Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (864)

Search Parameters:
Keywords = anthocyanin accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2995 KiB  
Article
Improving the Surface Color and Delaying Softening of Peach by Minimizing the Harmful Effects of Ethylene in the Package
by Hongsheng Zhou, Siyu Ma, Jing Zhao, Ying Gao, Wen Huang, Yingtong Zhang, Jun Ling, Qian Zhou and Pengxia Li
Foods 2025, 14(14), 2472; https://doi.org/10.3390/foods14142472 - 15 Jul 2025
Viewed by 169
Abstract
Peach is a typical ethylene-sensitive fruit, and low levels of ethylene can accelerate softening during storage. In this study, we used an ethylene absorbent (EA) and 1-methylcyclopropene (1-MCP) to minimize the detrimental impact of ethylene on the quality of peaches in modified atmosphere [...] Read more.
Peach is a typical ethylene-sensitive fruit, and low levels of ethylene can accelerate softening during storage. In this study, we used an ethylene absorbent (EA) and 1-methylcyclopropene (1-MCP) to minimize the detrimental impact of ethylene on the quality of peaches in modified atmosphere packaging (MAP), and analyzed fruit firmness, color change, anthocyanin content, and the expression patterns of cell wall metabolism-related genes and anthocyanin synthesis-related genes during storage. The results showed that ethylene in the MAP package decreased the firmness and total anthocyanin content of the peaches, while MAP combined with EA (MAP+EA) treatment effectively maintained the firmness of the peaches and counteracted the inhibition of anthocyanin accumulation in the peach skin by ethylene. In addition, the peaches treated with MAP+EA exhibited higher a* values, lower weight loss, and lower activities of cell-wall-modifying enzymes. Meanwhile, MAP+EA treatment also significantly increased the expression of color-related genes such as flavonoid 3′-hydroxylase gene (F3′H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-flavonoid 3-O-glucosyltransferase (UFGT). Furthermore, a good synergistic effect was observed between 1-MCP and EA in delaying softening and promoting coloring of peach fruit in the MAP package. The combination of 1-MCP and EA treatment may have the potential to alleviate softening and improve the color and quality of post-harvest fruit during storage. Full article
Show Figures

Figure 1

15 pages, 518 KiB  
Review
Advances in Bract Coloration: Diversity, Pigment Synthesis, and Regulatory Mechanisms in Ornamental Plants
by Xiaoyang Li, Yang Liu, Zhiquan Cai and Yiwei Zhou
Plants 2025, 14(14), 2155; https://doi.org/10.3390/plants14142155 - 13 Jul 2025
Viewed by 236
Abstract
Bract coloration in ornamental plants is a complex trait governed by diverse pigments (chlorophylls, anthocyanins, betalains, and carotenoids), their biosynthetic pathways, and regulatory networks. While previous research has primarily focused on floral pigmentation, studies on bract coloration—particularly in species where bracts serve as [...] Read more.
Bract coloration in ornamental plants is a complex trait governed by diverse pigments (chlorophylls, anthocyanins, betalains, and carotenoids), their biosynthetic pathways, and regulatory networks. While previous research has primarily focused on floral pigmentation, studies on bract coloration—particularly in species where bracts serve as the primary ornamental feature—have received less attention until recent advances. This review synthesizes current understanding of bract color diversity, pigment biochemistry, and molecular regulation in key species including Bougainvillea, Euphorbia pulcherrima, Anthurium andraeanum, Curcuma alismatifolia, and Zantedeschia hybrida. Anthocyanins predominantly contribute to red-to-purple hues, while betalains generate red, purple, or yellow coloration through differential accumulation of betacyanins and betaxanthins. Developmental color transitions are mediated by chlorophyll degradation and carotenoid dynamics. The spatiotemporal regulation of pigment accumulation involves coordinated interactions between key structural genes (CHS, DFR, ANS for anthocyanins; DODA, CYP76AD1 for betalains), transcription factors (MYB, bHLH, WRKY), and plant growth regulators (BAP, GA, MeJA). Despite these advances, significant knowledge gaps remain in genetic inheritance patterns, epigenetic regulation, cross-pigment pathway crosstalk, and environmental modulation. Future research directions should integrate multi-omics approaches, wild germplasm resources, and gene-editing technologies to develop novel breeding strategies for bract color improvement. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Graphical abstract

19 pages, 10222 KiB  
Article
Molecular Hydrogen Improves Blueberry Main Fruit Traits via Metabolic Reprogramming
by Longna Li, Jiaxin Gong, Ke Jiang, Liqin Huang, Lijun Gan, Yan Zeng, Xu Cheng, Didier Pathier and Wenbiao Shen
Plants 2025, 14(14), 2137; https://doi.org/10.3390/plants14142137 - 10 Jul 2025
Viewed by 196
Abstract
Fruit yield and quality improvement are challenges for researchers and farmers. This study reveals that the main fruit traits of blueberry (Vaccinium ashei ‘Bluegem’) were significantly improved after hydrogen (H2)-based irrigation, assessed by the increased single fruit weight (14.59 ± [...] Read more.
Fruit yield and quality improvement are challenges for researchers and farmers. This study reveals that the main fruit traits of blueberry (Vaccinium ashei ‘Bluegem’) were significantly improved after hydrogen (H2)-based irrigation, assessed by the increased single fruit weight (14.59 ± 6.66%) and fruit equatorial diameter (4.19 ± 2.39%), decreased titratable acidity, increased solid–acid and sugar–acid ratios. The enhancement of fruit quality was confirmed by the increased total volatiles, vitamin C contents, and antioxidant capacity. Using weighted protein co-expression network analysis (WPCNA), proteomic interrogation revealed that serine carboxypeptidase-like proteins I/II (SCPLI/II), ADP ribosylation factor 1/2 (ARF1/2), and UDP-glucosyltransferase 85A (UGT85A) might be functionally associated with the increased fruit weight and size driven by H2. Reduced organic acid accumulation was caused by the regulation of the specific enzymes involved in sucrose metabolism (e.g., α-amylase, endoglucanase, β-glucosidase, etc.). H2 regulation of fatty acid degradation (e.g., acyl CoA oxidase 1 (ACX1), acetyl CoA acyltransferase 1 (ACAA1), etc.) and phenylpropanoid metabolism were used to explain the improved fruit aroma and anthocyanin accumulation. Meanwhile, the upregulated heat shock protein 20/70 matched with the enhanced antioxidant activity. Together, this study provides a novel approach for yield and quality improvement in horticultural crops. Full article
Show Figures

Figure 1

17 pages, 5798 KiB  
Article
Microbial Allies from the Cold: Antarctic Fungal Endophytes Improve Maize Performance in Water-Limited Fields
by Yessica San Miguel, Rómulo Santelices-Moya, Antonio M. Cabrera-Ariza and Patricio Ramos
Plants 2025, 14(14), 2118; https://doi.org/10.3390/plants14142118 - 9 Jul 2025
Viewed by 259
Abstract
Climate change has intensified drought stress, threatening global food security by affecting sensitive crops like maize (Zea mays). This study evaluated the potential of Antarctic fungal endophytes (Penicillium chrysogenum and P. brevicompactum) to enhance maize drought tolerance under field [...] Read more.
Climate change has intensified drought stress, threatening global food security by affecting sensitive crops like maize (Zea mays). This study evaluated the potential of Antarctic fungal endophytes (Penicillium chrysogenum and P. brevicompactum) to enhance maize drought tolerance under field conditions with different irrigation regimes. Drought stress reduced soil moisture to 59% of field capacity. UAV-based multispectral imagery monitored plant physiological status using vegetation indices (NDVI, NDRE, SIPI, GNDVI). Inoculated plants showed up to two-fold higher index values under drought, indicating improved stress resilience. Physiological analysis revealed increased photochemical efficiency (0.775), higher chlorophyll and carotenoid contents (45.54 mg/mL), and nearly 80% lower lipid peroxidation in inoculated plants. Lower proline accumulation suggested better water status and reduced osmotic stress. Secondary metabolites such as phenolics, flavonoids, and anthocyanins were elevated, particularly under well-watered conditions. Antioxidant enzyme activity shifted: SOD, CAT, and APX were suppressed, while POD activity increased, indicating reprogrammed oxidative stress responses. Yield components, including cob weight and length, improved significantly with inoculation under drought. These findings demonstrate the potential of Antarctic endophytes to enhance drought resilience in maize and underscore the value of integrating microbial biotechnology with UAV-based remote sensing for sustainable crop management under climate-induced water scarcity. Full article
(This article belongs to the Special Issue Plant-Microbiome Interactions)
Show Figures

Figure 1

13 pages, 537 KiB  
Article
Phenolic Profiles of Different Apricot Varieties Grown in Spain: Discrimination Among Cultivars During the Harvest Season
by Julia Morales, Helena Gómez-Martínez and Almudena Bermejo
Agronomy 2025, 15(7), 1652; https://doi.org/10.3390/agronomy15071652 - 7 Jul 2025
Viewed by 272
Abstract
Apricot is one of the most important Mediterranean fruits with high diversity and fruit quality properties, being an excellent raw material for polyphenol compounds. This study aimed to determine the anthocyanin, quercetin glycoside and phenolic acid contents in new apricot genotypes from the [...] Read more.
Apricot is one of the most important Mediterranean fruits with high diversity and fruit quality properties, being an excellent raw material for polyphenol compounds. This study aimed to determine the anthocyanin, quercetin glycoside and phenolic acid contents in new apricot genotypes from the breeding program at the Instituto Valenciano de Investigaciones Agrarias, confirming the potential of the ‘Goldrich’ cultivar to be a parental donor for increasing the antioxidant content, which would, in turn, enhance fruit quality. Phenolic composition of the apricot accessions is strongly genotype-dependent, with the concentrations of overall total phenolic compounds ranging from 770 to 260 mg 100 g−1 DW, reflecting significant genetic diversity. ‘Goldrich’ contributed to the polyphenol content; however, its influence varied across derived varieties, with ‘GG9310’ and ‘GG979’ enhancing the shikimic acid pathway and accumulating high levels of total phenolics. In contrast, ‘Mitger’ and ‘HG9850’ stood out for high anthocyanin synthesis, despite their lower levels of flavonols and phenolic acids. The predominant anthocyanin was cyanidin-3-O-rutinoside, followed by cyanidin-3-O-glucoside and peonidin-3-O-rutinoside in smaller amounts. Other phenolics were rutin and quercetin-3-O-glucuronide, as well as neochlorogenic and chlorogenic acids. The PCA model was applied to all data to identify the most attractive cultivars, and chromatographic analysis was performed in a short time using Ultra-High-Performance Liquid Chromatography (UHPLC) with diode array and mass spectrometric detection. Apricot peel is an excellent source of nutraceutical compounds with a chemical composition strongly determined by the cultivar. Results can help establish authenticity markers for apricot cultivars. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

21 pages, 7342 KiB  
Article
Synergistic Antioxidant Effects of C3G-Enriched Oryza sativa L. cv. RD83 Extract and α-Tocopherol Against H2O2-Induced Oxidative Stress in SH-SY5Y Cells
by Nootchanat Mairuae and Nut Palachai
Int. J. Mol. Sci. 2025, 26(13), 6490; https://doi.org/10.3390/ijms26136490 - 5 Jul 2025
Viewed by 247
Abstract
Oxidative stress, which contributes to neuronal cell dysfunction, is a critical factor in the pathogenesis of neurodegenerative diseases. Anthocyanins and α-tocopherol have shown potential in mitigating oxidative damage, and their combination may provide synergistic effects. This study investigated the combined effects of a [...] Read more.
Oxidative stress, which contributes to neuronal cell dysfunction, is a critical factor in the pathogenesis of neurodegenerative diseases. Anthocyanins and α-tocopherol have shown potential in mitigating oxidative damage, and their combination may provide synergistic effects. This study investigated the combined effects of a cyanidin-3-glucoside (C3G)-enriched extract derived from Oryza sativa L. cv. RD83 and α-tocopherol (C3GE) on hydrogen peroxide (H2O2)-induced oxidative stress in SH-SY5Y cells. Cells were treated with C3GE during exposure to 200 µM H2O2. Cell viability, intracellular reactive oxygen species (ROS), and oxidative stress biomarkers, including the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), as well as malondialdehyde (MDA) levels, were evaluated. Protein expression levels of histone deacetylase 1 (HDAC1), nuclear factor erythroid 2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and SOD1 were also assessed. The combined treatment markedly improved cell viability, suppressed ROS accumulation, enhanced antioxidant enzyme activities, and significantly reduced MDA levels, suggesting effective protection against oxidative damage. Mechanistically, C3GE downregulated HDAC1 expression while upregulating Nrf2, HO-1, and SOD1, indicating that its antioxidant and neuroprotective effects are mediated, at least in part, through epigenetic modulation of redox-related signaling pathways. These results demonstrate a synergistic interaction between C3G and α-tocopherol that enhances cellular antioxidant defenses and supports redox homeostasis. In conclusion, the C3GE combination offers a promising therapeutic approach for preventing or attenuating oxidative stress-induced neuronal injury, with potential relevance for the treatment of neurodegenerative disorders. Full article
(This article belongs to the Special Issue Oxidative Stress and Disease: Basic and Biochemical Approaches)
Show Figures

Figure 1

11 pages, 1916 KiB  
Article
The Novel Transcription Factor BnaA01.KAN3 Is Involved in the Regulation of Anthocyanin Accumulation Under Phosphorus Starvation
by Li He, Shan Peng, Ruihua Lin, Jiahui Zhang, Peng Cui, Yi Gan and Hongbo Liu
Plants 2025, 14(13), 2036; https://doi.org/10.3390/plants14132036 - 3 Jul 2025
Viewed by 278
Abstract
The investigation of phosphorus metabolism and regulatory mechanisms is conducive to maintaining stable production of crops within a low-phosphorus environment. In phosphorus signal transduction, a few phosphorus starvation response (PHR) transcription factors were identified to bind to the characteristic cis-element, namely the [...] Read more.
The investigation of phosphorus metabolism and regulatory mechanisms is conducive to maintaining stable production of crops within a low-phosphorus environment. In phosphorus signal transduction, a few phosphorus starvation response (PHR) transcription factors were identified to bind to the characteristic cis-element, namely the PHR1 binding sequence (P1BS). While the molecular function of the PHR transcription factor has been intensively elucidated, here, we explore a novel transcription factor, BnaA01.KAN3, that undergoes specific binding to the P1BS by yeast one-hybrid and electrophoretic mobility shift assays, and its expression is induced with low-phosphorus stress. BnaA01.KAN3 possessed transcriptional activation and was located in the nucleus. The spatiotemporal expression pattern of BnaA01.KAN3 exhibited tissue specificity in developmental seed, and its expression level was especially high 25–30 days after pollination. Regarding the phenotype analysis, the independent heterologous overexpression lines of BnaA01.KAN3 in Arabidopsis thaliana exhibited not only significantly longer taproots but also an increased number of lateral roots compared to that of the wild type undergoing low-phosphorus treatment, while no differences were seen under normal phosphorus conditions. Furthermore, these lines showed higher anthocyanin and inorganic phosphorus contents with normal and low-phosphorus treatment, suggesting that BnaA01.KAN3 could enhance phosphorus uptake or remobilization to cope with low-phosphorus stress. In summary, this study characterized the transcription factor BnaA01.KAN3 that modulates low-phosphate adaptation and seed development, providing insights for improving phosphorus use efficiency and yield traits in Brassica napus. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding of Oilseed Crops—2nd Edition)
Show Figures

Figure 1

18 pages, 3683 KiB  
Article
The Impact of Light Quality on the Growth and Quality of Celery
by Li Tang, Qianwen Chu, Kaiyue Liu, Yingyi Lu, Shaobo Cheng, Tonghua Pan, Xiaoting Zhou and Zhongqun He
Horticulturae 2025, 11(7), 774; https://doi.org/10.3390/horticulturae11070774 - 2 Jul 2025
Viewed by 215
Abstract
Farming is an important development direction of agriculture in the future, which is affected by various environmental factors, among which light plays an important role, and it is essential for the growth of organisms in nature. LED technology can regulate the growth and [...] Read more.
Farming is an important development direction of agriculture in the future, which is affected by various environmental factors, among which light plays an important role, and it is essential for the growth of organisms in nature. LED technology can regulate the growth and development of vegetables by adjusting the spectral composition of light. In order to explore light quality formulation with the aim of improving the quality and yield of celery, we set up six experimental treatments: W (white light), R (red light), B (blue light), 3R1B (red light/blue light = 3:1), 4R1B (red light/blue light = 4:1), and 5R1B (red light/blue light = 5:1). The results indicated that the 3R1B and 4R1B illumination treatments were conducive to promoting the growth of celery, enhancing plant height and root length. Specifically, the 3R1B treatment optimized the nutritional quality of celery by increasing the levels of soluble protein, soluble sugar, and total flavonoids while reducing nitrate and cellulose contents and elevating the anthocyanin content in petioles. Additionally, both treatments enhanced the contents of Ca and Mg in celery leaves and petioles. Furthermore, the 3R1B treatment promoted the accumulation of photosynthetic pigments, upregulated the activities of ANS and FNS enzymes, and induced the upregulation of gene expression levels of FNS and ANS, thereby enhancing the nutritional value of celery. Full article
(This article belongs to the Special Issue Latest Advances in Horticulture Production Equipment and Technology)
Show Figures

Figure 1

19 pages, 2605 KiB  
Article
Transcriptome and Metabolome Analyses of Flavonoid Biosynthesis During Berry Development of Muscadine Grape (Vitis rotundifolia Michx)
by Qiaofeng Yang, Changlin Li, Yan Wang, Xian Pei, Aixin Wang, Li Jin and Linchuan Fang
Plants 2025, 14(13), 2025; https://doi.org/10.3390/plants14132025 - 2 Jul 2025
Viewed by 307
Abstract
Flavonoids play a crucial role in plant development, resistance, and the pigmentation of fruits and flowers. This study aimed to uncover the mechanism of flavonoid biosynthesis and fruit coloring in muscadine grapes. Two muscadine genotypes (Paulk and Supreme) were investigated via metabolomic and [...] Read more.
Flavonoids play a crucial role in plant development, resistance, and the pigmentation of fruits and flowers. This study aimed to uncover the mechanism of flavonoid biosynthesis and fruit coloring in muscadine grapes. Two muscadine genotypes (Paulk and Supreme) were investigated via metabolomic and transcriptomic analysis during three developmental stages (bunch closure, veraison stage, and ripening stage). A total of 314 flavonoids were identified, with flavones and flavonols being the primary constituents. The contents of many differentially accumulated metabolites (DAMs) were higher at the veraison stage. The total anthocyanin content was upregulated during berry development, with the dominant type of anthocyanidin-3,5-O-diglucoside. Proanthocyanins accumulated higher levels in the ripening stage of Paulk than Supreme. Transcriptomic analyses revealed that over 46% of the DEGs exhibited higher expression levels in the bunch closure stage. Moreover, phenylalanine ammonia-lyase (PAL), cinnamyl 4-hydroxylase (C4H), and coumaryl CoA ligase (4CL) genes were upregulated during berry development, suggesting they promote second metabolites biosynthesis. The upregulation of dihydroflavonol 4-reductase (DFR) and leucoanthocyanin reductase (LAR) may related to the higher levels of PA in Paulk. Anthocyanidin synthase (ANS) and UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT) showed higher expression levels in the ripening stage, which may relate to the accumulation of anthocyanidins. This study provides comprehensive insights into flavonoid metabolism and berry coloration in Vitis rotundifolia. Full article
Show Figures

Figure 1

21 pages, 7526 KiB  
Article
Integrated Metabolome and Transcriptome Analysis Reveals the Mechanism of Anthocyanin Biosynthesis in Pisum sativum L. with Different Pod Colors
by Weijun Ye, Zejiang Wu, Dongfeng Tian and Bin Zhou
Agronomy 2025, 15(7), 1609; https://doi.org/10.3390/agronomy15071609 - 30 Jun 2025
Viewed by 253
Abstract
Pea (Pisum sativum L.) is a significant source of dietary protein, starch, fiber, and minerals, offering health benefits and serving as both a green vegetable and dry grain. The pigment contents in pea pods with different colors and related genes are still [...] Read more.
Pea (Pisum sativum L.) is a significant source of dietary protein, starch, fiber, and minerals, offering health benefits and serving as both a green vegetable and dry grain. The pigment contents in pea pods with different colors and related genes are still unclear. We conducted an integrated transcriptome and metabolome analysis on three cultivars, including QiZhen (QZ) with green immature pods, FengMi (FM) with yellow immature pods, and ZiYu (ZY) with purple immature pods, to identify the key genes and metabolites involved in anthocyanin accumulation. ZY showed the highest total anthocyanin content compared with FM and QZ. Subsequent quantification revealed that four metabolites, including Delphinidin-3-O-galactoside, Delphinidin-3-O-(6″-O-xylosyl)glucoside, Cyanidin-3-O-galactoside, and Pelargonidin-3-O-(xylosyl)glucoside, were the most highly accumulated in the ZY cultivar, suggesting their role in the purple pigmentation of ZY pea pods. There were 49 differentially accumulated anthocyanidins in ZY vs. FM, 43 differentially accumulated anthocyanidins in ZY vs. QZ, and 21 differentially accumulated anthocyanidins in FM vs. QZ. These findings highlight the importance of the type and concentration of anthocyanin compounds, especially those based on delphinidin, cyanidin, and pelargonidin, in the development of purple pea pods. The transcriptomic analysis revealed that certain anthocyanin biosynthetic genes were expressed at higher levels in ZY than in FM and QZ. In ZY, the higher expression levels of five key genes (PAL, 4CL, CHS, F3H, and UFGT) resulted in elevated anthocyanin content compared to FM and QZ. Furthermore, the BSA-seq analysis identified a candidate region associated with purple color in pea pods, which is located on chromosome 6 and contains 21 DEGs. Sequence variation in KIW84_061698, which encodes a bHLH transcription factor, was identified as the key candidate gene controlling anthocyanin content. This study clarifies the molecular mechanisms behind pea pod coloration and identifies potential genetic engineering targets for breeding anthocyanin-rich sugar snap peas. Full article
(This article belongs to the Special Issue Advances in Crop Molecular Breeding and Genetics—2nd Edition)
Show Figures

Figure 1

27 pages, 3732 KiB  
Review
Occurrence, Biosynthesis, and Health Benefits of Anthocyanins in Rice and Barley
by Essam A. ElShamey, Xiaomeng Yang, Jiazhen Yang, Xiaoying Pu, Li’E Yang, Changjiao Ke and Yawen Zeng
Int. J. Mol. Sci. 2025, 26(13), 6225; https://doi.org/10.3390/ijms26136225 - 27 Jun 2025
Viewed by 264
Abstract
The occurrence of anthocyanins in rice (Oryza sativa) and barley (Hordeum vulgare) varies among cultivars, with pigmented varieties (e.g., black rice and purple barley) accumulating higher concentrations due to genetic and environmental factors. The biosynthesis of anthocyanins is regulated [...] Read more.
The occurrence of anthocyanins in rice (Oryza sativa) and barley (Hordeum vulgare) varies among cultivars, with pigmented varieties (e.g., black rice and purple barley) accumulating higher concentrations due to genetic and environmental factors. The biosynthesis of anthocyanins is regulated by a complex network of structural and regulatory genes. Key enzymes in the pathway include chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT). These genes are tightly controlled by transcription factors (TFs) from the MYB, bHLH (basic helix–loop–helix), and WD40 repeat families, which form the MBW (MYB-bHLH-WD40) regulatory complex. In rice, OsMYB transcription factors such as OsMYB3, OsC1, and OsPL (Purple Leaf) interact with OsbHLH partners (e.g., OsB1, OsB2) to activate anthocyanin biosynthesis. Similarly, in barley, HvMYB genes (e.g., HvMYB10) coordinate with HvbHLH TFs to regulate pigment accumulation. Environmental cues, such as light, temperature, and nutrient availability, further modulate these TFs, influencing the production of anthocyanin. Understanding the genetic and molecular mechanisms behind the biosynthesis of anthocyanins in rice and barley provides opportunities for the development of biofortification strategies that enhance their nutritional value. Full article
Show Figures

Figure 1

22 pages, 2762 KiB  
Article
Foliar Application of Melatonin Improves Photosynthesis and Secondary Metabolism in Chenopodium quinoa Willd. Seedlings Under High-Temperature Stress
by Meiqing Li, Jinyang Li, Deke Xing and Yanyou Wu
Agronomy 2025, 15(7), 1556; https://doi.org/10.3390/agronomy15071556 - 26 Jun 2025
Viewed by 181
Abstract
The suitable growth environment for quinoa is high-altitude areas. In recent years, quinoa is also gradually cultivated in other regions with high-temperature exposure. High-temperature stress poses a potential constraint on quinoa quality and yield by impacting pigments, photosynthesis, and metabolites. This study aimed [...] Read more.
The suitable growth environment for quinoa is high-altitude areas. In recent years, quinoa is also gradually cultivated in other regions with high-temperature exposure. High-temperature stress poses a potential constraint on quinoa quality and yield by impacting pigments, photosynthesis, and metabolites. This study aimed to investigate the effect of exogenous melatonin (MT) in alleviating heat stress on quinoa in controllable conditions. Day/night temperatures were maintained at 35/25 °C in a climate chamber, and foliar spraying was performed using melatonin (MT) concentrations of 0, 50, 100, and 200 μmol L−1. Day/night temperatures were maintained at 25/15 °C in another climate chamber as a comparative trial. Our results demonstrated that high temperature decreased the levels of photosynthetic pigments and the values of photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). Additionally, it also influenced the accumulation of polyphenols and altered polyphenol oxidase (PPO) activity in the red quinoa (RQ) cultivar. Obvious reductions in gas exchange parameters and metabolites including flavonoid, anthocyanin, and PPO were observed both in the BQ cultivar and the WQ cultivar. However, the application of 100 μmol L−1 MT significantly increased the levels of photosynthetic pigments, the values of Pn, gs, and Tr, and the PPO activity, as well as the contents of flavonoid and anthocyanin in the RQ cultivar. The application of 50 μmol L−1 MT only led to an increase in the concentrations of Chl a, Chl (a + b), and flavonoids, as well as PPO activity, whereas 100 μmol L−1 MT significantly enhanced the values of Pn, gs, and Tr and the PPO activity. Additionally, 200 μmol L−1 MT contributed to the synthesis of anthocyanins and polyphenols, and enhanced PPO activity in the BQ cultivar. The application of 50 μmol L−1 MT limited the increase in the contents of total polyphenols, flavonoids, and anthocyanin, we all as PPO activity, in the WQ cultivar. The findings demonstrated that photosynthesis and metabolite synthesis in quinoa under high temperatures depends on an interactive response between cultivar and melatonin levels. The application of 100 μmol L−1 MT was found to be optimal for alleviating the adverse effects of high temperature on photosynthesis and metabolites in the RQ cultivar during actual production. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 924 KiB  
Article
Paternal and/or Maternal Blackberry (Rubus spp.) Polyphenolic Extract Consumption Improved Paternal Fertility and Differentially Affected Female Offspring Antioxidant Capacity and Metabolic Programming in a Mouse Model
by Vanessa Cardoso Pires, Sara Lima Anacleto, Cristiane Matté, Odair Aguiar, Franco Maria Lajolo, Neuza Mariko Aymoto Hassimotto and Thomas Prates Ong
Antioxidants 2025, 14(7), 779; https://doi.org/10.3390/antiox14070779 - 25 Jun 2025
Viewed by 408
Abstract
Dietary polyphenols’ role in early life is not clear. While accumulating studies show both beneficial and deleterious effects of maternal consumption of these bioactive compounds on offspring’s adult health, very few studies have focused on the impact of paternal consumption. In addition, the [...] Read more.
Dietary polyphenols’ role in early life is not clear. While accumulating studies show both beneficial and deleterious effects of maternal consumption of these bioactive compounds on offspring’s adult health, very few studies have focused on the impact of paternal consumption. In addition, the potential interaction of combined parental polyphenol consumption is still not known. Thus, the aim of the present study was to investigate the effects of maternal (gestation/lactation) and/or paternal (preconception) blackberry polyphenol (anthocyanins, ellagitannins, and quercetin) methanolic extract consumption on C57BL/6 female mice offspring. Blackberry polyphenol consumption by fathers improved their sperm production and increased fertility. Blackberry polyphenol consumption by fathers, but not mothers, increased their plasma antioxidant capacity. All parental interventions decreased offspring perinatal mortality, with combined fathers’ and mothers’ polyphenol consumption exerting the most pronounced effects. Paternal or maternal polyphenol consumption decreased plasma total antioxidant capacity in the female offspring. On the other hand, combined parental consumption had opposing effects on the offspring. Only maternal polyphenol interventions increased glucose tolerance in the female offspring. These data only partially confirm our hypothesis that combined paternal and maternal polyphenol intervention would lead to better outcomes in the offspring. These results further show that blackberry polyphenols’ effects on offspring health depend on whether their consumption occurred through the father, mother, or both. This suggests that in order to promote long-term health in descendants, nutritional interventions, including those with polyphenols, should target not only the mother but also the future father. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

37 pages, 4654 KiB  
Article
Age-Specific Physiological Adjustments of Spirodela polyrhiza to Sulfur Deficiency
by Vesna Peršić, Anja Melnjak, Lucija Domjan, Günther Zellnig and Jasenka Antunović Dunić
Plants 2025, 14(13), 1907; https://doi.org/10.3390/plants14131907 - 20 Jun 2025
Viewed by 466
Abstract
Spirodela polyrhiza is a suitable model organism for investigating plant developmental influences due to its intracolonial variations in response to various environmental fluctuations, like nutrient deficiency. In this study, transmission electron microscopy was used to examine age-dependent variation in chloroplast ultrastructure, while pigment [...] Read more.
Spirodela polyrhiza is a suitable model organism for investigating plant developmental influences due to its intracolonial variations in response to various environmental fluctuations, like nutrient deficiency. In this study, transmission electron microscopy was used to examine age-dependent variation in chloroplast ultrastructure, while pigment levels (chlorophyll and anthocyanins), starch accumulation, and metabolic activity (photosynthetic and respiratory rates) were measured to determine metabolic responses to sulfur deficiency. For a comprehensive insight into electron transport efficiency and the redox states of the photosynthetic apparatus, rapid light curves, chlorophyll fluorescence (JIP test parameters), and modulated reflection at 820 nm were analyzed. Under S deficit, mother fronds relied on stored reserves to maintain functional PSII but accumulated reduced PQ pools, slowing electron flow beyond PSII. The first-generation daughter fronds, despite having higher baseline photosynthetic capacity, exhibited the largest decline in photosynthetic indicators (e.g., rETR fell about 50%), limitations in the water-splitting complex, and reduced PSI end-acceptor capacity that resulted in donor- and acceptor-side bottlenecks of electron transport. The youngest granddaughter fronds avoided these bottlenecks by absorbing less light per PSII, channeling electrons through the alternative pathway to balance PQ pools and redox-stable PSI while diverting more carbon into starch and anthocyanin production up to 5-fold for both. These coordinated and age-specific adjustments that provide response flexibility may help maintain photosynthetic function of the colony and facilitate rapid recovery when sulfur becomes available again. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications—2nd Edition)
Show Figures

Figure 1

12 pages, 3425 KiB  
Article
Disruption of ABI4 Enhances Anthocyanin Accumulation in Arabidopsis Seedlings Through HY5-Mediated Light Signaling
by Mingyang Zeng, Yan Wu, Shunfa Lin, Fang Zhang, Haiyan Jiang, Lixia Ma and Dong Liu
Plants 2025, 14(13), 1905; https://doi.org/10.3390/plants14131905 - 20 Jun 2025
Viewed by 319
Abstract
The AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) plays diverse roles in plant development and responses to abiotic stress. However, its potential involvement in regulating anthocyanin biosynthesis is not fully understood. In this study, three different loss-of-function abi4 alleles (abi4-1, [...] Read more.
The AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) plays diverse roles in plant development and responses to abiotic stress. However, its potential involvement in regulating anthocyanin biosynthesis is not fully understood. In this study, three different loss-of-function abi4 alleles (abi4-1, abi4-2, and abi4-101) were employed to investigate the role of ABI4 in the regulation of anthocyanin accumulation in Arabidopsis seedlings. These abi4 mutants exhibited significantly increased anthocyanin accumulation, which was associated with elevated expression of genes involved in anthocyanin biosynthesis. HY5 (LONG HYPOCOTYL 5), a central component of photomorphogenesis, acts as a key light-regulated molecular switch. Further analysis revealed that ABI4 requires HY5 to function as a negative regulator of anthocyanin biosynthesis. Additionally, loss of ABI4 resulted in heightened light sensitivity, leading to increased light-induced chlorophyll accumulation and chloroplast development, along with upregulation of photosynthesis-related genes. Interestingly, the light-hypersensitive phenotype of abi4 mutants was partially rescued by the loss of HY5 function. Taken together, these findings demonstrate that ABI4 negatively regulates anthocyanin accumulation in Arabidopsis seedlings through a HY5-dependent light signaling pathway. Full article
Show Figures

Figure 1

Back to TopTop