Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (603)

Search Parameters:
Keywords = anti-cancer vaccines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4524 KiB  
Article
An Interpretable Deep Learning and Molecular Docking Framework for Repurposing Existing Drugs as Inhibitors of SARS-CoV-2 Main Protease
by Juan Huang, Jialong Gao and Qu Chen
Molecules 2025, 30(16), 3409; https://doi.org/10.3390/molecules30163409 - 18 Aug 2025
Viewed by 391
Abstract
Despite the widespread use of vaccines against SARS-CoV-2, COVID-19 continues to pose global health challenges, requiring efficient drug screening and repurposing strategies. This study presents a novel hybrid framework that integrates deep learning (DL) with molecular docking to accelerate the identification of potential [...] Read more.
Despite the widespread use of vaccines against SARS-CoV-2, COVID-19 continues to pose global health challenges, requiring efficient drug screening and repurposing strategies. This study presents a novel hybrid framework that integrates deep learning (DL) with molecular docking to accelerate the identification of potential therapeutics. The framework comprises three crucial steps: (1) a previously developed DL model is employed to rapidly screen candidate compounds, selecting those with predicted interaction scores above a cut-off value of 0.8; (2) AutoDock Vina version 1.5.6 and LeDock version 1.0 are used to evaluate binding affinities, with a threshold of <−7.0 kcal·mol−1; and (3) predicted drug–protein binding sites are evaluated to determine their overlap with known active residues of the target protein. We first validated the framework using four experimentally confirmed COVID-19 drug–target pairs and then applied it to identify potential inhibitors of the SARS-CoV-2 main protease (MPro). Among 29 drug candidates selected based on antiviral, anti-inflammatory, or anti-cancer properties, only Enasidenib met all three selection criteria, showing promise as an MPro inhibitor. However, further experimental and clinical studies are required to confirm its efficacy against SARS-CoV-2. This work provides an interpretable strategy for virtual screening and drug repurposing, which can be readily adapted to other DL models and docking tools. Full article
Show Figures

Figure 1

29 pages, 2716 KiB  
Review
Dendritic Cells and Their Crucial Role in Modulating Innate Lymphoid Cells for Treating and Preventing Infectious Diseases
by Yeganeh Mehrani, Solmaz Morovati, Fatemeh Keivan, Tahmineh Tajik, Diba Forouzanpour, Sina Shojaei, Byram W. Bridle and Khalil Karimi
Pathogens 2025, 14(8), 794; https://doi.org/10.3390/pathogens14080794 - 8 Aug 2025
Viewed by 343
Abstract
Two key players in the immune system, dendritic cells (DCs) and innate lymphoid cells (ILCs), interact in a crucial way to fight infectious diseases. DCs play a key role in recognizing pathogens, and ILCs respond to cytokines released by DCs. This response triggers [...] Read more.
Two key players in the immune system, dendritic cells (DCs) and innate lymphoid cells (ILCs), interact in a crucial way to fight infectious diseases. DCs play a key role in recognizing pathogens, and ILCs respond to cytokines released by DCs. This response triggers the production of specific effector cytokines that help control pathogens and maintain the body’s barrier integrity. DCs have various receptors, including Toll-like receptors (TLRs), that detect microbial components and trigger immune responses. Likewise, ILCs act as essential initial responders in the immune system in viral, bacterial, and parasitic infections. Successfully managing diseases caused by pathogens mainly depends on the combined actions of DCs and ILCs, which work to suppress and eliminate pathogens. DCs also play a crucial role in activating innate and adaptive immune cell subsets, including ILCs. Furthermore, the use of DCs in developing vaccines and immunotherapy for cancers, along with the dedication of many researchers to improve immune responses through DCs, has increased interest in the potential of DC therapies for treating and preventing infectious diseases. This review examines approaches that may enhance DC vaccines and boost anti-infection immune responses by fostering better interactions of DCs with ILCs. Full article
Show Figures

Figure 1

15 pages, 1636 KiB  
Article
The Immunoproteasome Is Expressed but Dispensable for a Leukemia Infected Cell Vaccine
by Delphine Béland, Victor Mullins-Dansereau, Karen Geoffroy, Mélissa Viens, Kim Leclerc Desaulniers and Marie-Claude Bourgeois-Daigneault
Vaccines 2025, 13(8), 835; https://doi.org/10.3390/vaccines13080835 - 5 Aug 2025
Viewed by 980
Abstract
Background/Objectives: Leukemia is associated with high recurrence rates and cancer vaccines are emerging as a promising immunotherapy against the disease. Here, we investigate the mechanism of action by which a personalized vaccine made from leukemia cells infected with an oncolytic virus (ICV) induces [...] Read more.
Background/Objectives: Leukemia is associated with high recurrence rates and cancer vaccines are emerging as a promising immunotherapy against the disease. Here, we investigate the mechanism of action by which a personalized vaccine made from leukemia cells infected with an oncolytic virus (ICV) induces anti-tumor immunity. Methods: Using the L1210 murine model, leukemia cells were infected and irradiated to create the ICV. The CRISPR-Cas9 system was used to engineer knockout cells to test in treatment efficacy studies. Results: We found that pro-inflammatory interferons (IFNs) that are produced by infected vaccine cells induce the immunoproteasome (ImP), a specialized proteasome subtype that is found in immune cells. Interestingly, we show that while a vaccine using the oncolytic vesicular stomatitis virus (oVSV) completely protects against tumor challenge, the wild-type (wt) virus, which does not induce the ImP, is not as effective. To delineate the contribution of the ImP for vaccine efficacy, we generated ImP-knockout cell lines and found no differences in treatment efficacy compared to wild-type cells. Furthermore, an ICV using another murine leukemia model that expresses the ImP only when infected by an IFN gamma-encoding variant of the virus demonstrated similar efficacy as the parental virus. Conclusions: Taken together, our data show that ImP expression by vaccine cells was not required for the efficacy of leukemia ICVs. Full article
(This article belongs to the Special Issue Personalised Cancer Vaccines)
Show Figures

Figure 1

26 pages, 1037 KiB  
Review
From Spice to Survival: The Emerging Role of Curcumin in Cancer Immunotherapy
by Jacob M. Parker, Lei Zhao, Trenton G. Mayberry, Braydon C. Cowan, Mark R. Wakefield and Yujiang Fang
Cancers 2025, 17(15), 2491; https://doi.org/10.3390/cancers17152491 - 28 Jul 2025
Viewed by 715
Abstract
Immunotherapy has revolutionized cancer treatments but still faces challenges, particularly with response rates plateauing around 20–40%. This is primarily due to the immunosuppressive nature of the tumor microenvironment (TME) and the lack of required antigen availability. This emphasizes finding agents that can improve [...] Read more.
Immunotherapy has revolutionized cancer treatments but still faces challenges, particularly with response rates plateauing around 20–40%. This is primarily due to the immunosuppressive nature of the tumor microenvironment (TME) and the lack of required antigen availability. This emphasizes finding agents that can improve these response rates, and curcumin has emerged as a promising natural compound with the potential to reengineer the TME by establishing its anti-inflammatory, antioxidant, pro-apoptotic, and anti-angiogenic effects. This review synthesizes the mechanisms by which curcumin affects major oncogenic pathways to synergize with immunotherapies, including immune checkpoint inhibitors, adoptive cell therapies, and cancer vaccinations. Finally, we discuss future directions, current clinical trials, and bioavailability issues with utilizing curcumin clinically. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

26 pages, 1785 KiB  
Review
Targeting RHAMM in Cancer: Crosstalk with Non-Coding RNAs and Emerging Therapeutic Strategies Including Peptides, Oligomers, Antibodies, and Vaccines
by Dong Oh Moon
Int. J. Mol. Sci. 2025, 26(15), 7198; https://doi.org/10.3390/ijms26157198 - 25 Jul 2025
Viewed by 325
Abstract
Cancer remains a major cause of mortality worldwide, driven by complex molecular mechanisms that promote metastasis and resistance to therapy. Receptor for hyaluronan-mediated motility (RHAMM) has emerged as a multifunctional regulator in cancer, contributing to cell motility, invasion, proliferation, and fibrosis. In addition [...] Read more.
Cancer remains a major cause of mortality worldwide, driven by complex molecular mechanisms that promote metastasis and resistance to therapy. Receptor for hyaluronan-mediated motility (RHAMM) has emerged as a multifunctional regulator in cancer, contributing to cell motility, invasion, proliferation, and fibrosis. In addition to being regulated by non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, RHAMM serves as a promising therapeutic target. Recent developments in RHAMM-targeted strategies include function-blocking peptides (e.g., NPI-110, NPI-106, and P15-1), hyaluronan (HA) oligomers, and anti-RHAMM antibodies, all shown to modulate tumor stroma and suppress tumor invasiveness. Importantly, RHAMM-targeted peptide vaccines, such as the RHAMM-R3 epitope, have demonstrated immunogenicity and anti-leukemia efficacy in both pre-clinical and early clinical studies, suggesting their potential to elicit specific CD8+ T-cell responses and enhance graft-versus-leukemia effects. This review summarizes the intricate roles of RHAMM in cancer progression, its modulation by ncRNAs, and the translational promise of novel RHAMM-targeting approaches, providing insights into future directions for precision cancer therapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

28 pages, 2988 KiB  
Review
Circular RNAs as Targets for Developing Anticancer Therapeutics
by Jaewhoon Jeoung, Wonho Kim, Hyein Jo and Dooil Jeoung
Cells 2025, 14(14), 1106; https://doi.org/10.3390/cells14141106 - 18 Jul 2025
Viewed by 745
Abstract
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, [...] Read more.
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, circRNAs show exceptional stability and resistance to RNase degradation. CircRNAs exhibit dysregulated expression patterns in various cancers and influence cancer progression. Stability and regulatory roles in cancer progression make circRNAs reliable biomarkers and targets for the development of anticancer therapeutics. The dysregulated expression of circRNAs is associated with resistance to anticancer drugs. Enhanced glycolysis by circRNAs leads to resistance to anticancer drugs. CircRNAs have been known to regulate the response to chemotherapy drugs and immune checkpoint inhibitors. Exogenous circRNAs can encode antigens that can induce both innate and adaptive immunity. CircRNA vaccines on lipid nanoparticles have been shown to enhance the sensitivity of cancer patients to immune checkpoint inhibitors. In this review, we summarize the roles and mechanisms of circRNAs in anticancer drug resistance and glycolysis. This review discusses clinical applications of circRNA vaccines to overcome anticancer drug resistance and enhance the efficacy of immune checkpoint inhibitors. The advantages and disadvantages of circRNA vaccines are also discussed. Overall, this review stresses the potential value of circRNAs as new therapeutic targets and diagnostic/prognostic biomarkers for cancer Full article
Show Figures

Figure 1

29 pages, 7767 KiB  
Article
Therapeutic Efficacy of CD34-Derived Allogeneic Dendritic Cells Engineered to Express CD93, CD40L, and CXCL13 in Humanized Mouse Models of Pancreatic Cancer
by Sara Huerta-Yepez, Jose D. Gonzalez, Neha Sheik, Senay Beraki, Elango Kathirvel, Ariel Rodriguez-Frandsen, Po-Chun Chen, Tiran Sargsyan, Saleemulla Mahammad, Mark R. Dybul, Lu Chen, Francois Binette and Anahid Jewett
Vaccines 2025, 13(7), 749; https://doi.org/10.3390/vaccines13070749 - 12 Jul 2025
Viewed by 1104
Abstract
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of [...] Read more.
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of DC-based immunotherapy by developing an allogeneic DC platform derived from CD34+ hematopoietic stem cells (HSCs), genetically engineered to overexpress CD93, CD40L, and CXCL13, followed by maturation and tumor antigen pulsing. Methods: Engineered DCs were generated from CD34+ HSCs and matured in vitro after lentiviral transduction of CD93, CD40L, and CXCL13. Tumor lysates were used for antigen pulsing. A scrambled-sequence control DC was used for comparison. In vitro assays were performed to assess T cell activation and tumor cell killing. In vivo efficacy was evaluated using orthotopic pancreatic tumors in BLT and PBMC-humanized NSG mice established with the MiaPaca-2 (MP2) cell line. Results: Engineered DCs significantly enhanced T cell activation and tumor-specific cytotoxicity in vitro compared to control DCs. Antigen pulsing further amplified immune activation. In vivo, treated humanized mice showed increased CD4+, CD8+, and NK cell frequencies in peripheral blood and within tumors, correlating with reduced tumor burden. Conclusions: Our data shows that the antigen-pulsed, engineered DCs have the potency to activate immune cells, which leads to a significant reduction in pancreatic tumors and therefore could potentially provide an effective therapeutic opportunity for the treatment of pancreatic cancer and other solid tumors. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Graphical abstract

15 pages, 452 KiB  
Systematic Review
The Efficacy of Neoantigen-Loaded Dendritic Cell Vaccine Immunotherapy in Non-Metastatic Gastric Cancer
by Menelaos Papakonstantinou, Paraskevi Chatzikomnitsa, Areti Danai Gkaitatzi, Athanasia Myriskou, Alexandros Giakoustidis, Dimitrios Giakoustidis and Vasileios N. Papadopoulos
Med. Sci. 2025, 13(3), 90; https://doi.org/10.3390/medsci13030090 - 11 Jul 2025
Viewed by 1218
Abstract
Introduction: Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Even though surgery and chemotherapy are the mainstay of treatment, immunotherapy, and more specifically anti-tumor vaccination, has gained popularity over the past years due to the lower related toxicity and [...] Read more.
Introduction: Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Even though surgery and chemotherapy are the mainstay of treatment, immunotherapy, and more specifically anti-tumor vaccination, has gained popularity over the past years due to the lower related toxicity and fewer long-term side effects. Dendritic cell (DC) vaccines have been shown to induce tumor specific cytotoxic T-cell (CTL) responses both in vitro and in vivo; however, due to the nature of the disease, resistance to immunotherapy is often developed. Various modifications, such as the implementation of viral vectors, tumor RNA, or even tumor-specific peptides (neoantigens), have been studied as a means to avoid resistance and enhance the effectiveness of the vaccines. In this review, we aim to assess the effects of neoantigen-loaded DC vaccines (naDCVs) on the immune response against gastric cancer cells. Materials and methods: A thorough literature search was conducted on PubMed and clinicaltrials.gov for studies assessing the efficacy of naDCVs against gastric cancer both in vivo and in vitro. The studies were assessed for eligibility by two independent reviewers based on predetermined inclusion and exclusion criteria. The search was completed following the PRISMA guidelines. Results: Eleven studies were included in our systematic review. In five of the studies, the effects of the naDCVs were tested in vitro; in two and in four they were examined both in vitro and in vivo. The in vitro studies showed that the naDCVs resulted in a more robust immune response against the cancer cells in the study groups compared to the control groups. The in vivo studies conducted on mice showed that tumor volume was reduced in the groups treated with the naDCV compared to the untreated groups. What is more, the cytotoxic effect of CTLs against tumor cells was also increased in the vaccine groups. One of the studies was conducted on humans as a phase I study. The results show increased CTL proliferation and cytokine production in the vaccinated group compared to the control, but no difference regarding the tumor size was observed. Conclusions: Neoantigen-loaded DC vaccines can stimulate a strong immune response against specific gastric cancer cell peptides and enhance tumor cell lysis, therefore hindering or even reversing disease progression, offering great potential for the treatment of patients with gastric cancer. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

15 pages, 4481 KiB  
Article
Nodal Expansion, Tumor Infiltration and Exhaustion of Neoepitope-Specific Th Cells After Prophylactic Peptide Vaccination and Anti-CTLA4 Therapy in Mouse Melanoma B16
by Alexandra V. Shabalkina, Anna V. Izosimova, Ekaterina O. Ryzhichenko, Elizaveta V. Shurganova, Daria S. Myalik, Sofia V. Maryanchik, Valeria K. Ruppel, Dmitriy I. Knyazev, Nadezhda R. Khilal, Ekaterina V. Barsova, Irina A. Shagina and George V. Sharonov
Int. J. Mol. Sci. 2025, 26(13), 6453; https://doi.org/10.3390/ijms26136453 - 4 Jul 2025
Cited by 1 | Viewed by 436
Abstract
Peptide vaccines possess several advantages over mRNA vaccines but are generally less effective at inducing antitumor immunity. The bottlenecks limiting peptide vaccine efficacy could be elucidated by tracking and comparing vaccine-induced T-lymphocytes in successful and unsuccessful cases. Here we have applied our recent [...] Read more.
Peptide vaccines possess several advantages over mRNA vaccines but are generally less effective at inducing antitumor immunity. The bottlenecks limiting peptide vaccine efficacy could be elucidated by tracking and comparing vaccine-induced T-lymphocytes in successful and unsuccessful cases. Here we have applied our recent database of neoantigen-specific T cell receptors (TCRs) to profile tumor-specific T cells following vaccination with a neoantigen peptide vaccine and to correlate this with the response. Mice were vaccinated prophylactically with p30 peptide encoding B16 melanoma neoantigen (K739N mutation in Kif18b gene). The B16F0 melanoma in the vaccinated mice was additionally treated by a CTLA-4 checkpoint blockade. T cells from the tumors, tumor-draining lymph nodes (tdLNs) and vaccine depots were isolated, phenotyped, sorted by subsets and sequenced for TCR repertoires. The vaccine induced the accumulation of tumor-specific CD4+ Th cells in the tdLNs, while in the tumors these cells were present and their frequencies were not changed by the vaccine. These cells also accumulated at the vaccine depots, where they were phenotypically skewed by the vaccine components; however, these effects were minor due to approximately 50-fold lower cell quantities compared to the tdLNs. Only some of the p30-specific Th cells showed tumoricidal activity, as revealed by the reverse correlation of their frequencies in the tdLNs with the tumor size. The CTLA-4 blockade did not affect the tumor growth or the frequencies of tumor-specific cells but did stimulate Th cell motility. Thus, we have shown that tumor-specific Th clones accumulate and/or expand in the tdLNs, which correlates with tumor suppression but only for some of these clones. Tumor infiltration by these clones is not correlated with the growth rate. Full article
(This article belongs to the Special Issue New Insights in Tumor Immunity)
Show Figures

Figure 1

14 pages, 1180 KiB  
Review
Effects of the Alkylating Agent Cyclophosphamide in Potentiating Anti-Tumor Immunity
by Benjamin D. Gephart, Don W. Coulter and Joyce C. Solheim
Int. J. Mol. Sci. 2025, 26(13), 6440; https://doi.org/10.3390/ijms26136440 - 4 Jul 2025
Cited by 1 | Viewed by 625
Abstract
Cyclophosphamide (CPX) is an alkylating agent commonly used for various hematological and solid malignancies. In addition to its use as a cytotoxic agent to directly kill tumor cells, numerous immunomodulatory properties of CPX in the tumor microenvironment (TME) of several cancer types have [...] Read more.
Cyclophosphamide (CPX) is an alkylating agent commonly used for various hematological and solid malignancies. In addition to its use as a cytotoxic agent to directly kill tumor cells, numerous immunomodulatory properties of CPX in the tumor microenvironment (TME) of several cancer types have also been documented. These properties include the selective depletion of immune-suppressive regulatory T cells (Tregs), triggering of immunogenic cell death (ICD) and enhanced antigen presentation, and release of type I interferons (IFNs). Moreover, preclinical models as well as human clinical trials have investigated the efficacy of the low-dose “metronomic” scheduling of CPX in combination with immunotherapies such as immune checkpoint inhibitors, dendritic cell tumor vaccines, and tumor antigen peptide vaccines. The metronomic dosing schedule involves administering a continuous (or frequent, such as daily) low dose of chemotherapy rather than using the canonical approach of administering the maximum tolerated dose. Despite the approval of immune checkpoint inhibitors for clinical usage against an increasing number of cancers, many malignancies simply do not respond to checkpoint inhibition, in part due to the heterogeneous intratumoral network of immune-suppressive cell populations. The immunomodulatory effects of cyclophosphamide have strong translational applicability and could serve to enhance and bolster anti-tumor immunity, potentially synergizing with immune checkpoint inhibitors and other existing immunotherapy agents. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

28 pages, 9321 KiB  
Article
In Situ Vaccination with a Vpr-Derived Peptide Elicits Systemic Antitumor Immunity by Improving Tumor Immunogenicity
by Danjie Pan, Ling Du, Jiayang Liu, Kudelaidi Kuerban, Xuan Huang, Yue Wang, Qiuyu Guo, Huaning Chen, Songna Wang, Li Wang, Pinghong Zhou, Zhefeng Meng and Li Ye
Vaccines 2025, 13(7), 710; https://doi.org/10.3390/vaccines13070710 - 30 Jun 2025
Viewed by 739
Abstract
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein [...] Read more.
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein R (Vpr) peptides as effective candidates for constructing anonymous antigen vaccines in situ by directly injecting at the tumor site and releasing whole-tumor antigens, inducing robust anti-tumor immune responses to overcome the limitations of predefined antigen vaccines. Methods: The cytotoxic effects of Vpr peptides were evaluated using the CCK8 reagent kit. Membrane penetration ability of Vpr peptides was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. EGFR levels in the cell culture supernatants of cells treated with Vpr peptides were evaluated using an ELISA. Surface exposure of CRT on the tumor cell surface was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. The secretion levels of ATP from tumor cells were evaluated using an ATP assay kit. HMGB1 release was evaluated using an ELISA. Mouse (Male C57BL/6 mice aged 4 weeks) MC38 and LLC bilateral subcutaneous tumor models were established to evaluate the therapeutic effects of Vpr peptides through in situ vaccination. Proteomic analysis was performed to explore the mechanism of anti-tumor activity of Vpr peptides. Results: Four Vpr peptides were designed and synthesized, with P1 and P4 exhibiting cytotoxic effects on tumor cells, inducing apoptosis and immunogenic cell death. In mouse tumor models, in situ vaccination with Vpr peptide significantly inhibited tumor growth and activated various immune cells. High-dose P1 monotherapy demonstrated potent anti-tumor effects, activating DCs, T cells, and macrophages. Combining ISV of P1 with a CD47 inhibitor SIRPαFc fusion protein showed potent distant tumor suppression effects. Proteomic analysis suggested that Vpr peptides exerted anti-tumor effects by disrupting tumor cell morphology, movement, and adhesion, and promoting immune cell infiltration. Conclusions: The designed Vpr peptides show promise as candidates for in situ vaccination, with significant anti-tumor effects, immune activation, and favorable safety profiles observed in mouse models. In situ vaccination with Vpr-derived peptides represents a potential approach for cancer immunotherapy. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

40 pages, 2128 KiB  
Review
Therapeutic Colorectal Cancer Vaccines: Emerging Modalities and Translational Opportunities
by Palaniyandi Muthukutty, Hyun Young Woo and So Young Yoo
Vaccines 2025, 13(7), 689; https://doi.org/10.3390/vaccines13070689 - 26 Jun 2025
Viewed by 1354
Abstract
Therapeutic vaccines offer a targeted approach to enhancing anti-tumor immunity with minimal systemic toxicity. Despite advancements in surgery, chemotherapy, radiation, and immunotherapy, colorectal cancer (CRC) remains a major clinical challenge, particularly due to the limited efficacy of immune checkpoint inhibitors outside the MSI-H [...] Read more.
Therapeutic vaccines offer a targeted approach to enhancing anti-tumor immunity with minimal systemic toxicity. Despite advancements in surgery, chemotherapy, radiation, and immunotherapy, colorectal cancer (CRC) remains a major clinical challenge, particularly due to the limited efficacy of immune checkpoint inhibitors outside the MSI-H subgroup. In this comprehensive review summarizes the emerging vaccine modalities for CRC, including peptide, nucleic acid, cell-based, vector-driven, and nanotechnology platforms. We discuss the barriers posed by tumor immune evasion and heterogeneity, and highlight innovative strategies designed to improve vaccine efficacy. Finally, we explore recent clinical developments and translational opportunities that position therapeutic vaccines as a promising component of future CRC immunotherapy. Full article
(This article belongs to the Special Issue Cancer Vaccines: 4th Edition)
Show Figures

Figure 1

12 pages, 649 KiB  
Review
Melanoma Vaccines: Comparing Novel Adjuvant Treatments in High-Risk Patients
by Joseph C. Broderick, Alexandra M. Adams, Elizabeth L. Barbera, Spencer Van Decar, Guy T. Clifton and George E. Peoples
Vaccines 2025, 13(6), 656; https://doi.org/10.3390/vaccines13060656 - 19 Jun 2025
Viewed by 771
Abstract
Background: The emergence of checkpoint inhibitors (CPIs) has significantly improved survival outcomes in later-stage melanoma. However, the efficacy of these treatments remains limited, with around 50% of later-stage melanoma patients experiencing recurrence. As variable response rates to CPIs persist, the development of cancer [...] Read more.
Background: The emergence of checkpoint inhibitors (CPIs) has significantly improved survival outcomes in later-stage melanoma. However, the efficacy of these treatments remains limited, with around 50% of later-stage melanoma patients experiencing recurrence. As variable response rates to CPIs persist, the development of cancer vaccines has emerged as a potential strategy to augment antitumor immune responses. Results: This review compares two promising personalized therapeutic cancer vaccine trials in advanced melanoma: Elios Therapeutics’ Tumor Lysate (TL) vaccine and Moderna’s mRNA-4157 vaccine. The TL vaccine, which utilizes yeast cell wall particles (YCWPs) loaded with autologous tumor lysate, and the mRNA-4157 vaccine, which encodes up to 34 patient-specific neoantigens, both aim to stimulate robust tumor-specific immune responses. Both trials were phase 2b randomized studies, with Elios Therapeutics’ trial employing a double-blind, placebo-controlled design, while Moderna’s was open-label. Both trials had roughly equivalent sample sizes (n = 187 and n = 157, respectively) with similar demographics and disease characteristics. The TL trial reported improvements in disease-free survival (DFS) with a hazard ratio (HR) of 0.52 (p < 0.01) over 36 months, whereas the mRNA-4157 trial demonstrated improvements in recurrence-free survival (RFS) with an HR of 0.56 (p = 0.053) over 18 months. The TL vaccine exhibited lower rates of related grade 3 adverse events (<1%) compared to the mRNA vaccine (12%). Key differences between the two trials include the use of CPIs, with 100% of patients in the mRNA trial receiving pembrolizumab versus 37% of the patients in the TL trial receiving either an anti-PD-1 or anti-CTLA-4. The production processes also varied significantly, with the mRNA vaccine requiring individualized sequencing and a 9-week production time, while the TL vaccine utilized tumor lysate with a 1–3-day production time. Conclusions: While both vaccines demonstrated promising efficacy, future phase 3 trials are needed to further evaluate their potential as adjuvant therapies for melanoma. This review highlights the comparative strengths and limitations of these vaccine platforms, providing insight into the evolving landscape of adjuvant cancer vaccines. Full article
Show Figures

Figure 1

19 pages, 1427 KiB  
Article
Citrullinated ENO1 Vaccine Enhances PD-1 Blockade in Mice Implanted with Murine Triple-Negative Breast Cancer Cells
by Ricardo A. León-Letelier, Alejandro M. Sevillano-Mantas, Yihui Chen, Soyoung Park, Jody Vykoukal, Johannes F. Fahrmann, Edwin J. Ostrin, Candace Garrett, Rongzhang Dou, Yining Cai, Fu-Chung Hsiao, Jennifer B. Dennison, Eduardo Vilar, Banu K. Arun, Samir Hanash and Hiroyuki Katayama
Vaccines 2025, 13(6), 629; https://doi.org/10.3390/vaccines13060629 - 11 Jun 2025
Viewed by 1224
Abstract
Background/Objectives:Cancer vaccine targets mostly include mutations and overexpressed proteins. However, cancer-associated post-translational modifications (PTMs) may also induce immune responses. Previously, our group established the enzyme protein arginine deiminase type-2 (PADI2), which catalyzes citrullination modification, is highly expressed in triple-negative breast cancer (TNBC), [...] Read more.
Background/Objectives:Cancer vaccine targets mostly include mutations and overexpressed proteins. However, cancer-associated post-translational modifications (PTMs) may also induce immune responses. Previously, our group established the enzyme protein arginine deiminase type-2 (PADI2), which catalyzes citrullination modification, is highly expressed in triple-negative breast cancer (TNBC), promoting antigenicity. Methods: Here, we show the workflow of designing citrullinated enolase 1 (citENO1) vaccine peptides identified from breast cancer cells by mass spectrometry and demonstrate TNBC vaccine efficacy in the mouse model. Immunized mice with citENO1 peptides or the corresponding unmodified peptides, plus Poly I:C as an adjuvant, were orthotopically implanted with a TNBC murine cell line. Results: Vaccination with citENO1, but not unmodified ENO1 (umENO1), induced a greater percentage of activated CD8+ PD-1+ T cells and effector memory T cells in skin-draining lymph nodes (SDLNs). Remarkably, the citENO1 vaccine delayed tumor growth and prolonged overall survival, which was further enhanced by PD-1 blockade. Conclusions: Our data suggest that cancer-restricted post-translational modifications provide a source of vaccines that induce an anti-cancer immune response. Full article
(This article belongs to the Special Issue Personalised Cancer Vaccines)
Show Figures

Figure 1

12 pages, 668 KiB  
Article
Xenogeneic Testicular Cell Vaccination Induces Long-Term Anti-Cancer Immunity in Mice
by Victor I. Seledtsov, Ayana B. Dorzhieva, Adas Darinskas, Alexei A. von Delwig, Elena A. Blinova and Galina V. Seledtsova
Curr. Issues Mol. Biol. 2025, 47(6), 443; https://doi.org/10.3390/cimb47060443 - 10 Jun 2025
Viewed by 1294
Abstract
Cancer/testis antigen (CTA) gene products are expressed in most malignant tumours, while under normal conditions their expression is primarily restricted to testicular cells. In this study, we investigated the prophylactic application of a xenogeneic (ram-derived) testicular cell (TC) vaccine for cancer prevention in [...] Read more.
Cancer/testis antigen (CTA) gene products are expressed in most malignant tumours, while under normal conditions their expression is primarily restricted to testicular cells. In this study, we investigated the prophylactic application of a xenogeneic (ram-derived) testicular cell (TC) vaccine for cancer prevention in an experimental animal model. C57BL/6 mice were immunised three times with either xenogeneic (ram) or syngeneic (mouse) formaldehyde-fixed spermatogenic tissue-derived cells. Following vaccination, mice were implanted with live B16 melanoma or LLC carcinoma cells. Tumour-bearing mice were subsequently assessed for survival and immunological parameters indicative of anti-cancer immunity. Xenogeneic vaccination with TCs induced cross-reactive immune responses to both B16 melanoma and LLC carcinoma antigens (Ags), as determined by an MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Prophylactic vaccination with xenogeneic TCs (xTCs), but not syngeneic TCs (sTCs), significantly improved survival rates, with 30% of vaccinated mice surviving after LLC carcinoma implantation. The induced immunity was long-lasting as mice implanted with LLC carcinoma cells 3–6 months post-vaccination exhibited prolonged survival. Furthermore, lymphoid cells from surviving vaccinated mice were capable of adoptively transferring anti-cancer immunity to naïve animals, significantly increasing their survival rates upon subsequent LLC carcinoma cell implantation. Vaccinated mice bearing LLC tumours exhibited a reduction in regulatory CD4⁺CD25⁺Foxp3⁺ T cells in the spleen, with no effect observed in the central memory CD4⁺CD44⁺CD62L⁺ T-cell compartment. Moreover, vaccinated mice displayed increased interferon gamma (IFN-γ) levels in the blood, with no significant changes in interleukin-10 (IL-10) levels. Prophylactic vaccination with xenogeneic CTAs effectively induces long-term, stable anti-cancer immunity, demonstrating potential for future immunopreventive strategies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop