2LM-SP/BDDE | 145 | 30 | 29.3 | 0.65 | 165 |
3LM-SP/BDDE | 123 | 25 | 90.1 | 0.66 | 455 |
Electrode | Slope (nA mm−2 L µmol−1) | Intercept (nA mm−2) | r | LDR (μmol L−1) | LOD (μmol L−1) |
---|---|---|---|---|---|
BDDE | (3.410 ± 0.020) | (0.58 ± 0.11) | 0.9998 | 0.1–16 | 0.106 |
(2.620 ± 0.020) | (13.50 ± 0.59) | 0.9994 | 17–33 | --- | |
SP/BDDE | (16.27 ± 0.50) | (0.61 ± 0.28) | 0.9980 | 0.02–2.0 | 0.052 |
(6.18 ± 0.21) | (15.02 ± 1.35) | 0.9961 | 2.0–10 | --- | |
1LM-SP/BDDE | (3.200 ± 0.011) | (0.60 ± 0.10) | 0.9999 | 0.1–40 | 0.094 |
2LM-SP/BDDE | (3.584 ± 0.010) | (0.33 ± 0.11) | 0.9999 | 0.1–35 | 0.092 |
3LM-SPBDDE | (4.351 ± 0.012) | (0.08 ± 0.10) | 0.9999 | 0.1–38 | 0.069 |
Model Solution | Added (mol L−1) | Found (mol L−1) | Recovery (%) | RSD5 (%) |
---|---|---|---|---|
BDDE | 5.0 × 10−6 | (5.18 ± 0.23) × 10−6 | 99.1–106.6 | 3.26 |
SP/BDDE | (5.01 ± 0.16) × 10−6 | 95.4–104.4 | 3.11 | |
1LM-SP/BDDE | (5.05 ± 0.18) × 10−6 | 96.0–106.7 | 3.61 | |
2LM-SP/BDDE | (5.07 ± 0.17) × 10−6 | 96.2–105.3 | 3.41 | |
3LM-SP/BDDE | (5.10 ± 0.12) × 10−6 | 97.3–104.3 | 2.44 | |
XefoRapid | Declared (mg/Tbl) | Found (mg/Tbl) | Recovery (%) | RSD5 (%) |
BDDE | 8.0 | (8.15 ± 0.27) | 96.5–105.8 | 3.39 |
SP/BDDE | (8.01 ± 0.32) | 95.5–104.9 | 4.03 | |
1LM-SP/BDDE | (8.07 ± 0.24) | 96.3–105.1 | 3.01 | |
2LM-SP/BDDE | (8.15 ± 0.22) | 97.5–105.5 | 2.71 | |
3LM-SP/BDDE | (8.11 ± 0.20) | 94.1–104.3 | 3.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matvieiev, O.; Šelešovská, R.; Vojs, M.; Marton, M.; Michniak, P.; Hrdlička, V.; Hatala, M.; Janíková, L.; Chýlková, J.; Skopalová, J.; et al. Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application. Biosensors 2022, 12, 241. https://doi.org/10.3390/bios12040241
Matvieiev O, Šelešovská R, Vojs M, Marton M, Michniak P, Hrdlička V, Hatala M, Janíková L, Chýlková J, Skopalová J, et al. Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application. Biosensors. 2022; 12(4):241. https://doi.org/10.3390/bios12040241
Chicago/Turabian StyleMatvieiev, Oleksandr, Renáta Šelešovská, Marian Vojs, Marián Marton, Pavol Michniak, Vojtěch Hrdlička, Michal Hatala, Lenka Janíková, Jaromíra Chýlková, Jana Skopalová, and et al. 2022. "Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application" Biosensors 12, no. 4: 241. https://doi.org/10.3390/bios12040241
APA StyleMatvieiev, O., Šelešovská, R., Vojs, M., Marton, M., Michniak, P., Hrdlička, V., Hatala, M., Janíková, L., Chýlková, J., Skopalová, J., Cankař, P., & Navrátil, T. (2022). Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application. Biosensors, 12(4), 241. https://doi.org/10.3390/bios12040241