Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = anti-drift spray

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14098 KB  
Article
Characteristics of the Liquid Sheet of Air-Induction Spray
by Mingzhi Yan, Fujun Chen, Chen Gong and Can Kang
Agronomy 2025, 15(6), 1270; https://doi.org/10.3390/agronomy15061270 - 22 May 2025
Viewed by 868
Abstract
Spraying remains the primary method of pesticide application in plant protection, and spray drift is one of the important reasons that cause pesticide loss and environmental pollution. Air-induction spray is an anti-drift technology based on the Venturi effect. Unlike standard flat-fan sprays, the [...] Read more.
Spraying remains the primary method of pesticide application in plant protection, and spray drift is one of the important reasons that cause pesticide loss and environmental pollution. Air-induction spray is an anti-drift technology based on the Venturi effect. Unlike standard flat-fan sprays, the atomization mechanism of air-induction sprays has not yet been thoroughly studied. Therefore, a deep understanding of atomization and disintegration characteristics of air-induction spray liquid sheets is very important. This study utilized high-speed camera imaging technology to visualize the liquid sheet of air-induction sprays. Quantitative measurements were conducted on the disintegration length, spray angle, and bubble size of the liquid sheets. A comparative analysis was performed to examine the differences in liquid sheet structures between air-induction sprays and standard flat-fan sprays. The effects of different nozzle configurations and spray pressures on the liquid sheet of air-induction sprays were also discussed. The results indicate that bubbles are typical structures of the liquid sheets of the air-induction spray, and their disintegration can lead to perforations or interfacial disturbances in the liquid sheet. The study observed the coalescence of double or multiple bubbles within the liquid sheet, with atomized droplets potentially containing single or multiple bubbles. Compared to standard flat-fan sprays, air-induction sprays have smaller liquid sheet spray angles and disintegration lengths, by 23.48% and 16.32%, respectively. Bubble size decreases with increasing spray pressure but increases with larger nozzle orifice sizes. The spray angle of the liquid sheet significantly increases with higher spray pressures and larger nozzle orifice sizes. Meanwhile, the disintegration length of the liquid sheet shows a slight increase with rising spray pressures and larger nozzle orifice sizes. Full article
(This article belongs to the Special Issue Advances in Precision Pesticide Spraying Technology and Equipment)
Show Figures

Figure 1

20 pages, 19733 KB  
Article
Experimental Research on the Atomization Characteristics of Air-Induction Spray Based on Oil-Based Emulsion
by Mingzhi Yan, Fujun Chen, Chen Gong and Can Kang
Agronomy 2025, 15(4), 936; https://doi.org/10.3390/agronomy15040936 - 11 Apr 2025
Viewed by 1051
Abstract
Spray drift is one of the major factors that causes pesticide loss and environmental pollution. Air-induction spray is an important anti-drift technology; however, the atomization characteristics of air-induction spray, particularly when the spray liquid is an oil-based emulsion, are not yet fully understood. [...] Read more.
Spray drift is one of the major factors that causes pesticide loss and environmental pollution. Air-induction spray is an important anti-drift technology; however, the atomization characteristics of air-induction spray, particularly when the spray liquid is an oil-based emulsion, are not yet fully understood. In this paper, high-speed photography, PIV (particle image velocimetry) and image processing techniques are used to study the atomization characteristics of the air-induction spray under the oil-based emulsion condition. The structure of liquid sheet, the spatial distributions of the spray droplets size and the velocity are captured and measured. Additionally, the effects of spray pressure and nozzle configuration on atomization characteristics are discussed. The results indicate that, compared to water, air-induction spray under oil-based emulsion conditions exhibits a larger spray angle, a smaller droplet size, a narrower droplet size distribution and a higher droplet velocity. It is indicated that the oil-based emulsion reduces the size of bubbles within the liquid sheet, thereby decreasing the size of bubble-containing droplets. Furthermore, the oil-based emulsion alters the breakup mode of the liquid sheet, leading to an increase in droplet velocity and a narrower droplet size distribution. Both spray pressure and nozzle configuration have significant effect on the atomization characteristics. When the spray pressure changes from 0.1 MPa to 0.3 MPa and 0.5 MPa, the droplet size decreases by 10.56% and 15.67%, respectively, while the droplet velocity increases by 46.12% and 91.06%, respectively. When the nozzle changes from ID120-01 to ID120-03 and ID120-05, the droplet size increases by 20.64% and 33.99%, respectively, while the droplet velocity increases by 3.71% and 14.15%, respectively. Full article
(This article belongs to the Special Issue Advances in Precision Pesticide Spraying Technology and Equipment)
Show Figures

Figure 1

18 pages, 3014 KB  
Article
Efficacy of Entomopathogenic Fungi Against Bruchus rufimanus (Coleoptera: Chrysomelidae) in Laboratory and Field Trials Using Dropleg Spraying Technique
by Adrien Rodrigue Lugendo, Ibtissem Ben Fekih, Rudy Caparros Megido, Jérôme Pierreux, Frédéric Francis and Arnaud Segers
Agriculture 2025, 15(4), 376; https://doi.org/10.3390/agriculture15040376 - 11 Feb 2025
Cited by 5 | Viewed by 2506
Abstract
Entomopathogenic fungi (EPF)-based biopesticides have attracted growing interest in pest management as alternatives to neurotoxic insecticides. Their potential was evaluated against various pests, including the broad bean weevil (Bruchus rufimanus Boheman 1833), a significant threat to faba bean (Vicia faba [...] Read more.
Entomopathogenic fungi (EPF)-based biopesticides have attracted growing interest in pest management as alternatives to neurotoxic insecticides. Their potential was evaluated against various pests, including the broad bean weevil (Bruchus rufimanus Boheman 1833), a significant threat to faba bean (Vicia faba L.) crops. This study examined the entomotoxic effects and sublethal impacts (on oviposition) of three fungal strains under laboratory conditions: Beauveria bassiana (GHA), Metarhizium brunneum (USDA 4556), and M. brunneum (V275) on B. rufimanus adults. Subsequently, a large-scale field trial assessed the efficacy of B. bassiana (GHA) against B. rufimanus infestations using conventional anti-drift and dropleg spraying methods. The laboratory LT50 values ranged from four days for B. bassiana to eight days for M. brunneum (V275). The mortality rates recorded after ten days ranged from 86.6% for M. brunneum (V275) to 96.6% for B. bassiana (GHA). The inhibition of oviposition rates ranged from 12% for M. brunneum (USDA 4556) to 36% for B. bassiana (GHA). Field trials showed that the dropleg nozzles targeted faba bean pods, the oviposition sites of B. rufimanus, more effectively than the anti-drift nozzles. However, both fungal and chemical treatments applied via dropleg nozzles offered limited protection, reducing the infestation rates by 7% and 14%, respectively, with only a 3% improvement over anti-drift nozzles. This suggests that the large-scale spraying of chemical or fungal agents, including B. bassiana GHA, is not an optimal IPM strategy for managing B. rufimanus in faba beans. These laboratory and field results highlight the potential of EPF for managing B. rufimanus. However, the limitations of spray-applied plant protection methods underscore the need to redirect research toward more targeted strategies, such as attract-and-infect or endophytic EPF approaches. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

14 pages, 4800 KB  
Article
The Impact of Fluroxypyr Drift on Soybean Phytotoxicity and the Safety Drift Thresholds
by Qingqing Zhou, Songchao Zhang, Tianqi Lin, Yuxuan Jiao, Chen Cai, Chenchen Xue, Jinwen Ye and Xinyu Xue
Agriculture 2024, 14(12), 2203; https://doi.org/10.3390/agriculture14122203 - 2 Dec 2024
Cited by 3 | Viewed by 1723
Abstract
Maize–soybean intercropping can increase soybean yields and stabilize maize yields, and this practice has been widely promoted in China. Fluroxypyr is a recommended herbicide for maize seedlings, and its drift will cause phytotoxicity to neighboring soybean seedlings. A laboratory toxicity test was performed [...] Read more.
Maize–soybean intercropping can increase soybean yields and stabilize maize yields, and this practice has been widely promoted in China. Fluroxypyr is a recommended herbicide for maize seedlings, and its drift will cause phytotoxicity to neighboring soybean seedlings. A laboratory toxicity test was performed on soybeans by using a mobile bioassay spray tower. It showed that both the carrier volume and the drift deposition rate of fluroxypyr significantly influenced soybean fresh weight. The soybean fresh weight inhibition rate increased with the increase in the drift deposition rate, especially in the range of 1% to 6%, and soybean fresh weight decreased rapidly. The lack of fit R2 was 0.6875, with a 9% maximum deviation between experimental values and simulated values. The drift deposition rate upper threshold for mild phytotoxicity (10% fresh weight inhibition rate, ED10) was determined to be 3.35%, while the threshold for no phytotoxicity (0% fresh weight inhibition rate, ED0) was 1.01%. To ensure soybean safety, isolation devices and anti-drift nozzles were installed on the boom sprayer to maintain drift below ED0 or, at most, ED10. Maize seedling strip weed control field tests showed that the highest drift deposition rate was 0.689% under the carrier volume of 330 L·ha−1. There was no phytotoxicity observed on soybeans after 21 days of application, which was consistent with laboratory research results. In this study, the phytotoxicity risk and safe thresholds for the fluroxypyr drift on soybean seedlings were established, which provide a theoretical basis for the safe production of soybeans. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 3965 KB  
Article
Wind Tunnel Evaluation of Plant Protection Products Drift Using an Integrated Chemical–Physical Approach
by Lorenzo Becce, Giovanna Mazzi, Ayesha Ali, Mara Bortolini, Elena Gregoris, Matteo Feltracco, Elena Barbaro, Daniele Contini, Fabrizio Mazzetto and Andrea Gambaro
Atmosphere 2024, 15(6), 656; https://doi.org/10.3390/atmos15060656 - 30 May 2024
Cited by 5 | Viewed by 2141
Abstract
The use of plant protection products (PPPs) has become fundamental to guarantee excellent field productivity. Nevertheless, their usage presents critical issues, such as the quantity of substances used, the relative toxicity, and the contamination of nearby fields caused by atmospheric drift. This study [...] Read more.
The use of plant protection products (PPPs) has become fundamental to guarantee excellent field productivity. Nevertheless, their usage presents critical issues, such as the quantity of substances used, the relative toxicity, and the contamination of nearby fields caused by atmospheric drift. This study focuses on the characterization of aerosol droplets of PPPs produced by spraying a chemical marker, fluorescein, with an orchard airblast sprayer equipped with conventional hollow cone (HC) and anti-drift air inclusion (AI) nozzles, using a wind tunnel as a controlled environment. A particle/droplet image analysis was employed to study the droplet production of the nozzles, while a liquid chromatography tandem mass spectrometry (HPLC-MS/MS) analysis allowed us to evaluate samples collected using a cascade impactor located at 5 m, 10 m, and 20 m from the emission point. Overall, HC nozzles are very accurate at producing specific drop size distributions (DSDs), while AI nozzles produce a much wider DSD, concentrating the largest part of the distributed volume into droplets of a larger size. The marker concentration was much lower for the AI nozzles compared to the HC nozzles; moreover, the two nozzles show a similar trend in the coarse droplet range, while significantly differing in the fine droplet spectrum. Full article
(This article belongs to the Special Issue Characteristics and Control of Particulate Matter)
Show Figures

Figure 1

18 pages, 19555 KB  
Article
Experimental Study of Quizalofop-p-Ethyl Herbicide Drift Damage to Corn and the Safety Amount of Drift Deposition
by Yuxuan Jiao, Songchao Zhang, Qingqing Zhou, Chenchen Xue, Jinwen Ye, Shenghao Ye, Chundu Wu, Huanchao Han, Zhanxing Mao, Suming Ding and Xinyu Xue
Agronomy 2023, 13(12), 2890; https://doi.org/10.3390/agronomy13122890 - 24 Nov 2023
Cited by 6 | Viewed by 3096
Abstract
Under soybean–corn intercropping in China, quizalofop-p-ethyl is recommended as a herbicide for stem and leaf treatment after soybean seedling. Nonetheless, herbicide drift during spraying may lead to environmental contamination and damage to the corn plants. In order to clearly show the threshold of [...] Read more.
Under soybean–corn intercropping in China, quizalofop-p-ethyl is recommended as a herbicide for stem and leaf treatment after soybean seedling. Nonetheless, herbicide drift during spraying may lead to environmental contamination and damage to the corn plants. In order to clearly show the threshold of the drift deposition amount of quizalofop-p-ethyl that causes herbicide damage to corn, we used a bioassay spray tower to spray quizalofop-p-ethyl herbicide on corn in the laboratory and a boom sprayer to spray quizalofop-p-ethyl herbicide, which drifts to corn in the field, to study and evaluate the damage quizalofop-p-ethyl herbicide causes to corn under different spray volumes and drift deposition rates. The results showed that under a drift deposition rate of 1% of three spray volumes, the corn showed no symptoms of herbicide damage and their plant height was not inhibited 14 days after spray; under a spray volume of 150 L/ha and a drift deposition rate of 5%, the corn showed symptoms of mild herbicide damage but their plant height was not inhibited 14 days after spray, while the corn showed symptoms of moderate herbicide damage and their plant height was slightly and moderately inhibited, respectively, under the spray volumes of 300 L/ha and 450 L/ha; under drift deposition rates of 10% and 30% of three spray volumes, half or more of the corn in each treatment withered and their plant height was severely inhibited or completely inhibited. Under the same spray volume, the symptoms of herbicide damage and the inhibition rate of plant height increased with the increase in the drift deposition rate; under the same drift deposition amount, the symptoms of herbicide damage and the inhibition rate of plant height increased with a decrease in the spray volume. The effect of the drift deposition rate on the symptoms of herbicide damage and plant height was extremely significant, but the spray volume was not significant. The drift deposition rates for 10% inhibition and no inhibition of corn plant height were 5.70% (R10) and 5.05% (R0) under spray volume of 150 L/ha, 4.56% (R10) and 1.23% (R0) under 300 L/ha, and 3.31% (R10) and 1.86% (R0) under 450 L/ha, respectively. When the herbicide was sprayed in the field using a soybean–corn-dedicated plant protection machine under the spray volume of 450 L/ha, the drift deposition rate ranged from 1.22% to 1.69%, and the corn did not produce symptoms of herbicide damage and plant height was not inhibited 14 days after the spray. In actual weeding operations, it is better to ensure that the drift deposition rate of quizalofop-p-ethyl is below R0 by setting reasonable operational parameters, using anti-drift nozzles or additives, and so on, and, at most, not more than R10. This study clarified the drift hazard of quizalofop-p-ethyl herbicide on corn and the safety value of the herbicide drift deposition amount, which provided data support for the standardized use of quizalofop-p-ethyl herbicide under soybean–corn intercropping and guidance for the safe production of field corn. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

13 pages, 2930 KB  
Article
Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application
by Doron Katzman, Ohad Zivan and Yael Dubowski
Atmosphere 2023, 14(11), 1627; https://doi.org/10.3390/atmos14111627 - 30 Oct 2023
Cited by 3 | Viewed by 2248
Abstract
One practice to reduce spray drift during pesticide application is the addition of certain chemical adjuvants to spraying solutions, which change their physicochemical properties and result in larger droplets. The environmental impact of these agrochemicals continues however also after application, depending on surface [...] Read more.
One practice to reduce spray drift during pesticide application is the addition of certain chemical adjuvants to spraying solutions, which change their physicochemical properties and result in larger droplets. The environmental impact of these agrochemicals continues however also after application, depending on surface processes occurring upon treated surfaces. While the impact of anti-drift adjuvants has been studied regarding spray drift, their impact on the fate of deposited pesticides has received little attention. Here, the effect of a polymer-based adjuvant (polyacrylamide) on the photolysis and evaporation rates of pyrimethanil (common fungicide) from dry films were investigated under controlled laboratory conditions and during two field studies. The laboratory results indicate that the adjuvant enhances the volatilization and photolysis rate both on hydrophobic lemon leaves and hydrophilic glass substrates. These results can be attributed to an increase in the geometrical area of residual film and a widening of its circumference rim, where solutes are likely to concentrate, when generated from adjuvant-containing droplets. Such morphological differences may enhance the exposure of deposited pesticides to interact with the overlaying atmosphere and incident radiation. The field data was less conclusive, suggesting a small impact of the anti-drift adjuvant on the fungicide’s secondary drift from crops and an even lower effect on volatilization from bare soil. Full article
Show Figures

Figure 1

18 pages, 3632 KB  
Review
Anti-Drift Technology Progress of Plant Protection Applied to Orchards: A Review
by Shaobo Li, Jianping Li, Shaomeng Yu, Pengfei Wang, Hongjie Liu and Xin Yang
Agronomy 2023, 13(11), 2679; https://doi.org/10.3390/agronomy13112679 - 25 Oct 2023
Cited by 17 | Viewed by 4163
Abstract
In orchard plant protection application, an anti-drift strategy can effectively reduce drift in the non-target area, reduce spray drift in the environment, and avoid spray leakage and overspraying. To clarify the future development direction of orchard plant protection mechanization technology, this review introduces [...] Read more.
In orchard plant protection application, an anti-drift strategy can effectively reduce drift in the non-target area, reduce spray drift in the environment, and avoid spray leakage and overspraying. To clarify the future development direction of orchard plant protection mechanization technology, this review introduces the development status of an anti-drift spray nozzle and the impact of different types of spray nozzles on the potential of drift, and then, it analyzes the research progress on air-assisted spraying, recycling spraying, profiling spraying, target variable spraying technologies, and plant protection UAVs. It also provides a general analysis of the above spraying technologies on the amount of drift and the impact of pesticide deposition. Finally, combined with the characteristics of orchard plant protection, the paper presents the research and development of anti-drift nozzles, pesticide adjuvant, air-assisted spraying technology, electrostatic, recycling spraying technology, profiling and target variable spraying technology, and plant protection UAVs. The review provides a reference for the development of an anti-drift strategy for orchard plant protection production. Full article
Show Figures

Figure 1

11 pages, 1185 KB  
Article
Matching the Liquid Atomization Model to Experimental Data Obtained from Selected Nozzles
by Beata Cieniawska, Stanisław Parafiniuk, Paweł A. Kluza and Zdzisław Otachel
Appl. Sci. 2023, 13(7), 4433; https://doi.org/10.3390/app13074433 - 31 Mar 2023
Cited by 4 | Viewed by 1953
Abstract
The spraying procedure is one of the most difficult operations in agricultural production. Achieving the desired effectiveness of the procedure is dependent on obtaining an appropriate level and uniformity of liquid distribution. The aim of this paper was to present a liquid decomposition [...] Read more.
The spraying procedure is one of the most difficult operations in agricultural production. Achieving the desired effectiveness of the procedure is dependent on obtaining an appropriate level and uniformity of liquid distribution. The aim of this paper was to present a liquid decomposition model generated on the basis of experimental data. The tests were carried out on a test stand, which consisted of a container with nozzles and a grooved table. The experiments were carried out with the use of selected standard, anti-drift, and air-induction single-stream nozzles at constant liquid pressure. The optimization process was carried out in Microsoft Excel Solver. Furthermore, in order to compare the data generated by the model with the data from the virtual boom, we applied an analysis of correlation and linear regression in the Statistica 13.1 software. Based on the results obtained, it can be concluded that the model is a good fit to the experimental data (R2 > 0.95). The model, which was generated on the basis of experimental data, will facilitate control of the operation and degree of wear of nozzles, which will contribute to ensuring uniform spraying. Full article
(This article belongs to the Special Issue New Development in Smart Farming for Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 1914 KB  
Article
Experimental Study of the Droplet Deposition Characteristics on an Unmanned Aerial Vehicle Platform under Wind Tunnel Conditions
by Yuxuan Jiao, Xinyu Xue, Suming Ding, Qingqing Zhou, Wei Kong, Yong Tian and Xiaoming Liu
Agronomy 2022, 12(12), 3066; https://doi.org/10.3390/agronomy12123066 - 3 Dec 2022
Cited by 7 | Viewed by 2374
Abstract
Unmanned aerial vehicles (UAVs) are widely used in field pesticide spray operations due to their wide applicability and high operational efficiency. However, their high spray height and fine pesticide droplets lead to a greater risk of drift and likely different droplet deposition outcomes [...] Read more.
Unmanned aerial vehicles (UAVs) are widely used in field pesticide spray operations due to their wide applicability and high operational efficiency. However, their high spray height and fine pesticide droplets lead to a greater risk of drift and likely different droplet deposition outcomes compared to the expectation. So far, most of the previous studies have used direct field methods on UAVs’ droplet deposition characteristics and there have been few carried out in wind tunnels. Thus, in this paper, a simulated UAV platform equipped with TeeJet 80-015 VP fan nozzles was utilized to study the droplet deposition characteristics in a wind tunnel. The droplet deposition amount and drift potential reduction percentage (DPRP) under different spray parameters were obtained. The results showed that when the rotor was open, the deposition amount in the target area increased by 2.6 times and the drift deposition amount decreased by 7.3 times when spraying tap water at 3 m/s wind speed and 3 bar pressure. Faster wind speeds led to greater drift deposition amounts and a lower DPRP, but higher pressures resulted in greater drift deposition amounts and a larger DPRP. The 30 g/L PEG-20000 solution has a higher droplet size and smaller relative droplet spectrum width RS, resulting in the deposition amount in the target area increasing by 9.13% on average and the drift amount decreasing by 24.7% on average, and it can be used as an anti-drift additive when needed. The research results can provide reference and technical support for UAV wind tunnel tests and field operation specifications. Full article
Show Figures

Figure 1

14 pages, 3406 KB  
Article
Characteristics on the Spatial Distribution of Droplet Size and Velocity with Difference Adjuvant in Nozzle Spraying
by Xinpeng Li, Liping Chen, Qin Tang, Longlong Li, Wu Cheng, Peng Hu and Ruirui Zhang
Agronomy 2022, 12(8), 1960; https://doi.org/10.3390/agronomy12081960 - 19 Aug 2022
Cited by 11 | Viewed by 3257
Abstract
The spatial distribution of droplet size and velocity affects the deposition and distribution on the target. In order to investigate the influence of different adjuvant and pressures on the spatial distribution of droplet size and velocity in atomization area of different nozzles, air [...] Read more.
The spatial distribution of droplet size and velocity affects the deposition and distribution on the target. In order to investigate the influence of different adjuvant and pressures on the spatial distribution of droplet size and velocity in atomization area of different nozzles, air induction flat fan nozzle IDK120-03, multi-range flat fan nozzle LU120-03 and anti-drift flat fan nozzle AD120-03 were selected. Phase Doppler Interferometer (PDI) was used to analyze and compare the distribution of droplet size and velocity in the atomization area of three nozzles when four typical adjuvant Maisi, Maidao, Adsee AB-600 and Surun sprayed at different pressures. The results show that the volume median diameter of droplet size has no obvious change along the vertical direction of the nozzle center and increases with distance in the horizontal direction, the droplet size decreases with increasing pressure at the same position, the adjuvant all increases the droplet size (about 12%, 12%, 10% and 9% for Maisi, Maidao, Surun and Adsee AB-600, respectively), IDK120-03 nozzle droplet size is the largest and LU120-03 nozzle is the smallest in the same position. For droplet velocity distribution, droplet velocity decrease in distance along the vertical and horizontal direction, respectively, the droplet velocity increases with increasing pressure at the same position, compared with water, the droplet velocity increased by about 13%, 9%, 8%, and 4% for Maisi, Maidao, Surun, and Adsee AB-600, respectively, the velocity of AD nozzle is the largest and IDK nozzle is the smallest at the same position. The experiment can provide a basis for the selection of adjuvants and nozzles in pesticide application, and provide a data base for studying the distribution of droplets on the target. Full article
Show Figures

Figure 1

19 pages, 9112 KB  
Article
Research on Droplets Deposition Characteristics of Anti-Drift Spray Device with Multi-Airflow Synergy Based on CFD Simulation
by Guiju Fan, Siyu Wang, Peng Bai, Dongwei Wang, Wenjie Shi and Chengqiang Niu
Appl. Sci. 2022, 12(14), 7082; https://doi.org/10.3390/app12147082 - 13 Jul 2022
Cited by 13 | Viewed by 2545
Abstract
With the increase in orchard areas and the transfer of rural labor, various air-assisted sprayers have been widely used in China. However, the problem of off-target drift still exists, which has caused pesticide waste and environmental pollution. In order to improve the droplet [...] Read more.
With the increase in orchard areas and the transfer of rural labor, various air-assisted sprayers have been widely used in China. However, the problem of off-target drift still exists, which has caused pesticide waste and environmental pollution. In order to improve the droplet deposition in the canopy of fruit trees, a V-shaped anti-drift spray device with multi-airflow synergy was designed in this paper. A droplet spatial motion model was constructed, and the anti-drift mechanism of multi-airflow synergy was clarified based on particle dynamics analysis. The influences of spray pressure and V-shaped wind speed on droplet movement were investigated by Matlab, and the experimental results showed that the machine’s anti-drift effect was better when the V-shaped wind speed ranged from 15 m/s to 25 m/s. According to modern orchards with low root stock in a high-density planting, a simulation model of the flow field between the spray device and the fruit trees canopy was established by the method of computational fluid mechanics (CFD). By considering crosswind speed, V-shaped wind speed, and spray pressure, three-level simulation experiments of droplet deposition were designed for each factor using a partial multivariate orthogonal regression method. The influence of V-shaped wind speed on the droplets’ spatial distribution was analyzed, and the prediction model of the drift distance of the droplets’ deposition center was established. The simulation results showed that the three factors had a significant influence on the droplets’ deposition characteristics, and the degree from big to small was V-shaped wind speed, crosswind speed, and spray pressure. The fitting degree of the prediction model was high, and the correlation coefficient was 0.998. The anti-drift experiments of the machine were carried out, and the results showed that when the crosswind speed, the spray pressure, and V-shaped wind speed were 2.2 m/s, 0.52 MPa, and 20.8 m/s, respectively, the droplet drift rate was 29.2% lower than that of single-airflow. The drift distance of the droplets deposition center was 5.0 cm, which was consistent with the prediction model. The research can provide a basis for the design and parameters optimization of the similar sprayers used in modern orchards with low root stock in a high-density planting. Full article
Show Figures

Figure 1

16 pages, 1341 KB  
Article
The Use of the Permutation Algorithm for Suboptimising the Position of Used Nozzles on the Field Sprayer Boom
by Jacek Wawrzosek and Stanisław Parafiniuk
Appl. Sci. 2022, 12(9), 4359; https://doi.org/10.3390/app12094359 - 25 Apr 2022
Cited by 5 | Viewed by 2362
Abstract
The worn-out nozzles of field sprayers cause agricultural treatment to be uneven and therefore ineffective. Spray nozzles are consumable elements of the field sprayer that are subject to inspection and in the event of their excessive wear should be replaced with new ones [...] Read more.
The worn-out nozzles of field sprayers cause agricultural treatment to be uneven and therefore ineffective. Spray nozzles are consumable elements of the field sprayer that are subject to inspection and in the event of their excessive wear should be replaced with new ones to ensure the proper execution of agricultural treatment. The aim of the study is to propose, using operational research methods, an expert methodology allowing further operation of worn-out and often expensive sprayer nozzles, including standard, universal, anti-drift, or ejector nozzles. The previous attempts, performed with the use of the random computer optimisation method, did not guarantee a global solution in the entire population of all possible permutations without repetitions of 24 worn-out nozzles (for a field boom with a width of 12 m) or even estimating approximation to this solution. The process of measuring the wear of nozzles, the simulation of the entire virtual field boom, and the permutation algorithm proposed here allow you to specify a suboptimal solution of an NP-hard problem separately for each sprayer, i.e., to indicate in a very short time such a permutation out of 24! ≈ 6.20448 × 10+23 permutations of nozzles with variable degrees of wear, which is close to the optimal permutation of used nozzles on the field sprayer boom, in terms of the coefficient of variation. The use of expert methodology allows for reducing the operating costs of sprayers by using a relatively cheap automated expert service instead of the costly purchase of a set of new nozzles for field sprayers. Many areas of application of this methodology have been indicated. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

13 pages, 7022 KB  
Article
Quality Analysis of Some Spray Parameters When Performing Treatments in Vineyards in Order to Reduce Environment Pollution
by Ovidiu Ranta, Ovidiu Marian, Mircea Valentin Muntean, Adrian Molnar, Alexandru Bogdan Ghețe, Valentin Crișan, Sorin Stănilă and Tibor Rittner
Sustainability 2021, 13(14), 7780; https://doi.org/10.3390/su13147780 - 12 Jul 2021
Cited by 17 | Viewed by 3570
Abstract
There is a worldwide trend that supports the rational use of chemicals in agriculture. It has become common knowledge that irresponsible application of pesticides can cause food security issues, by endangering human and animal health while also having negative environmental consequences. The aim [...] Read more.
There is a worldwide trend that supports the rational use of chemicals in agriculture. It has become common knowledge that irresponsible application of pesticides can cause food security issues, by endangering human and animal health while also having negative environmental consequences. The aim of this experiment was to assess the qualitative parameters of spraying treatments in vineyards. To achieve this, a vineyard and orchard sprayer machine was used for the application of treatments under a gradient of pressures (3, 5, 7, 9 bar). Water-sensitive collectors were placed at three heights (0.8 m, 1.5 m, 2.5 m). Following spraying was determined using DepositScan: the volume median diameter characterization of droplets (DV 1, DV 5, DV 9), and coverage degrees of sprayings. Results indicated that best coverage degree and larger droplets tend to be deposited 1.5 m from the ground, which corresponds with the highest proximity to the positioning of the nozzles of the machine during application, and lowest coverage is found at the top, where droplets deposited also tend to be smaller. For the anti-drift nozzle model used in the study, the best coverage was obtained at a pressure of 5 bar. For sustainability of agricultural practices and rational use of pesticides, more research is required for optimization of increased precision spraying that could ensure high coverage at lower doses of chemicals and coarse droplets. In this way the quantity of product sprayed is expected to be reduced, due to minimization of off-target losses and increased efficiency. This can ensure that negative environmental impacts are lowered. Improved treatment application at higher positioning of the canopy remains a challenge and shall receive more attention. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

10 pages, 8681 KB  
Article
Evaluation of Drift-Reducing Nozzles for Pesticide Application in Hazelnut (Corylus avellana L.)
by Marcello Biocca, Maurizio Cutini, Elio Romano, Federico Pallottino and Pietro Gallo
AgriEngineering 2021, 3(2), 230-239; https://doi.org/10.3390/agriengineering3020015 - 14 Apr 2021
Cited by 6 | Viewed by 3671
Abstract
Spraying pesticides using air induction nozzles is a well-known method to reduce drift. These drift-reducing nozzles have been tested on many different tree crops (such as apples, citrus, and grapes), but we are still lacking information on their utilization on hazelnut (Corylus [...] Read more.
Spraying pesticides using air induction nozzles is a well-known method to reduce drift. These drift-reducing nozzles have been tested on many different tree crops (such as apples, citrus, and grapes), but we are still lacking information on their utilization on hazelnut (Corylus avellana L.) groves, although hazelnut is a major nut crop in Italy, and in recent years its cultivated area has been constantly growing. This paper reports a comparison between treatments carried out with cone and flat-fan low-drift nozzles versus two conventional nozzles. The distribution quality, the number of droplets per cm2 of the target area, and the drift in non-target trees adjacent to those treated were evaluated by analyzing the impact of the droplets on water-sensitive papers placed on the tree canopies. The results show that because no significative differences in terms of application quality were found between the tested nozzles, low-drift nozzles can be a good alternative to the standard nozzles to reduce the drift of pesticide applications in hazelnuts without altering the chosen distribution of the pesticide. Full article
(This article belongs to the Special Issue Evaluation of New Technological Solutions in Agriculture)
Show Figures

Figure 1

Back to TopTop