Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,776)

Search Parameters:
Keywords = anti-ageing properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2611 KiB  
Article
Enhancing the Cosmetic Potential of Aloe Vera Gel by Kombucha-Mediated Fermentation: Phytochemical Analysis and Evaluation of Antioxidant, Anti-Aging and Moisturizing Properties
by Aleksandra Ziemlewska, Martyna Zagórska-Dziok, Anna Nowak, Anna Muzykiewicz-Szymańska, Magdalena Wójciak, Ireneusz Sowa, Dariusz Szczepanek and Zofia Nizioł-Łukaszewska
Molecules 2025, 30(15), 3192; https://doi.org/10.3390/molecules30153192 - 30 Jul 2025
Viewed by 301
Abstract
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria [...] Read more.
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria and yeast, carried out for 10 and 20 days (samples F10 and F20, respectively). The resulting ferments and unfermented gel were subjected to chromatographic analysis to determine the content of biologically active compounds. The permeability and accumulation of these compounds in pig skin were evaluated. In addition, the methods of DPPH, ABTS and the determination of intracellular free radical levels in keratinocytes (HaCaT) and fibroblasts (HDF) cell lines were used to determine antioxidant potential. The results showed a higher content of phenolic acids and flavonoids and better antioxidant properties of the ferments, especially after 20 days of fermentation. Cytotoxicity tests against HaCaT and HDF cells confirmed the absence of toxic effects; moreover, samples at the concentrations tested (mainly 10 and 25 mg/mL) showed cytoprotective effects. The analysis of enzymatic activity (collagenase, elastase and hyaluronidase) by the ELISA technique showed higher levels of inhibition for F10 and F20. The kombucha ferments also exhibited better moisturizing properties and lower levels of transepidermal water loss (TEWL), confirming their cosmetic potential. Full article
(This article belongs to the Special Issue New Development in Fermented Products—Third Edition)
Show Figures

Figure 1

15 pages, 752 KiB  
Article
Enhanced Anti-Inflammatory Effects of Rosemary (Salvia rosmarinus) Extracts Modified with Pseudomonas shirazensis Nanoparticles
by Enrique Gutierrez-Albanchez, Elena Fuente-González, Svitlana Plokhovska, Francisco Javier Gutierrez-Mañero and Beatriz Ramos-Solano
Antioxidants 2025, 14(8), 931; https://doi.org/10.3390/antiox14080931 - 29 Jul 2025
Viewed by 250
Abstract
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary [...] Read more.
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary extracts in postharvest applications. Rosemary stems were treated with AgNPs coated with bacterial metabolites (NP), bacterial cells, or metabolites (LM), and the extracts’ phytochemical composition and bioactivities were assessed. HPLC and HPLC–MS analyses revealed that the NP treatment induced significant metabolic remodeling, particularly upregulating rosmarinic acid and selected triterpenes (ursolic and betulinic acids), while reducing carnosic acid levels. NP-treated extracts exhibited significantly enhanced inhibition of cyclooxygenase (COX-1 and COX-2), indicating improved anti-inflammatory potential. The α-glucosidase inhibition and antioxidant activity (DPPH assay) of the extracts were not substantially altered, suggesting the selective enhancement of pharmacological functions. These findings demonstrate that nanoparticle-based elicitation selectively remodels secondary metabolism in rosemary, improving extract quality and bioactivity. This strategy offers a novel, sustainable tool for optimizing plant-based therapeutics in the phytopharmaceutical industry. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
Show Figures

Figure 1

25 pages, 3359 KiB  
Article
In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts
by Desy Muliana Wenas, Berna Elya, Sutriyo Sutriyo, Heri Setiawan, Rozana Othman, Syamsu Nur, Nita Triadisti, Fenny Yunita and Erwi Putri Setyaningsih
Molecules 2025, 30(15), 3168; https://doi.org/10.3390/molecules30153168 - 29 Jul 2025
Viewed by 268
Abstract
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess [...] Read more.
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess anti-aging properties, primarily attributed to its major constituents, myricitrin and quercetin. This study aimed to investigate the anti-elastase and antioxidant properties of Eugenia uniflora stem bark, ripe fruit, and seed extracts. Extracts were obtained using an ultrasound-assisted extraction (UAE) method with 70% ethanol. Quantitative phytochemical analysis involved measuring the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. Bioactive constituents were identified using LC-MS analysis, and their interactions with target enzymes were further evaluated through in silico molecular docking. The results demonstrated that the E. uniflora seed extract exhibited the highest antioxidant activity, with an IC50 of 5.23 µg/mL (DPPH assay) and a FRAP value of 3233.32 µmol FeSO4/g. Furthermore, the ethanolic seed extract showed significant anti-elastase activity with an IC50 of 114.14 µg/mL. Molecular docking predicted strong potential for several compounds as pancreatic elastase inhibitors, including 5-phenylvaleric acid, 2-(3-phenylpropyl)phenol, n-amylbenzene, 2-aminoadipic acid, and traumatin, each showing a prediction activity (PA) value exceeding 0.6. Notably, these compounds also exhibited inhibitory activity against tyrosinase. These findings collectively underscore the significant promise of E. uniflora seed extract as a novel and natural candidate for pharmacocosmeceutical product development, particularly for anti-aging applications. Full article
Show Figures

Graphical abstract

12 pages, 3205 KiB  
Article
Hibiscus Collagen Alternative (VC-H1) as an Oral Skin Rejuvenating Agent: A 12-Week Pilot Study
by Yujin Baek, Ngoc Ha Nguyen, Young In Lee, Min Joo Jung, In Ah Kim, Sung Jun Lee, Hyun Min Kim and Ju Hee Lee
Int. J. Mol. Sci. 2025, 26(15), 7291; https://doi.org/10.3390/ijms26157291 - 28 Jul 2025
Viewed by 532
Abstract
Skin aging causes reduced hydration, elasticity, and increased wrinkles. Recent safety and compliance concerns over oral collagen supplements have increased interest in plant-based alternatives like Hibiscus sabdariffa with antioxidant and anti-aging properties. However, clinical evidence regarding its efficacy remains limited. We aimed to [...] Read more.
Skin aging causes reduced hydration, elasticity, and increased wrinkles. Recent safety and compliance concerns over oral collagen supplements have increased interest in plant-based alternatives like Hibiscus sabdariffa with antioxidant and anti-aging properties. However, clinical evidence regarding its efficacy remains limited. We aimed to evaluate the effects of this plant-based collagen alternative (VC-H1, Hibiscus Enzyme Extract) supplement on skin hydration, transepidermal water loss (TEWL), desquamation, elasticity, and wrinkle reduction in photoaged individuals. A randomized, double-blind, placebo-controlled clinical trial was conducted with 98 participants (aged 35–60 years) presenting with dry skin and periorbital wrinkles. Participants randomly received 1.5 g/day of VC-H1 or placebo for 12 weeks. Skin hydration, TEWL, deep moisture, keratin index, elasticity, and wrinkle parameters were assessed at baseline, 6 weeks, and 12 weeks. VC-H1 supplementation significantly increased skin hydration, reduced the TEWL and keratin index, and improved deep moisture content for those receiving it compared with the controls. Wrinkle depth significantly decreased, and skin elasticity also improved. Those in the VC-H1 group showed greater overall improvement than those in the control group. Oral VC-H1 supplementation significantly improved skin hydration, elasticity, and wrinkle reduction, suggesting its potential as a plant-based alternative to traditional collagen supplements for skin rejuvenation. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

20 pages, 4727 KiB  
Article
Developing a Novel Fermented Milk with Anti-Aging and Anti-Oxidative Properties Using Lactobacillus kefiranofaciens HL1 and Lactococcus lactis APL015
by Sheng-Yao Wang, Wei-Chen Yen, Yen-Po Chen, Jia-Shian Shiu and Ming-Ju Chen
Nutrients 2025, 17(15), 2447; https://doi.org/10.3390/nu17152447 - 27 Jul 2025
Viewed by 560
Abstract
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing [...] Read more.
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing HL1 with Lactococcus lactis subsp. cremoris APL015 (APL15) to enhance fermentation and health benefits. Methods: HL1 and APL15 were co-cultured to produce fermented milk (FM), and fermentation performance, microbial viability, texture, and syneresis were evaluated. A D-galactose-induced aging BALB/c mouse model was used to assess cognitive function, oxidative stress, inflammation, antioxidant enzyme activity, and gut microbiota after 8 weeks of oral administration. Results: FM reached pH 4.6 within 16 h, with high viable counts (~109 CFU/mL) for both strains. HL1 viability and texture were maintained, with smooth consistency and low syneresis. In vivo, FM improved cognitive behavior (Y-maze, Morris water maze), reduced oxidative damage (MDA), lowered IL-1β and TNF-α, and enhanced brain SOD levels. FM-fed mice exhibited increased short-chain fatty acid producers, higher cecal butyrate, and reduced Clostridium perfringens. Conclusions: The co-cultured fermented milk effectively delivers HL1 and provides antioxidant, anti-inflammatory, and anti-aging effects in vivo, likely via gut–brain axis modulation. It shows promise as a functional food for healthy aging. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

16 pages, 3360 KiB  
Article
Natural Fiber-Reinforced Foamed Rubber Composites: A Sustainable Approach to Achieving Lightweight and Structural Stability in Sole Materials
by Yi Jin, Shen Chen, Jinlan Xie, Weixing Xu, Yunhang Zeng and Bi Shi
Polymers 2025, 17(15), 2043; https://doi.org/10.3390/polym17152043 - 26 Jul 2025
Viewed by 456
Abstract
Lightweightness and durability are key consumer demands for footwear. To address the issues of deformation and poor durability in foamed sole materials, this study integrates natural fibers into the formulation of foamed rubber. The effects of natural fiber incorporation on density, mechanical properties, [...] Read more.
Lightweightness and durability are key consumer demands for footwear. To address the issues of deformation and poor durability in foamed sole materials, this study integrates natural fibers into the formulation of foamed rubber. The effects of natural fiber incorporation on density, mechanical properties, creep behavior, anti-slip performance, and aging resistance were comprehensively analyzed. Additionally, the study explored the mechanisms underlying the improved performance of the modified rubber materials. The results revealed that natural fiber integration significantly enhanced the structural stability, strength, and aging resistance of natural rubber (NR). Among the fibers compared, collagen fibers (CF) proved to be the most effective modifier for foamed NR. The density, tensile strength, tear strength, and coefficient of friction of CF-modified foamed NR (CF-NR) were found to be 0.72 g/cm3, 10.1 MPa, 48.0 N/mm, and 1.105, respectively, meeting the standard requirements for sole materials. Furthermore, CF-NR demonstrated a recoverable deformation of 4.58% and a negligible irreversible deformation of 0.10%, indicating a successful balance between comfort and durability. This performance enhancement can be attributed to the supportive role of CF in the pore structure, along with its inherent flexibility and recoverability. This work presents a novel approach for the development of high-quality, lightweight footwear in the sole material industry. Full article
(This article belongs to the Special Issue Towards Green Polymers Through Biomass Conversion and Utilization)
Show Figures

Graphical abstract

81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 320
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

17 pages, 3286 KiB  
Article
Molecular Insights into the Superiority of Platelet Lysate over FBS for hASC Expansion and Wound Healing
by Sakurako Kunieda, Michika Fukui, Atsuyuki Kuro, Toshihito Mitsui, Huan Li, Zhongxin Sun, Takayuki Ueda, Shigeru Taketani, Koichiro Higasa and Natsuko Kakudo
Cells 2025, 14(15), 1154; https://doi.org/10.3390/cells14151154 - 25 Jul 2025
Viewed by 342
Abstract
Human adipose-derived stem cells (hASCs) are widely used in regenerative medicine due to their accessibility and high proliferative capacity. Platelet lysate (PL) has recently emerged as a promising alternative to fetal bovine serum (FBS), offering superior cell expansion potential; however, the molecular basis [...] Read more.
Human adipose-derived stem cells (hASCs) are widely used in regenerative medicine due to their accessibility and high proliferative capacity. Platelet lysate (PL) has recently emerged as a promising alternative to fetal bovine serum (FBS), offering superior cell expansion potential; however, the molecular basis for its efficacy remains insufficiently elucidated. In this study, we performed RNA sequencing to compare hASCs cultured with PL or FBS, revealing a significant upregulation of genes related to stress response and cell proliferation under PL conditions. These findings were validated by RT–qPCR and supported by functional assays demonstrating enhanced cellular resilience to oxidative and genotoxic stress, reduced doxorubicin-induced senescence, and improved antiapoptotic properties. In a murine wound model, PL-treated wounds showed accelerated healing, characterized by thicker dermis-like tissue formation and increased angiogenesis. Immunohistochemical analysis further revealed elevated expression of chk1, a DNA damage response kinase encoded by CHEK1, which plays a central role in maintaining genomic integrity during stress-induced repair. Collectively, these results highlight PL not only as a viable substitute for FBS in hASC expansion but also as a bioactive supplement that enhances regenerative efficacy by promoting proliferation, stress resistance, and antiaging functions. Full article
(This article belongs to the Section Cellular Aging)
Show Figures

Figure 1

18 pages, 1425 KiB  
Article
Blackberry (Rubus spp. Xavante Cultivar) Oil-Loaded PCL Nanocapsules: Sustainable Bioactive for In Vitro Collagen-Boosting Skincare
by Daniela F. Maluf, Brenda A. Lopes, Mariana D. Miranda, Luana C. Teixeira, Ana P. Horacio, Amanda Jansen, Madeline S. Correa, Guilherme dos Anjos Camargo, Jessica Mendes Nadal, Jane Manfron, Patrícia M. Döll-Boscardin and Paulo Vitor Farago
Cosmetics 2025, 12(4), 159; https://doi.org/10.3390/cosmetics12040159 - 25 Jul 2025
Viewed by 390
Abstract
Background: Blackberry seed oil (BSO), obtained from Rubus spp. Xavante cultivar via supercritical CO2 extraction, contains bioactive lipids and antioxidants, but its cosmetic application is limited by poor solubility and stability. Nanoencapsulation with poly(ε-caprolactone) (PCL) can overcome these limitations. Methods: BSO was [...] Read more.
Background: Blackberry seed oil (BSO), obtained from Rubus spp. Xavante cultivar via supercritical CO2 extraction, contains bioactive lipids and antioxidants, but its cosmetic application is limited by poor solubility and stability. Nanoencapsulation with poly(ε-caprolactone) (PCL) can overcome these limitations. Methods: BSO was characterized by Ultra-High-Performance Liquid Chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and incorporated into PCL nanocapsules (NCBSO) using the preformed polymer deposition method. Physicochemical properties, stability (at 4 °C, room temperature, and 37 °C for 90 days), cytotoxicity, and collagen production were assessed in human fibroblasts. Additionally, a predictive in silico analysis using PASS Online, Molinspiration, and SEA platforms was performed to identify the bioactivities of major BSO compounds related to collagen synthesis, antioxidant potential, and anti-aging effects. Results: NCBSO showed a nanometric size of ~267 nm, low polydispersity (PDI < 0.2), negative zeta potential (−28 mV), and spherical morphology confirmed by FE-SEM. The dispersion remained stable across all tested temperatures, preserving pH and colloidal properties. In particular, BSO and NCBSO at 100 µg.mL−1 significantly enhanced in vitro collagen production by 170% and 200%, respectively, compared to untreated cells (p < 0.01). Superior bioactivity was observed for NCBSO. The in silico results support the role of key compounds in promoting collagen biosynthesis and protecting skin structure. No cytotoxic effects were achieved. Conclusions: The nanoencapsulation of BSO into PCL nanocapsules ensured formulation stability and potentiated collagen production. These findings support the potential of NCBSO as a promising candidate for future development as a collagen-boosting cosmeceutical. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Graphical abstract

25 pages, 7428 KiB  
Article
Sialic Acid-Loaded Nanoliposomes with Enhanced Stability and Transdermal Delivery for Synergistic Anti-Aging, Skin Brightening, and Barrier Repair
by Fan Yang, Hua Wang, Dan Luo, Jun Deng, Yawen Hu, Zhi Liu and Wei Liu
Pharmaceutics 2025, 17(8), 956; https://doi.org/10.3390/pharmaceutics17080956 - 24 Jul 2025
Viewed by 302
Abstract
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: [...] Read more.
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: To overcome these challenges, SA was encapsulated within nanoliposomes (NLPs) by the high-pressure homogenization technique to develop an advanced and efficient transdermal drug delivery system. The skincare capabilities of this novel system were comprehensively evaluated across multiple experimental platforms, including in vitro cell assays, 3D skin models, in vivo zebrafish studies, and clinical human trials. Results: The SA-loaded NLPs (SA-NLPs) substantially improved the transdermal penetration and retention of SA, facilitating enhanced cellular uptake and cell proliferation. Compared to free SA, SA-NLPs demonstrated a 246.98% increase in skin retention and 1.8-fold greater cellular uptake in HDF cells. Moreover, SA-NLPs protected cells from oxidative stress-induced damage, stimulated collagen synthesis, and effectively suppressed the secretion of matrix metalloproteinases, tyrosinase activity, and melanin production. Additionally, zebrafish-based assays provided in vivo evidence of the skincare efficacy of SA-NLPs. Notably, clinical evaluations demonstrated that a 56-day application of the SA-NLPs-containing cream resulted in a 4.20% increase in L*, 7.87% decrease in b*, 8.45% decrease in TEWL, and 4.01% reduction in wrinkle length, indicating its superior brightening, barrier-repair, and anti-aging effects. Conclusions: This multi-level, systematic investigation strongly suggests that SA-NLPs represent a highly promising transdermal delivery strategy, capable of significantly enhancing the anti-aging, barrier-repair, and skin-brightening properties of SA, thus opening new avenues for its application in the fields of dermatology and cosmeceuticals. Full article
(This article belongs to the Special Issue Lipid/Polymer-Based Drug Delivery Systems)
Show Figures

Figure 1

33 pages, 2018 KiB  
Review
Biogenic Synthesis of Silver Nanoparticles and Their Diverse Biomedical Applications
by Xiaokun Jiang, Shamma Khan, Adam Dykes, Eugen Stulz and Xunli Zhang
Molecules 2025, 30(15), 3104; https://doi.org/10.3390/molecules30153104 - 24 Jul 2025
Viewed by 512
Abstract
Nanoparticles (NPs) synthesised through biogenic routes have emerged as a sustainable and innovative platform for biomedical applications such as antibacterial, anticancer, antiviral, anti-inflammatory, drug delivery, wound healing, and imaging diagnostics. Among these, silver nanoparticles (AgNPs) have attracted significant attention due to their unique [...] Read more.
Nanoparticles (NPs) synthesised through biogenic routes have emerged as a sustainable and innovative platform for biomedical applications such as antibacterial, anticancer, antiviral, anti-inflammatory, drug delivery, wound healing, and imaging diagnostics. Among these, silver nanoparticles (AgNPs) have attracted significant attention due to their unique physicochemical properties and therapeutic potential. This review examines the biogenic synthesis of AgNPs, focusing on microbial, plant-based, and biomolecule-assisted approaches. It highlights how reaction conditions, such as pH, temperature, and media composition, influence nanoparticle size, shape, and functionality. Particular emphasis is placed on microbial synthesis for its eco-friendly and scalable nature. The mechanisms of AgNP formation and their structural impact on biomedical performance are discussed. Key applications are examined including antimicrobial therapies, cancer treatment, drug delivery, and theranostics. Finally, the review addresses current challenges, such as reproducibility, scalability, morphological control, and biosafety, and outlines future directions for engineering AgNPs with tailored properties, paving the way for sustainable and effective next-generation biomedical solutions. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Graphical abstract

11 pages, 1770 KiB  
Article
Influence of Selenium Pressure on Properties of AgInGaSe2 Thin Films and Their Application to Solar Cells
by Xianfeng Zhang, Engang Fu, Yong Lu and Yang Yang
Nanomaterials 2025, 15(15), 1146; https://doi.org/10.3390/nano15151146 - 24 Jul 2025
Viewed by 204
Abstract
A wide-bandgap AgInGaSe2 (AIGS) thin film was fabricated using molecular beam epitaxy (MBE) via a three-stage method. The influence of Selenium (Se) pressure on the properties of AIGS films and solar cells was studied in detail. It was found that Se pressure [...] Read more.
A wide-bandgap AgInGaSe2 (AIGS) thin film was fabricated using molecular beam epitaxy (MBE) via a three-stage method. The influence of Selenium (Se) pressure on the properties of AIGS films and solar cells was studied in detail. It was found that Se pressure played a very important role during the fabrication process, whereby Se pressure was varied from 0.8 × 10−3 Torr to 2.5 × 10−3 Torr in order to specify the effect of Se pressure. A two-stage mechanism during the production of AIGS solar cells was concluded according to the experimental results. With an increase in Se pressure, the grain size significantly increased due to the supply of the Ag–Se phase; the superficial roughness also increased. When Se pressure was increased to 2.1 × 10−3 Torr, the morphology of AIGS changed abruptly and clear grain boundaries were observed with a typical grain size of over 1.5 μm. AIGS films fabricated with a low Se pressure tended to show a higher bandgap due to the formation of anti-site defects such as In and Ga on Ag sites as a result of the insufficient Ag–Se phase. With an increase in Se pressure, the crystallinity of the AIGS film changed from the (220)-orientation to the (112)-orientation. When Se pressure was 2.1 × 10−3 Torr, the AIGS solar cell demonstrated its best performance of about 9.6% (Voc: 810.2 mV; Jsc: 16.7 mA/cm2; FF: 71.1%) with an area of 0.2 cm2. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

32 pages, 722 KiB  
Article
Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
by Izamara de Oliveira, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros and Sandrina A. Heleno
Sustainability 2025, 17(15), 6718; https://doi.org/10.3390/su17156718 - 23 Jul 2025
Viewed by 310
Abstract
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) [...] Read more.
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) (SB); and inflorescences from three cultivars of Musa acuminata (Musaceae) var. Dwarf Cavendish, var. BRS Platina, and var. BRS Conquista (MAD, MAP, and MAC), including the assessment of physical, nutritional, phytochemical, and biological parameters. Notably, detailed phenolic profiles were established for these species, many of which are poorly documented in the literature. XS was characterized by a unique abundance of C-glycosylated flavones, especially apigenin and luteolin derivatives, rarely described for this species. SB exhibited high levels of phenylethanoid glycosides, particularly verbascoside and its isomers (up to 21.32 mg/g extract), while PA was rich in O-glycosylated flavonols such as quercetin, kaempferol, and isorhamnetin derivatives. Nutritionally, XS had the highest protein content (16.3 g/100 g dw), while SB showed remarkable dietary fiber content (59.8 g/100 g). Banana inflorescences presented high fiber (up to 66.5 g/100 g) and lipid levels (up to 7.35 g/100 g). Regarding bioactivity, PA showed the highest DPPH radical scavenging activity (95.21%) and SB the highest reducing power in the FRAP assay (4085.90 µM TE/g). Cellular antioxidant activity exceeded 2000% in most samples, except for SB. Cytotoxic and anti-inflammatory activities were generally low, with only SB showing moderate effects against Caco-2 and AGS cell lines. SB and PA demonstrated the strongest antimicrobial activity, particularly against Yersinia enterocolitica, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis, with minimum inhibitory concentrations ranging from 0.156 to 0.625 mg/mL. Linear discriminant analysis revealed distinctive chemical patterns among the species, with organic acids (e.g., oxalic up to 7.53 g/100 g) and fatty acids (e.g., linolenic acid up to 52.38%) as key discriminant variables. Overall, the study underscores the nutritional and functional relevance of these underutilized plants and contributes rare quantitative data to the scientific literature regarding their phenolic signatures. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

22 pages, 3640 KiB  
Review
Progress in Research on Animal Collagen Peptides: Preparation, Bioactivity, and Application
by Xuanxuan Ma, Po-Hsiang Chuang, Yu-Hui Tseng, Xiao Wang, Ziteng Ma, Haofei Chen, Wenye Zhai, Wenwen Yang, Zhaoqing Meng and Jing Xu
Molecules 2025, 30(15), 3061; https://doi.org/10.3390/molecules30153061 - 22 Jul 2025
Viewed by 527
Abstract
Type I collagen is a major protein in animals, and its hydrolyzed products, collagen peptides, have wide-ranging applications. This article reviews collagen peptides’ preparation methods, biological activities, and application progress in the fields of food, cosmetics, and medicine. By employing various extraction and [...] Read more.
Type I collagen is a major protein in animals, and its hydrolyzed products, collagen peptides, have wide-ranging applications. This article reviews collagen peptides’ preparation methods, biological activities, and application progress in the fields of food, cosmetics, and medicine. By employing various extraction and hydrolysis methods, collagen peptides with different molecular weights can be obtained, and their biological activities are closely related to their molecular weight and amino acid sequence. Studies have revealed that collagen peptides possess a variety of biological activities, including antioxidant, hematopoietic promotion, osteogenic differentiation promotion, antihypertensive, and anti-diabetic effects. In the food industry, their antioxidant and hypoglycemic properties have opened new avenues for the development of healthy foods; in the cosmetics field, the moisturizing, anti-aging, and repair functions of collagen peptides are favored by consumers; in the medical field, collagen peptides are used in wound dressings, drug carriers, and tissue engineering scaffolds. Looking to the future, the development of green and efficient preparation technologies for collagen peptides and in-depth research into the relationship between their structure and function will be important research directions. The multifunctional properties of collagen peptides provide a broad prospect for their further application in the health industry. Full article
(This article belongs to the Special Issue New Achievements and Challenges in Food Chemistry)
Show Figures

Figure 1

10 pages, 721 KiB  
Article
Pharmacokinetic Analysis of the Bioavailability of AQUATURM®, a Water-Soluble Curcumin Formulation, in Comparison to a Conventional Curcumin Tablet, in Human Subjects
by Lillian Jabur, Rishi Pandey, Meena Mikhael, Garry Niedermayer, Erika Gyengesi, David Mahns and Gerald Münch
Pharmaceuticals 2025, 18(7), 1073; https://doi.org/10.3390/ph18071073 - 21 Jul 2025
Viewed by 374
Abstract
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed [...] Read more.
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed to overcome these limitations. This study aimed to evaluate and compare the pharmacokinetic profile of AQUATURM®, a novel, water-soluble curcumin formulation, with that of a widely available commercial curcumin supplement. Methods: A randomized, double-blind, two-period crossover study was conducted in 12 healthy adult participants (6 male, 6 female; aged 20–45 years). Each participant received a single oral dose of either AQUATURM® or the comparator product, followed by a 7-day washout period before receiving the alternate treatment. Blood samples were collected at multiple time points over a 12-h period post-dosing. Plasma curcumin concentrations were quantified using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). Results: AQUATURM® achieved a significantly higher systemic exposure compared to the comparator, with a more than 7-fold increase in area under the curve (AUC0–12h) and higher peak plasma concentrations (Cmax). AQUATURM® also maintained detectable curcumin levels for the full 12-h observation period, whereas levels from the comparator fell below quantification limits in most participants after 4 h. Conclusions: AQUATURM® significantly enhances curcumin bioavailability in humans compared to a standard curcumin formulation. These pharmacokinetic improvements support its potential for greater clinical efficacy and warrant further evaluation in therapeutic setting Full article
Show Figures

Graphical abstract

Back to TopTop