Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,011)

Search Parameters:
Keywords = antenna system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 276 KiB  
Article
Inclusion of Hydrolyzed Feather Meal in Diets for Giant River Prawn (Macrobrachium rosenbergii) During the Nursery Phase: Effects on Growth, Digestive Enzymes, and Antioxidant Status
by Eduardo Luis Cupertino Ballester, Angela Trocino, Cecília de Souza Valente, Marlise Mauerwerk, Milena Cia Retcheski, Luisa Helena Cazarolli, Caio Henrique do Nascimento Ferreira and Francesco Bordignon
Appl. Sci. 2025, 15(15), 8627; https://doi.org/10.3390/app15158627 (registering DOI) - 4 Aug 2025
Abstract
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. [...] Read more.
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. Survival rates ranged from 73.3 ± 5.44% to 83.3 ± 3.84% without significant differences among groups. Dietary HFM inclusion levels above 3.0% significantly improved prawn performance, including final weight (up to 2.18-fold higher than control), length (1.13-fold), antenna length (1.18-fold), biomass gain (2.14-fold), and feed conversion ratio (1.59-fold lower). Prawn-fed diets at 6.0% HFM showed the highest performance among all experimental groups. No significant effects were observed on antioxidant biomarkers or digestive enzymes in prawns hepatopancreas, which suggests no imbalance in the antioxidant system or impairment of digestive function. Likewise, carcass proximate composition remained stable across experimental groups. These findings suggest that HFM at 3.0–6.0% dietary inclusion levels is a potential alternative to fishmeal in nursery-phase diets for M. rosernbergii PL, promoting prawn growth and welfare and maintaining health and carcass quality. Notably, to the best of our knowledge, this is the first study demonstrating the potential effective use of HFM in feeding the nursery phase of M. rosernbergii. Full article
(This article belongs to the Section Agricultural Science and Technology)
20 pages, 6269 KiB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 (registering DOI) - 3 Aug 2025
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 3172 KiB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 (registering DOI) - 1 Aug 2025
Viewed by 141
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 125
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
21 pages, 4522 KiB  
Article
A Method Integrating the Matching Field Algorithm for the Three-Dimensional Positioning and Search of Underwater Wrecked Targets
by Huapeng Cao, Tingting Yang and Ka-Fai Cedric Yiu
Sensors 2025, 25(15), 4762; https://doi.org/10.3390/s25154762 (registering DOI) - 1 Aug 2025
Viewed by 97
Abstract
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching [...] Read more.
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching field quadratic joint Algorithm was proposed. Secondly, an MVDR beamforming method based on pre-Kalman filtering is designed to refine the real-time DOA estimation of the desired signal and the interference source, and the sound source azimuth is determined for prepositioning. The antenna array weights are dynamically adjusted according to the filtered DOA information. Finally, the Adaptive Matching Field Algorithm (AMFP) used the DOA information to calculate the range and depth of the lost target, and obtained the range and depth estimates. Thus, the 3D position of the lost underwater target is jointly estimated. This method alleviates the angle ambiguity problem and does not require a computationally intensive 2D spectral search. The simulation results show that the proposed method can better realise underwater three-dimensional positioning under certain signal-to-noise ratio conditions. When there is no error in the sensor coordinates, the positioning error is smaller than that of the baseline method as the SNR increases. When the SNR is 0 dB, with the increase in the sensor coordinate error, the target location error increases but is smaller than the error amplitude of the benchmark Algorithm. The experimental results verify the robustness of the proposed framework in the hierarchical ocean environment, which provides a practical basis for the deployment of rapid response underwater positioning systems in maritime search and rescue scenarios. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
Show Figures

Figure 1

11 pages, 6279 KiB  
Communication
Low-Profile Broadband Filtering Antennas for Vehicle-to-Vehicle Applications
by Shengtao Chen and Wang Ren
Sensors 2025, 25(15), 4747; https://doi.org/10.3390/s25154747 (registering DOI) - 1 Aug 2025
Viewed by 128
Abstract
This paper proposes a compact, broadband, and low-profile filtering antenna designed for Sub-6 GHz communication. By applying characteristic mode analysis to the radiating elements, the operational mechanism of the antenna is clearly elucidated. The current cancellation among different radiating elements results in two [...] Read more.
This paper proposes a compact, broadband, and low-profile filtering antenna designed for Sub-6 GHz communication. By applying characteristic mode analysis to the radiating elements, the operational mechanism of the antenna is clearly elucidated. The current cancellation among different radiating elements results in two radiation nulls in the primary radiation direction, effectively enhancing the filtering effect. The antenna achieves a wide operational bandwidth (S1110 dB) of 35.9% (4.3–6.4 GHz), making it highly suitable for Sub-6 GHz communication systems. Despite its compact size of 25 × 25 mm2, the antenna consistently maintains stable broadside radiation patterns, with a peak gain of 6.14 dBi and a minimal gain fluctuation of less than 1 dBi at 4.6–6.45 GHz. This design ensures reliable and robust communication performance for V2V systems operating in the designated frequency band. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 (registering DOI) - 1 Aug 2025
Viewed by 212
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 10557 KiB  
Article
The RF–Absolute Gradient Method for Localizing Wheat Moisture Content’s Abnormal Regions with 2D Microwave Scanning Detection
by Dong Dai, Zhenyu Wang, Hao Huang, Xu Mao, Yehong Liu, Hao Li and Du Chen
Agriculture 2025, 15(15), 1649; https://doi.org/10.3390/agriculture15151649 - 31 Jul 2025
Viewed by 171
Abstract
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization [...] Read more.
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization method for addressing such a challenge. Both static and scanning experiments were performed on a developed mobile and non-destructive microwave detection system to quantify the MC of wheat and then locate abnormal moisture regions. For quantifying the wheat’s MC, a dual-parameter wheat MC prediction model with the random forest (RF) algorithm was constructed, achieving a high accuracy (R2 = 0.9846, MSE = 0.2768, MAE = 0.3986). MC scanning experiments were conducted by synchronized moving waveguides; the maximum absolute error of MC prediction was 0.565%, with a maximum relative error of 3.166%. Furthermore, both one- and two-dimensional localizing methods were proposed for localizing abnormal moisture regions. The one-dimensional method evaluated two approaches—attenuation value and absolute attenuation gradient—using computer simulation technology (CST) modeling and scanning experiments. The experimental results confirmed the superior performance of the absolute gradient method, with a center detection error of less than 12 mm in the anomalous wheat moisture region and a minimum width detection error of 1.4 mm. The study performed two-dimensional antenna scanning and effectively imaged the high-MC regions using phase delay analysis. The imaging results coincide with the actual locations of moisture anomaly regions. This study demonstrated a promising solution for accurately localizing the wheat’s abnormal/high-moisture regions with the use of an emerging microwave transmission method. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

24 pages, 4753 KiB  
Article
A Secure Satellite Transmission Technique via Directional Variable Polarization Modulation with MP-WFRFT
by Zhiyu Hao, Zukun Lu, Xiangjun Li, Xiaoyu Zhao, Zongnan Li and Xiaohui Liu
Aerospace 2025, 12(8), 690; https://doi.org/10.3390/aerospace12080690 (registering DOI) - 31 Jul 2025
Viewed by 143
Abstract
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both [...] Read more.
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both academic and industrial circles. Within the realm of satellite communications, polarization modulation and quadrature techniques are essential for information transmission and interference suppression. To boost electromagnetic countermeasures in complex battlefield scenarios, this paper integrates multi-parameter weighted-type fractional Fourier transform (MP-WFRFT) with directional modulation (DM) algorithms, building upon polarization techniques. Initially, the operational mechanisms of the polarization-amplitude-phase modulation (PAPM), MP-WFRFT, and DM algorithms are elucidated. Secondly, it introduces a novel variable polarization-amplitude-phase modulation (VPAPM) scheme that integrates variable polarization with amplitude-phase modulation. Subsequently, leveraging the VPAPM modulation scheme, an exploration of the anti-interception capabilities of MP-WFRFT through parameter adjustment is presented. Rooted in an in-depth analysis of simulation data, the anti-scanning capabilities of MP-WFRFT are assessed in terms of scale vectors in the horizontal and vertical direction. Finally, exploiting the potential of the robust anti-scanning capabilities of MP-WFRFT and the directional property of antenna arrays in DM, the paper proposes a secure transmission technique employing directional variable polarization modulation with MP-WFRFT. The performance simulation analysis demonstrates that the integration of MP-WFRFT and DM significantly outperforms individual secure transmission methods, improving anti-interception performance by at least an order of magnitude at signal-to-noise ratios above 10 dB. Consequently, this approach exhibits considerable potential and engineering significance for its application within satellite communication systems. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

31 pages, 18320 KiB  
Article
Penetrating Radar on Unmanned Aerial Vehicle for the Inspection of Civilian Infrastructure: System Design, Modeling, and Analysis
by Jorge Luis Alva Alarcon, Yan Rockee Zhang, Hernan Suarez, Anas Amaireh and Kegan Reynolds
Aerospace 2025, 12(8), 686; https://doi.org/10.3390/aerospace12080686 (registering DOI) - 31 Jul 2025
Viewed by 178
Abstract
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, [...] Read more.
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, Weight, and Power) ultra-wideband (UWB) impulse radar with realistic electromagnetic modeling for deployment on unmanned aerial vehicles (UAVs). The system incorporates ultra-realistic antenna and propagation models, utilizing Finite Difference Time Domain (FDTD) solvers and multilayered media, to replicate realistic airborne sensing geometries. Verification and calibration are performed by comparing simulation outputs with laboratory measurements using varied material samples and target models. Custom signal processing algorithms are developed to extract meaningful features from complex electromagnetic environments and support anomaly detection. Additionally, machine learning (ML) techniques are trained on synthetic data to automate the identification of structural characteristics. The results demonstrate accurate agreement between simulations and measurements, as well as the potential for deploying this design in flight tests within realistic environments featuring complex electromagnetic interference. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 3042 KiB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 294
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

16 pages, 754 KiB  
Article
Achievable Rate Optimization for Reconfigurable Intelligent Surface-Aided Multi-User Movable Antenna Systems
by Liji Yu and Yuhui Ren
Sensors 2025, 25(15), 4694; https://doi.org/10.3390/s25154694 - 29 Jul 2025
Viewed by 286
Abstract
This paper proposes a novel optimization framework for reconfigurable intelligent surface (RIS)-aided movable antenna (MA) systems, tackling the joint optimization problem of beamforming and antenna positions. Unlike traditional approaches, we reformulate the antenna positioning task as a sequential quadratic programming (SQP) problem, enabling [...] Read more.
This paper proposes a novel optimization framework for reconfigurable intelligent surface (RIS)-aided movable antenna (MA) systems, tackling the joint optimization problem of beamforming and antenna positions. Unlike traditional approaches, we reformulate the antenna positioning task as a sequential quadratic programming (SQP) problem, enabling efficient handling of nonlinear spatial constraints through iteratively solved quadratic subproblems. An alternating optimization scheme is adopted to decouple the overall problem into two subproblems: (1) optimal beamforming using maximum ratio transmission (MRT) and fixed-point iteration, and (2) precise antenna location optimization via SQP. Simulation results demonstrate that the proposed method significantly enhances spectral efficiency by fully exploiting the synergistic benefits of RIS and MA technologies. The proposed method could achieve about a 25% performance improvement compared to the fixed-position scheme. Current approaches predominantly rely on gradient search methods, which fail to fully exploit the potential of positional DoFs. In contrast, our proposed method is more effective. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 3440 KiB  
Article
Ambient Electromagnetic Wave Energy Harvesting Using Human Body Antenna for Wearable Sensors
by Dairoku Muramatsu and Kazuki Amano
Sensors 2025, 25(15), 4689; https://doi.org/10.3390/s25154689 - 29 Jul 2025
Viewed by 323
Abstract
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to [...] Read more.
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to supply power to wearable sensors. The power density and frequency distribution of AEMWs were measured in diverse indoor, outdoor, and basement environments. We designed and fabricated a flexible HBA–circuit interface electrode, optimized for broadband impedance matching when worn on the body. Experimental comparisons using a simulated AEMW source demonstrated that the HBA outperformed a conventional small whip antenna, particularly at frequencies below 300 MHz. Furthermore, the outdoor measurements indicated that the power harvested by the HBA was estimated to be −31.9 dBm (0.64 μW), which is sufficient for the intermittent operation of low-power wearable sensors and Bluetooth Low Energy modules. The electromagnetic safety was also evaluated through numerical analysis, and the specific absorption rate was confirmed to be well below the international safety limits. These findings indicate that HBA-based AEMW energy harvesting provides a practical and promising approach to achieving battery-maintenance-free wearable devices. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

21 pages, 4163 KiB  
Article
Digital Twin-Based Ray Tracing Analysis for Antenna Orientation Optimization in Wireless Networks
by Onem Yildiz
Electronics 2025, 14(15), 3023; https://doi.org/10.3390/electronics14153023 - 29 Jul 2025
Viewed by 270
Abstract
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a [...] Read more.
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a digital twin-based evaluation approach utilizing ray tracing simulations to assess the influence of antenna orientation on critical performance metrics: path gain, received signal strength (RSS), and signal-to-interference-plus-noise ratio (SINR). A thorough array of orientation scenarios was simulated to produce a dataset reflecting varied coverage conditions. The dataset was utilized to investigate antenna configurations that produced the optimal and suboptimal performance for each parameter. Additionally, three machine learning models—k-nearest neighbors (KNN), multi-layer perceptron (MLP), and XGBoost—were developed to forecast ideal configurations. XGBoost had superior prediction accuracy compared to the other models, as evidenced by regression outcomes and cumulative distribution function (CDF) analyses. The proposed workflow demonstrates that learning-based predictors can uncover orientation refinements that conventional grid sweeps overlook, enabling agile, interference-aware optimization. Key contributions include an end-to-end digital twin methodology for rapid what-if analysis and a systematic comparison of lightweight machine learning predictors for antenna orientation. This comprehensive method provides a pragmatic and scalable solution for the data-driven optimization of wireless systems in real-world settings. Full article
(This article belongs to the Special Issue Advances in Wireless Communication Performance Analysis)
Show Figures

Figure 1

27 pages, 5740 KiB  
Article
Localization of Multiple GNSS Interference Sources Based on Target Detection in C/N0 Distribution Maps
by Qidong Chen, Rui Liu, Qiuzhen Yan, Yue Xu, Yang Liu, Xiao Huang and Ying Zhang
Remote Sens. 2025, 17(15), 2627; https://doi.org/10.3390/rs17152627 - 29 Jul 2025
Viewed by 250
Abstract
The localization of multiple interference sources in Global Navigation Satellite Systems (GNSS) can be achieved using carrier-to-noise ratio (C/N0) information provided by GNSS receivers, such as those embedded in smartphones. However, in increasingly prevalent complex scenarios—such as the coexistence of multiple [...] Read more.
The localization of multiple interference sources in Global Navigation Satellite Systems (GNSS) can be achieved using carrier-to-noise ratio (C/N0) information provided by GNSS receivers, such as those embedded in smartphones. However, in increasingly prevalent complex scenarios—such as the coexistence of multiple directional interferences, increased diversity and density of GNSS interference, and the presence of multiple low-power interference sources—conventional localization methods often fail to provide reliable results, thereby limiting their applicability in real-world environments. This paper presents a multi-interference sources localization method using object detection in GNSS C/N0 distribution maps. The proposed method first exploits the similarity between C/N0 data reported by GNSS receivers and image grayscale values to construct C/N0 distribution maps, thereby transforming the problem of multi-source GNSS interference localization into an object detection and localization task based on image processing techniques. Subsequently, an Oriented Squeeze-and-Excitation-based Faster Region-based Convolutional Neural Network (OSF-RCNN) framework is proposed to process the C/N0 distribution maps. Building upon the Faster R-CNN framework, the proposed method integrates an Oriented RPN (Region Proposal Network) to regress the orientation angles of directional antennas, effectively addressing their rotational characteristics. Additionally, the Squeeze-and-Excitation (SE) mechanism and the Feature Pyramid Network (FPN) are integrated at key stages of the network to improve sensitivity to small targets, thereby enhancing detection and localization performance for low-power interference sources. The simulation results verify the effectiveness of the proposed method in accurately localizing multiple interference sources under the increasingly prevalent complex scenarios described above. Full article
(This article belongs to the Special Issue Advanced Multi-GNSS Positioning and Its Applications in Geoscience)
Show Figures

Figure 1

Back to TopTop